Khảo sát và vẽ đồ thị hàm số bậc bốn Các bài toán liên quan Bài 1: Khảo sát và vẽ đồ thị hàm số A,y = x 4 -2x 2 +1 B, y= -1/2 x 4 -x 2 +3/2 Bài 2 : ĐHQG TPHCM 1996 Cho C m : y= x 4 -2 m x 2 + m 3 -m 2 1,Khảo sát và vẽ đồ thị hàm số ứng với m = 1, 2,Tìm m để hàm số tiếp xúc với trục hoành tại 2 điểm phân biệt Bài 3 :ĐH Huế 1998 Cho C m : y= -x 4 +2mx 2 -2m +1 1,Khảo sát và vẽ đồ thị hàm số với m =1 2,CMR C m luôn đi qua 2 điểm A B cố định. 3.tìm m để các tiếp tuyến tại A và B vuông góc với nhau. Bài 4: Đề 122 I .Khảo sát và vẽ đồ thị hàm số y= x 4 + 3 10 x 2 +1 Bài 5: ĐHNN 1999 1,Khảo sát và vẽ đồ thị của hàm số y= 1 4 x 4 -2x 2 - 9 4 2.Viết pt tiếp tuyến của đồ thị hàm số tại các giao điểm của nó với trục ox. Bài 6: ĐH Huế 2000 1,Khảo sát và vẽ đồ thị của hàm số y= x 4 -5x 2 +4 2.Tìm m để đờng thẳng y = m cắt đồ thị 3 đoạn thẳng bằng nhau. 3.Tìm m để y = m cắt đồ thị hàm số tại bốn điểm phân biệt, Bài 7: ĐH Y TPHCM 1998 Cho hàm số y = x 4 -2(m+1) x 2 +2m+1 A,Khảo sát và vẽ đồ thị của hàm số với m = -2 B,Tìm m để đồ thị hàm số cắt ox tại 4 điểm có hoành độ lập thành cấp số cộng. Bài 8 ; ĐHNT 1994 Cho hàm số y = x 4 -4mx 3 +(3-3m)x 2 +3 A,khảo sát và vẽ đồ thị với m =1 B,Tìm m để hàm số có cực tiểu mà không có cực đại. Bài 9: ĐHSP II 1997. Cho hàm số y= (1-m) x 4 -mx 3 +2m-1 A,Khảo sát và vẽ đồ thị với m = -2 B,Tìm m để hàm số cắt ox tại 4 điểm phân biệt. C,Tìm m để hàm số có đúng một cực trị. D,Tìm m để hàm số có cực đại và cực tiểu mà tổng bình phơng các hoành độ bằng 27. Bài 10: ĐHCĐ B 2002 cho hàm số y= mx 4 + (m 2 -9) x 2 +10 1,Ksvđt với m=1 Chuyên đề lớp 12 GV Nguyễn Văn Phu Trờng THPT Minh Châu _Hy 1 2,Tìm m để hàm số có 3 cực trị. Bài 11.ĐHCĐ dự bị.2002 Cho hàm số y=x 4 mx 2 + m -1 1, Khảo sát và vẽ đồ thị hàm số khi m=8. 2.Tìm m để đồ thị hàm số cắt trục ox tại 4 điểm phân biệt. Bài 12 Đề tham khảo 2005 1,Khảo sát và vẽ đồ thị của hàm số y= x 4 -6 x 2 +5 2.Tìm m để pt sau có 4 nghiệm x 4 -6 x 2 log 2 m =0 Bài 13. cho hàm số y= x 4 -2 m 2 x 2 +1 1,Khảo sát và vẽ đồ thị với m=1 2.Tìm m để đồ thị hàm số có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân. Bài 14 khảo sát và vẽ đồ thị các hàm số 1,y =-x 4 +x 2 +1 2.y = x 4 +x 3 +x+1 3 2 5 3 1 4 1 234 +++ = xxx y Khảo sát và vẽ đồ thị hàm bậc ba Các Bài toán phụ liên quan Bài 1: (Đại học quốc gia 1998 D ) Cho hàm số f(x) = x 3 + 3 x 2 -9x + m 1,khảo sát và vẽ đồ thị với m = 12,Tìm m để pt f(x) = 0 có 3 nghiệm phân biệt. Bài 2 : (Đại học bách khoa 1999) 1,Khảo sát và vẽ đồ thị hàm y = x 3 -3 x + 2 2,Giải và biện luận theo m số nghiệm của pt x 3 -3 x + 2 = + m m 1 2 2 Bài 3 : (Học viện quan hệ qt 2000) 1.Ks và vẽ đồ thị của hàm số (C) y = 4x 3 -3 x 2,Tìm số nghiệm của pt 4 x 3 -3x = x 2 1 Bài 4 Khảo sát và vẽ đồ thị của các hàm số sau 1,y = 2x 3 + 3x 2 -1 2,y = x 3 + 3x 2 + 3x +5 3,y=x 3 -3x 2 -6x +8 4,y= 2x 3 x 2 .Giả sử y = a cất đthị tại x 1 ,x 2 ,x 3. .Tính x 1 2 +x 2 2 +x 3 2 = ? Bài 5 : (ĐH Mỏ 1997 ) Cho C m :y = (m+2)x 3 + 3 x 2 + mx-5 1,Khảo sát và vẽ đồ thị hàm số khi m = 0 2,Tìm m để hàm số có CĐ và CT Bài 6: (HVCNBCVT-2001) Cho hàm số y=x 3 -3x (C) A,khảo sát hàm số b,CMR khi m thay đổi thì đờng thẳng y = m(x+1)+2 luôn cắt đồ thị tại một điểm A cố định.Hãy xác định m để đờng thẳng cắt (C) tại 3 điểm A,B,C khác nhau sao cho tiếp tuyến tại B và C vuông góc với nhau. Bài 7:(ĐHL-ĐHD-2001) Cho hàm số y= x 3 -3(a-1)x 2 + 3a(a-1)x +1 A,Khảo sát và vẽ đồ thị hàm số B,Với giá trị nào của a thì hàm số đồng biến trên tập sao cho 21 x . Chuyên đề lớp 12 GV Nguyễn Văn Phu Trờng THPT Minh Châu _Hy 2 Bài 8:(ĐHBK-99) Cho hàm số y = x 3 +ax +2 A,khảo sát và vẽ đồ thị hàm số b,tìm a để đồ thị cắt ox tại đúng 1 điểm(Tiếp xúc,cắt tại 3 điểm phân biệt ) Bài 9ĐHCĐ A 2002.cho hàm số y=-x 3 +3mx 2 +3(1-m 2 )x +m 3 -m 2 (1) 1,Khảo sát và vẽ đồ thị hàm số khi m=1 2, Tìm k để pt x 3 +3x +k 3 -3k 2 =0 có 3 nghiệm phân biệt 3,Viết pt đờng thẳng đi qua hai điểm cực trị của đồ thị hàm số Bài 10 ĐHCĐ 2002 Dựbị: Cho hàm số y = 3 1 22 3 1 23 + mxm xx (1) với m là tham số Cho m =1/2 *hãy khảo sát và vẽ đồ thị hàm số *Viết pt tiếp tuyến của đồ thị (C) biết rằng tiếp tuyến song song với (d):y=4x+2 Bài 11.ĐHCĐ-B-2003: Cho hàm số y=x 3 -3x 2 +m 1,Tìm m để đồ thị hàm số có 2 điểm phân biệt đối xứng nhau qua gốc toạ độ 2.Khảo sát và vẽ đồ thị khi m = 2 Bài 12>ĐHCĐ dự bị 2003 Cho hàm số y=(x-1)(x 2 +mx+m) với m là tham số 1,Tìm m để đồ thị hàm số cắt trục ox tại 3 điểm phân biệt 2,Khảo sát và vẽ đồ thị hàm số với m = 4 Bài 13>ĐHCĐ dự bị 2003 1,Khảo sát y = 2x 3 -3x 2 -1 (C) 2, Gọi d k là đờng thẳng đi qua M(0:1) và có hệ số góc bằng k.Tìm k để đờng thẳng cắt đồ thị tại 3 điểm phân biệt. Bài 14>ĐHCĐ B 2004 Cho hàm số y= x xx 32 3 1 23 + (1) có đồ thị (C ) 1,Khảo sát và vẽ đồ thị hàm số (C ) 2,Viết pt tiếp tuyến của đồ thị hàm số tại điểm uốn .CM hệ số góc của là tiếp tuyến có hệ số góc nhỏ nhất của đồ thị (C ) Bài 15>ĐHCĐ D 2004 Cho hàm số y=x 3 -3 m x 2 +9x +1 (1) Với m là tham số. 1,Khảo sát và vẽ đồ thị hàm số với m =2 2,Tìm m để điểm uốn của đồ thị hàm số thuộc đờng thẳng y=x +1 Bài 16>ĐHCĐ D 2005 Gọi( C m ) là đồ thị hàm số 3 1 23 1 23 += xx m y (*) 1.Khảo sát và vẽ đồ thị với m= 2 2.Gọi điểm M thuộc đồ thị có hoành độ = -1,tim m sao cho tiếp tuyến tại M song song với đ- ờng thẳng 5 x y = 0 Bài 17>CĐ SP Hà Nam A 2005 Cho hàm số mxmy xx += 23 (1 ) có đồ thị (C m ) 1.Khảo sát và vẽ đồ thị hàm số với m =1 2.tìm m để đồ thị hàm số cắt trục ox tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng 3.Tìm các điểm mà đồ thị hàm số luôn đi qua với mọi giá trị của m. Bài 18>CĐSP KT 2005 Cho hàm số y=x 3 +3x 2 +4 (1) 1,Khảo sát và vẽ đò thị hàm số 2.Chứng minh đồ thị hàm số luôn có tâm đối xứng 3,Viết pttt của đồ thị hàm số đi qua A(0:1). Bài 19>ĐHCĐ D 2006 Cho hàm số y=x 3 -3x +2 1,Khảo sát và vẽ đồ thị hàm số Chuyên đề lớp 12 GV Nguyễn Văn Phu Trờng THPT Minh Châu _Hy 3 2.Gọi d là đờng thẳng đi qua điểm A(3;20) có hệ số góc m.Tim m để d cắt đồ thị hàm số tại 3 điểm phân biệt. Bài 20.ĐHCĐ A 2006 1.Khảo sát và vẽ đồ thị hàm số y=2x 3 -9x 2 +12x -4 2.Tim m để pt sau có 6 nghiệm phân biệt mx x x =+ 1292 2 3 Khảo sát hàm phân thức bậc 1/bậc 1 Bài 1:Đại học thơng mại 1999 cho hàm số (C): 1 42 + = x x y 1,khảo sát và vẽ đồ thị hàm số 2,Giải và biện luận số giao điểm của (l) 2x-y +m=0 với (C).Khi chúng có hai giao điểm M và N.Hãy tìm quỹ tích trung điểm I của MN. Bài 2: Đại học an ninh 1997 1,Khảo sát và vẽ đồ thị hàm số 3 12 + = x x y 2,Tìm M (C) để tổng khoảng cách từ M đến 2 đờng tiệm cận là nhỏ nhất. Bài 3:Đại học ngoại thơng tp.HCM 1997 1,Khảo sát và vẽ đồ thị hàm số 2 1 + = x x y 2,Tìm M (C) để tổng khoảng cách từ M đến 2 trục toạ độ là nhỏ nhất. Bài 4: [38 III] 1,Khảo sát và vẽ đồ thị (C) 2 12 + + = x x y 2,CMR đờng thẳng y=-x+m luôn cắt (C) tại 2 điểm phân biệt A,B.Tìm m để AB đạt giá trị nhỏ nhất. 3,Tìm m để phơng trình m x x = + + 2sin 1sin2 có đúng 2 nghiệm x [ ] ;0 Bài 5: [40 I] cho (C m ) mx mxm y + ++ = )1( 1,Khảo sát và vẽ đồ thị hàm số ứng với m=1 2.Tìm M ( ) C để tổng khoảng cách đến 2 đờng tiệm cận nhỏ nhất. 3.CMR m 0 đồ thị hàm số luôn tiếp xúc với một đờng thẳng cố định. Bài 6; [ĐHQG.TP.HCM1997] 1,Khảo sát và vẽ đồ thị hàm số 1 12 = x x y 2,Tìm M ( ) C với x M =m.Tiếp tuyến của (C) tại M cắt các đờng tiệm cận tại A và B .Gọi I là giao điểm của 2 đờng tiệm cận .CMR M là trung điểm của AB và diện tích tam giác (IAB) không đổi m . Chuyên đề lớp 12 GV Nguyễn Văn Phu Trờng THPT Minh Châu _Hy 4 Bài 7: Đại học quốc gia 1997 D 1,Khảo sát và vẽ đồ thị hàm số 3 13 = x x y 2,Tìm Max y và Min y = ? Bài 8 : Đại học Thái Nguyên 1997 D 1,Khảo sát và vẽ đồ thị (C)hàm số 1 23 + = x x y 2,Tìm trên (C) các điểm có toạ độ nguyên. 3.CMR không tồn tại tiếp tuyến của đồ thị đi qua giao điểm của 2 đờng tiệm cận. Bài 9 : Đại học cảnh sát 1997 1,Khảo sát,vẽ 2 23 + + = x x y 2,Viết pt tiếp tuyến với hệ số góc =4.Tìm tiếp điểm. Bài 10 Đại học quốc gia 1998. 1.Khảo sát và vẽ đồ thị hàm số 1 1 + = x x y 2.Tìm trên oy các điểm kẻ đợc đúng một tiếp tuyến đến đồ thị . Bài 11: [CĐSP-TP.HCM 1998]1,Khảo sát và vẽ đồ thị của hàm số 1 1 + = x x y 2,CMR đờng thẳng 2x-y+m=0 luôn cắt đồ thị hàm số tại hai điểm A,B nằm về 2nhánh của đồ thị. 3.Tìm m sao cho AB nhỏ nhất. Khảo sát và vẽ đồ thị hàm số bậc hai/bậc nhất. Bài 1.1,khảo sát và vẽ đồ thị của hàm số 2 33 2 + ++ = x x y x 2,biện luận số nghiệm của phơng trình x 2 +(3-a)x+3-2a=0 và so sánh các nghiệm đó với -3 và -1 Bài 2: 1,khảo sát và vẽ đồ thị của hàm số 1 2 = x y x 2,Biện luận số nghiệm của pt m xx gxtagxxx = ++++++ cos 1 sin 1 cot 2 1 cossin1 Bài 3:Đại học tài chính kế toán 1997 1,khảo sát và vẽ đồ thị hàm số y= 1 32 2 + x mx x với m=2 2,Biện luận số nghiệm của pt 1 32 2 + x mx x +log 1/2 a=0 Bài 4: Đại học kiến trúc 1998 Chuyên đề lớp 12 GV Nguyễn Văn Phu Trờng THPT Minh Châu _Hy 5 1,Khảo sát và vẽ đồ thị của hàm số y= 1 12 2 + ++ x x x 2,Tìm Max,Min của A= 1cos 1cos2 cos 2 + ++ x x x Bài 5:HVKTQS 2000 1,Khảo sát và vẽ đồ thị hàm số y= 2 54 2 + ++ x x x 2,Tìm M ( ) C để khoảng cách từ M đến ( ) :y+3x+6=0 đạt giá trị nhỏ nhất. Bài 6 ĐHQG.HCM 1997 1,khảo sát và vẽ đồ thị y= 1 1 2 + ++ x x x (C) 2,Biện luận số nghiệm của pt x 2 +(1-m)x+1-m=0 3,Tìm k để tồn tại ít nhất 1 tiếp tuyến của đồ thị sông song với y=kx+2.Từ đó tìm k để mọi tiếp tuyến của đồ thị đều cắt y=kx+2 Bài 7: 1,Khảo sát y= 2 33 2 + x x x 2,Tìm 2 điểm M,N thuộc đồ thị đối xứng nhau qua A(3;0) Bài 8:Đại học kiến trúc cho hàm số y= 1 1 2 ++ x mx x 1,Khảo sát và vẽ đồ thị khi m=0 2.Tìm m để hàm số có cực đại và cực tiểu 3.Tìm điểm cố định của đồ thị hàm số 4.Biện luận số nghiệm của pt k x x = + 1 1 2 Bài 9:ĐHCĐ dự bị 2002 Cho hàm số y= 2 2 2 + x mx x (1) (m là tham số ) 1,Xác định m để hàm số nghịch biến trên đoạn [-1;0] 2,Khảo sát và vẽ đồ thị với m=1 3,Tìm a để pt sau có nghiệm 012)2( 39 22 1111 =+++ ++ a t a t Bài 10 ĐHCĐ dự bị 2002 Cho hàm số y= x mx x + 1 2 (1) 1,Khảo sát và vẽ đồ thị của hàm số với m=1 2.Tìm m để hàm số có cực đại và cực tiểu ,Khi nào khoảng cách giữa chúng = 10 Bài 11,ĐHCĐ A 2003 Cho hàm số y= 1 2 ++ x mx mx (1) (m là tham số ) Chuyên đề lớp 12 GV Nguyễn Văn Phu Trờng THPT Minh Châu _Hy 6 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m=1 2.Tìm m để đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt có hoành độ dơng Bài 12:ĐHCĐ tk 2003 1,Khảo sát và vẽ đồ thị hàm số ( ) 12 34 2 2 = x x y x 2.Tìm m để pt 2x 2 -4x-3 +2m 1 x =0 có2 nghiệm phân biệt Bài 13.ĐHCĐ D 2004 1,Khảo sát và vẽ đồ thị hàm số 2 42 2 + = x x y x (1) 2,Tìm m để đờng thẳng d m : y=mx+2-2m cắt đồ thị hàm số tại 2 điểm phân biệt HM S 1. TNH N IU CA HM S Dng 1: Tớnh n iu ca hm s I. Kin thc c bn 1. nh ngha Gi s hm s y = f(x) xỏc nh trờn K: + Hm s y = f(x) c gi ng bin trờn khong K nu: 1 2 1 2 1 2 , , ( ) ( )x x K x x f x f x < < + Hm s y = f(x) c gi l nghch bin trờn khong K nu: 1 2 1 2 1 2 , , ( ) ( )x x K x x f x f x < > 2. Qui tc xột tớnh n iu a. nh lớ Cho hm s y = f(x) cú o hm trờn K: + Nu f(x) > 0 vi mi x thuc K thỡ hm s ng bin + Nu f(x) < 0 vi mi x thuc K thỡ hm s nghch bin b. Qui tc B1: Tỡm tp xỏc nh ca hm s B2: Tớnh o hm ca hm s. Tỡm cỏc im x i (i = 1, 2,,n) m ti ú o hm bng 0 hoc khụng xỏc nh. B3: Sp xp cỏc im x i theo th t tng dn v lp bng bin thiờn. B4: Nờu kt lun v cỏc khong ng bin, nghch bin. II. Cỏc vớ d Loi 1: Xột s bin thiờn ca hm s Vớ d 1. Xột s ng bin v nghc bin ca hm s: 3 2 2 4 2 1 1 . y = 2 2 b. y = -x 3 4 e. y = x( 3), (x > 0) 3 2 x - 1 c. y = x 2 3 . y = x +1 a x x x x x x d + + + + Vớ d 2. Xột s bin thiờn ca cỏc hm s sau: 2 3 4 2 3 2 2 2 . y = 3x 8 b. y = x 8 5 c. y = x 6 9 3- 2x x 2 3 . y = e. y = f. y = 25-x x + 7 1 a x x x x x d x + + + + + Loi 2: Chng minh hm s ng bin hoc nghch bin trờn khong xỏc nh. Phng phỏp + Da vo nh lớ. Vớ d 3. Chng minh hm s 2 2y x x= nghch bin trờn on [1; 2] Chuyên đề lớp 12 GV Nguyễn Văn Phu Trờng THPT Minh Châu _Hy 7 Ví dụ 4 a. Chứng minh hàm số 2 9y x= − đồng biến trên nửa khoảng [3; + ∞ ). b. Hàm số 4 y x x = + nghịc biến trên mỗi nửa khoảng [-2; 0) và (0;2] Ví dụ 5. Chứng minh rằng a. Hàm số 3 2 1 x y x − = + nghịch biến trên mỗi khoảng xác định của nó. b. Hàm số 2 2 3 2 1 x x y x + = + đồng biến trên mỗi khoảng xác định của nó. c. Hàm số 2 8y x x= − + + nghịch biến trên R. Dạng 2. Tìm giá trị của tham số để một hàm số cho trước đồng biến, nghịch biến trên khoảng xác định cho trước Phương pháp: + Sử dụng qui tắc xét tính đơn điêu của hàm số. + Sử dụng định lí dấu của tam thức bậc hai Ví dụ 6. Tìm giá trị của tham số a để hàm số 3 2 1 ( ) ax 4 3 3 f x x x= + + + đồng biến trên R. Ví dụ 7. Tìm m để hàm số 2 2 5 6 ( ) 3 x x m f x x + + + = + đồng biến trên khoảng (1; )+∞ Ví dụ 8. Với giá trị nào của m, hàm số: 2 1 m y x x = + + − đồng biến trên mỗi khoảng xác định của nó. Ví dụ 9 Xác định m để hàm số 3 2 ( 1) ( 3) 3 x y m x m x= − + − + + đồng biến trên khoảng (0; 3) Ví dụ 10 Cho hàm số 4mx y x m + = + a. Tìm m để hàm số tăng trên từng khoảng xác định b. Tìm m để hàm số tăng trên (2; )+∞ c. Tìm m để hàm số giảm trên ( ;1)−∞ Ví dụ 11 Cho hàm số 3 2 3(2 1) (12 5) 2y x m x m x= − + + + + . Tìm m để hàm số: a. Liên tục trên R b. Tăng trên khoảng (2; )+∞ Ví dụ 12 (ĐH KTQD 1997) Cho hàm số 3 2 2 ax (2 7 7) 2( 1)(2 3)y x a a x a a= − − − + + − − đồng biến trên [2:+ )∞ Dạng 3. Sử dụng chiều biến thiên để chứng minh BĐT Phương pháp Sử dụng các kiến thức sau: + Dấu hiệu để hàm số đơn điệu trên một đoạn. + f ( x) đồng biến trên [a; b] thì ( ) ( ) ()f a f x f≤ ≤ + f(x) nghịch biến trên [a; b] thì ( ) ( ) ( )f a f x f b≥ ≥ Ví dụ 1. Chứng minh các bất đẳng thức sau: Chuyªn ®Ò líp 12 GV NguyÔn V¨n Phu Trêng THPT Minh Ch©u _Hy 8 2 2 3 1 1 . tanx > sinx, 0< x < b. 1 + 1 1 , 0 < x < + 2 2 8 2 x x . cosx > 1 - , 0 d. sinx > x - , x > 0 2 6 x a x x x c x π − < + < + ∞ ≠ Ví dụ 2. Chohàm số f(x) = 2sinx + tanx – 3x a. Chứng minh rằng hàm số đồng biến trên nửa khoảng 0; 2 π ÷ b. Chứng minh rằng 2sin tan 3 , (0; ) 2 x x x x π + > ∀ ∈ Ví dụ 3 Cho hàm số ( ) t anx - xf x = a.Chứng minh hàm số đồng biến trên nửa khoảng 0; 2 π ÷ b. Chứng minh 3 tan , (0; ) 3 2 x x x x π > + ∀ ∈ Ví dụ 3 Cho hàm số 4 ( ) t anx, x [0; ] 4 f x x π π = − ∈ a. Xét chiều biến thiên của hàm số trên [0; ] 4 π b. Chứng minh rằng 4 tan , [0; ] 4 x x x π π ≤ ∀ ∈ CỰC TRỊ CỦA HÀM SỐ Dạng 1. Tìm cực trị của hàm số Phương pháp: Dựa vào 2 qui tắc để tìm cực trị của hàm số y = f(x) Qui tắc I. B1: Tìm tập xác định. B2: Tính f’(x). Tìm các điểm tại đó f’(x) = 0 hoặc f’(x) không xác định. B3. Lập bảng biến thiên. B4: Từ bảng biến thiên suy ra các cực trị Qui tắc II. B1: Tìm tập xác định. B2: Tính f’(x). Giải phương trình f’(x) = 0 và kí hiệu là x i là các nghiệm của nó. B3: Tính f ”(x i ) B4: Dựa vào dấu của f ” (x i ) suy ra cực trị ( f ”(x i ) > 0 thì hàm số có cực tiểu tại x i ; ( f ”(x i ) < 0 thì hàm số có cực đại tại x i ) * Chú ý: Qui tắc 2 thường dùng với hàm số lượng giác hoặc việc giải phương trình f’(x) = 0 phức tạp. Ví dụ 1. Tìm cực trị của hàm số 3 2 2 3 36 10y x x x= + − − Qui tắc I. TXĐ: R Qui tắc II TXĐ: R Chuyªn ®Ò líp 12 GV NguyÔn V¨n Phu Trêng THPT Minh Ch©u _Hy 9 2 2 ' 6 6 36 ' 0 6 6 36 0 2 3 y x x y x x x x = + − = ⇔ + − = = ⇔ = − + ∞ - ∞ - 54 71 + + - 0 0 2 -3 + ∞ - ∞ y y' x Vậy x = -3 là điểm cực đại và y cđ =71 x= 2 là điểm cực tiểu và y ct = - 54 2 2 ' 6 6 36 ' 0 6 6 36 0 2 3 y x x y x x x x = + − = ⇔ + − = = ⇔ = − y”= 12x + 6 y’’(2) = 30 > 0 nên hàm số đạt cực tiểu tại x = 2 và y ct = - 54 y’’(-3) = -30 < 0 nên hàm số đạt cực đại tại x = -3 và y cđ =71 Bài1. Tìm cực trị của các hàm số sau: 2 3 4 3 3 2 4 2 3 2 . y = 10 + 15x + 6x b. y = x 8 432 . y = x 3 24 7 d. y = x - 5x + 4 e. y = -5x + 3x - 4x + 5 a x x c x x − − + − − + 3 f. y = - x - 5x Bài 2. Tìm cực trị của các hàm số sau: 2 2 2 2 2 2 x+1 x 5 (x - 4) . y = b. y = c. y = x 8 1 2 5 9 x 3 3 x . y = x - 3 + e. y = f. y = x - 2 1 x 4 x a x x x x d x + − + + − + − + − + Bài 3. Tìm cực trị các hàm số 2 2 2 3 2 2 x+1 5 - 3x . y = x 4 - x b. y = c. y = x 1 1 - x x x . y = e. y = f. y = x 3 - x 10 - x 6 a d x + − Bài 4. Tìm cực trị các hàm số: . y = x - sin2x + 2 b. y = 3 - 2cosx - cos2x c. y = sinx + cosx 1 d. y = sin2x e. y = cosx + os2x f. 2 a c π ∈ y = 2sinx + cos2x víi x [0; ] Dạng 2. Xác lập hàm số khi biết cực trị Để tìm điều kiện sao cho hàm số y = f(x) đạt cực trị tại x = a B1: Tính y’ = f’(x) B2: Giải phương trình f’(a) = 0 tìm được m B3: Thử lại giá trị a có thoả mãn điều kiện đã nêu không ( vì hàm số đạt cực trị tại a thì f’(a) = 0 không kể CĐ hay CT) Ví dụ 1. Tìm m để hàm số y = x 3 – 3mx 2 + ( m - 1)x + 2 đạt cực tiểu tại x = 2 LG 2 ' 3 6 1y x mx m= − + − . Hàm số đạt cực trị tại x = 2 thì y’(2) = 0 2 3.(2) 6 .2 1 0 1m m m⇔ − + − = ⇔ = Với m = 1 ta được hàm số: y = x 3 – 3x 2 + 2 có : 2 0 ' 3 6 ' 0 2 x y x x y x = = − ⇒ = ⇔ = tại x = 2 hàm số đạt giá trị cực tiểu Vậy m = 1 là giá trị cần tìm Chuyªn ®Ò líp 12 GV NguyÔn V¨n Phu Trêng THPT Minh Ch©u _Hy 10 [...]... Phương pháp • Tiệm cận đứng: Nghiệm của mẫu khơng phải là nghiệm của tử cho phép xác định tiệm cận đứng • Tiệm cận ngang, xiên: + Det(P(x)) < Det (Q(x)): Tiệm cận ngang y = 0 + Det(P(x)) = Det(Q(x)): Tiệm cận ngang là tỉ số hai hệ số bậc cao nhất của tử và mẫu + Det (P(x)) = Det(Q(x)) + 1: Khơng có tiệm cận ngang; Tiệm cận xiên được xác định bằng cách phân tích hàm số thành dạng: f(x) = ax + b + ε ( x . Det(P(x)) < Det (Q(x)): Tiệm cận ngang y = 0 + Det(P(x)) = Det(Q(x)): Tiệm cận ngang là tỉ số hai hệ số bậc cao nhất của tử và mẫu. + Det (P(x)) = Det(Q(x))