1. Trang chủ
  2. » Đề thi

đề thi thử THPT QG 2020 toán THPT nguyễn đức cảnh thái bình lần 1 có lời giải

27 137 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 1,56 MB

Nội dung

SỞ GD & ĐT TỈNH THÁI BÌNH ĐỀ KSCL THPT QUỐC GIA NĂM 2020 – LẦN TRƯỜNG THPT NGUYỄN ĐỨC CẢNH Bài thi: KHOA HỌC TỰ NHIÊN (Đề thi có 07 trang) Mơn thi thành phần: TỐN HỌC Thời gian làm bài: 90 phút, không kể thời gian phát đề Họ, tên thí sinh: Số báo danh: Câu 1: Cho hàm số y  f  x  có bảng biến thiên hình vẽ Hàm số y  f  x  đồng biến khoảng sau A  ; 1 B  2;   C  3;  D 1;3 x2  Câu 2: Cho hàm số y  f  x   Tổng số đường tiệm cận ngang tiệm cận đứng hàm số là? x 1 A C B Câu 3: Cho x, y hai số nguyên thỏa mãn: 3x.6 y  A 755 15 Tính x y ? 950.1225 C 425 B 450 D 40 D 445 Câu 4: Cho hình chóp tứ giác có cạnh đáy a, góc mặt bên đáy 30o Tính thể tích khối chóp tứ giác cho? A a3 12 B a3 18 C a3 D 3a 16 Câu 5: Hàm số f  x   log  x   có tập xác định ? A  2;   B [2; ) C (; 2] D  ;  Câu 6: Đồ thị có hình vẽ bên đồ thị hàm số ? x A y  x 1 B y    2 C y  log x D y  log x Trang Câu 7: Cho khối lăng trụ tam giác có tất cạnh nhau, biết khối lăng trụ tích Tính cạnh lăng trụ A B C D Câu 8: Cho hàm số y  f  x  có bảng biến thiên hình vẽ sau: Hàm số cho đạt cực đại điểm sau đây? A x  3 B y  C x  D x  Câu 9: Cho hình chóp S ABC có cạnh bên SA vng góc với đáy , đáy ABC tam giác cạnh a , góc mặt  SBC  đáy 600 Tính khoảng cách từ A đến  SBC  A a B Câu 10: Cho hàm số f  x   a C a D 3a 2x  m  Có giá trị nguyên tham số m để hàm số f  x  xm nghịch biến 1;   A B C D Vô số Câu 11: Cho hàm số f  x   x  3x  Giá trị lớn hàm số đoạn 1  2100 ; 2100  1 A ta có A A  2200  3.2100 B A  f 1  2100  C A  2200  2100  D A  2200  2100  Câu 12: Cho hàm số f  x  có bảng biến thiên hình vẽ Giá trị nhỏ hàm số f  x  đoạn  0; 4 ? A f   B  C 1 D 3 Câu 13: Cho khối lăng trụ ABC ABC tích 18 Tính thể tích khối tứ diện AABC A B C 12 D Câu 14: Cho f  x  có bảng biến thiên hình vẽ, hỏi tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y  f  x  bao nhiêu? Trang B A C D Câu 15: Cho hai số dương a,b , a 1 , thỏa mãn log a2 b  log a b2  Tính log a b A B C D Câu 16: Cho khối chóp S ABCD có đáy ABCD hình vng cạnh a , cạnh bên SA  2a tạo với đáy góc 600 Tính thể tích khối chóp S ABCD A a3 Câu 17: Hàm số f  x   A f   x   61 x ln B a3 12 a3 D a3 32 x có đạo hàm 2x 32 x ln B f   x   4x Câu 18: Hàm số f  x    x  x  A C 3 D f   x   9.6 x ln C  ;0   1;   D  0;1 có tập xác định \ 0;1 B 32 x ln C f   x   x ln Câu 19: Cho hình chóp SABC có đáy ABC tam giác cạnh a , tam giác SAB nằm mặt phẳng vng góc với đáy Tính thể tích khối chóp SABC A a3 B a3 18 C a3 12 D a3 Câu 20: Cho hàm số f  x  có bảng xét dấu f   x  hình vẽ Hàm số f  x  nghịch biến  a; b  với a  b Tìm giá trị lớn b  a A 10 C B D Câu 21: Cho hàm số f  x   x  x  Khoảng cách hai điểm cực tiểu đồ thị hàm số f  x  A B 2 C  D D 27  Câu 22: Cho hai số a,b thỏa mãn  log a  logb  Tính log ab a A B C Câu 23: Hàm số f  x   x  ln  x  3 có đạo hàm ? Trang A f   x    x3 B f   x    Câu 24: Cho hàm số f  x   C f   x    x3 D f   x     x  3 e 2x  m  Gọi A , a GTLN , GTNN hàm số f  x  x2 3;10 Có giá trị nguyên m A 51 e x3 để  A  a  20 C 53 B 52 D 54 Câu 25: Cho hàm số y  f  x  có đồ thị hình vẽ, số giá trị ngun tham số m để phương trình f  cos x   m có nghiệm A B C D Câu 26: Cho hàm số f  x   x   m   x  2m  Có giá trị nguyên m thuộc đoạn 10;10 để đồ thị hàm số cắt trục Ox A 11 điểm phân biệt? B Câu 27: Cho hàm số: f  x   C D x   x2  Kết luận số tiệm cận đồ thị hàm sô sau x2  x  đúng? A Đồ thị có tiệm cận ngang y  khơng có tiệm cận đứng B Đồ thị có tiệm cận ngang y  tiệm cận đứng x  C Đồ thị có tiệm cận ngang y  hai tiệm cậnđứng x  2, x  1 D Đồ thị có hai tiệm cận ngang y  0, y  tiệm cận đứng x  1 Câu 28: Cho hàm số f  x   x3  3x  mx  Số giá trị nguyên thuộc  10;10 tham số m để hàm số f  x  đồng biến khoảng 1;   A 21 B 19 C D 10 Câu 29: Cho hình chóp S ABC tích 12 , gọi G trọng tâm tam giác ABC , M trung điểm SA Tính thể tích khối tứ diện SMGB A B C D Trang Câu 30: Cho hàm số f  x  có bảng biến thiên hình vẽ , phương trình f  x   f   có nghiệm phân biệt A B C D Câu 31: Cho lăng trụ tam giác ABC ABC có cạnh đáy a , M trung điểm cạnh CC  biết hai mặt phẳng  MAB  v \`a  MAB tạo với góc 600 Tính thể tích khối lăng trụ ABC ABC A a3 B a3 C a3 D a3 Câu 32: Cho hàm số f  x    x  2a  x  2b  a  ax  1 Có cặp  a; b  để hàm số f  x  đồng biến A B C D Vô số Câu 33: Cho hàm số có bảng biến thiên hình vẽ Tính khoảng cách hai điểm cực đại đồ thị hàm số y  f  x   A B C D Câu 34: Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a , AC  a , mặt bên hình chóp tạo với đáy góc 45 Tính khoảng cách AB SC A a B a C a D 3a Câu 35: Cho hàm số f  x   x ln  x  1,  , tiếp tuyến đồ thị f  x  điểm có hồnh độ x  cắt đường thẳng y  x  điểm A  a; b  Tính 2a  b ? A 1 B C D 3 Câu 36: Cho đồ thị hàm số y  x , y  x  khoảng  0;   Mệnh đề đúng? A      B      C      D      Trang Câu 37: Cho hàm số f  x   x2   x  2 x   m 6 x 2 Biết hàm số có giá trị nhỏ 10 , tìm giá trị lớn hàm số f  x  A 14 B 24 C 34 D 44 Câu 38: Cho hình chóp S ABCD có đáy hình vuông cạnh a , cạnh bên SA  2a Trong trường hợp khoảng cách AB SC lớn tính giá trị lớn thể tích khối chóp S ABCD A a3 B a3 C 2a 3 D a3 3 Câu 39: Cho tứ diện ABCD Hỏi không gian có điểm M thỏa mãn điều kiện: khối tứ diện MABC , MBCD , MCDA , MABD tích nhau? A B C D Câu 40: Cho hàm số f  x   x3   m2  1 x   2m  3 x Có giá trị m để đồ thị hàm số y  f  x  có hai điểm cực đại khoảng cách hai điểm cực đại A B C D Câu 41: Cho hình lập phương ABCD ABCD có cạnh a , gọi M , N trung điểm AD CC  Tính thể tích khối tứ diện ABMN theo a A a3 B 3a 16 C a3 D a3 Câu 42: Cho hàm số f  x   mx  2019 x  Có giá trị nguyên m để hàm số có cực trị? A 4037 B 2019 C 2020 D 1009 Câu 43: Cho khối tứ diện ABCD cạnh a , gọi I , J trung điểm AB, BC Đường thẳng qua J song song với DI cắt mặt phẳng  ACD  P Tính thể tích khối tứ diện PBCD a3 A a3 B a3 C 24 a3 D 12 Câu 44: Cho hàm số f  x   x   m  2 x3  mx  Trong trường hợp giá trị nhỏ f  x  đạt giá trị lớn tính f  3 ? A 12 B 27 C 47 D 54 Câu 45: Cho lăng trụ tam giác ABC ABC có tất cạnh a , M điểm di chuyển đường thẳng AC  Tính khoảng cách lớn AM BC  A a 34 B a 17 C a 14 D a 21 Câu 46: Cho hàm số f  x   x3  3x  Số nghiệm phương trình f  f  x    f   là? A B C D Trang Câu 47: Cho hàm số bậc ba f  x   ax3  bx2  cx  d Biết hàm số có cực đại cực tiểu Gọi A điểm cực đại đồ thị hàm số, tiếp tuyến đồ thị hàm số A cắt đồ thị điểm B AB  Tính xCD  xCT B A D C a SA vng góc với đáy, M điểm thuộc miền tam giác SBC Trong trường hợp tích khoảng cách từ M Câu 48: Cho hình chóp SABC có đáy ABC tam giác cạnh a , cạnh bên SA đến mặt phẳng  SAB ,  SAC  , ABC  lớn tính AM A a B a 12 C a 21 D a 15 Câu 49: Cho hàm số f  x   ax  bx  cx  d , biết hàm số đạt cực đại x  đạt cực tiểu x  2 Hỏi tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y  A B  x  1  x   f  x   f 1 C D Câu 50: Cho hàm số f  x   x3  3x  Có giá trị nguyên tham số m để phương trình 2019 f   x    x   m có tổng tất nghiệm phân biệt ? B 1232 A 1516 D 1517 C 895 - HẾT Thí sinh khơng sử dụng tài liệu Cán coi thi không giải thích thêm ĐÁP ÁN 1-C 2-C 3-B 4-B 5-A 6-D 7-A 8-D 9-D 10-C 11-B 12-D 13-B 14-C 15-B 16-D 17-D 18-B 19-D 20-C 21-A 22-B 23-A 24-C 25-D 26-B 27-A 28-C 29-A 30-C 31- 32-B 33-D 34-B 35-B 36-A 37-D 38-D 39-D 40-A 41-C 42-A 43-C 44-D 45-C 46-C 47-C 48-D 49-D 50- (http://tailieugiangday.com – Website đề thi – chuyên đề file word có lời giải chi tiết) Trang Quý thầy cô liên hệ đặt mua word: 03338.222.55 HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: C Từ bảng biến thiên ta có hàm số y  f  x  đồng biến khoảng  3;  Câu 2: C  x2  1  xlim  x   y  đường tiệm cận ngang đồ thị hàm số Ta có   lim x    x  x   x2  lim  x 1 x     Ta có   x  1 đường tiệm cận đứng đồ thị hàm số x   lim    x  1 x  Vậy tổng số đường tiệm cận đồ thị hàm số Câu 3: B Ta có: VT  3x.6 y  3x  2.3  y.3x x  y y 215  2.3 215.640 215.240.340 255.340 VP  50 25    50 125  25.385 50 25 100 50 25 12 32   22.3 3 40 y  y   Suy y.3x  y  25.385    x  y  85  x  90 Vậy x y   90   450 Câu 4: B Trang Xét hình chóp tứ giác S ABCD có cạnh đáy a, góc bên đáy 300 Gọi O tâm hình vng ABCD, H trung điểm AD  SO  AD  AD   SHO   AD  SH Khi  OH  AD  SAD    ABCD   AD  Vì OH  AD   SAD  ;  ABCD   SHO  300  SH  AD  Thể tích khối chóp S ABCD là: VS ABCD  a3 SO S ABCD  18 Câu 5: A Hàm số xác định x    x  2; suy TXĐ D   2;   Câu 6: D Quan sát đồ thị ta thấy: +) Hàm số nghịch biến  số bé 1 loại phương án A C +) Đồ thị hàm số có tiệm cận đứng trục Oy  phương án D phù hợp Câu 7: A Gọi x  x   độ dài cạnh lăng trụ tam giác cho Ta có diện tích đáy x2 Thể tích nên x x2 2 3x2 Câu 8: D Từ bảng biến thiên, suy hàm số đạt cực đại điểm x  Câu 9: D Trang Gọi N trung điểm cạnh BC  AN  BC; AN  a   SA  BC  SA   ABC   Ta có   BC   SAN   BC  SN   AN  BC Kẻ AK  SN  AK   SBC   d  A;  SBC    AK  ABC    SBC   BC   AN   ABC  ; AN  BC   SBC  ;  ABC   SN ; AN  SNA  60   SN   SBC  ; SN  BC     Xét tam giác AKN vng K ta có: AK  AN sin 600  a 3 3a  2 Câu 10: C Ta có: x  m Ta có : f '  x   m   x  m Để hàm số nghịch biến khoảng 1;    m   m  3m   f '  x   0, x  1;      3  m     m   ;1 m   ;1     x  m       Vậy giá trị nguyên tham số m là: 2;  1; 0;1 Câu 11: B Ta có f '  x   x   f '  x    x  f 1  2100   2200  2100 3 f   2 f 1  2200   2200  2100 Trang 10   SAB    ABC  Mà    SAB    ABC   AB Suy SH   ABC. 1 3 a3 Vậy VS ABC  SH SABC  a .a  3 Câu 20: C + Dựa vào bảng xét dấu f '  x  suy hàm số f  x  nghịch biến khoảng  5; 3 khoảng có độ dài lớn nhất, hay giá trị lớn b  a  –  5   Câu 21: A  x    y '  x  x, y '    x   1   x  Ta có bảng biến thiên hàm số: Khoảng cách hai điểm cực tiểu hàm số     2  Câu 22: B a   Điều kiện để lơgarit có nghĩa: 0  b  ab     Ta có:  log a  logb    1   logb 2   log a     logb   log a    logb a   logb a  2   logb a logb a 8    Khi log ab a  logb  ab  logb a  logb b  Câu 23: A Trang 13 Ta có f  x   x  ln  x  3  f '  x    x3 Câu 24: C Hàm số có TXĐ D  Suy hàm số \ 2 Ta có y '  7m  x  2 f  x  hàm số đơn điệu  3; 10  với m  m  m  17  3;10 3;10 12 m  m  17 17m  121 Khi  A  a  20     20    20 12 60 17m  121 179 1079 5  20  m 60 17 17 Vì m  Z nên m11, 12, ,63 suy có 53 giá trị nguyên m thỏa để  f  x   max f  x   f  3  f 10   Câu 25: D Ta có 1  cos x  1, x  Do đó, đặt t  cos2 x , t   1; 1 Để phương trình f  cos x   m có nghiệm phương trình f  t   m có nghiệm t   1;1 Dựa vào đồ thị hàm số f  x  ta thấy phương trình f  t   m có nghiệm t   1;1 1  m  Vì m nên m1; 0; 1; 2; 3 Vậy có giá trị nguyên m thỏa mãn yêu cầu toán Câu 26: B Phương trình hồnh độ giao điểm hàm số y  f  x   x4 –  m   x2  2m – trục Ox  y   x4   m   x2  2m   1 Đặt t  x điều kiện t  Khi phương trình (1) trở thành t   m   t  2m –    Để đồ thị hàm số cho cắt trục Ox điểm phân biệt phương trình (1) có nghiệm phân biệt hay phương trình (2) có nghiệm dương phân biệt t1  t2    m    4.1 2m        m2  4m   8m  32         m  2      0  m   S    P    2m      2m     m  2   m  Do m thuộc đoạn  10; 100 nên m5; 7; 8; 9; 10  m  m   m   Vậy có giá trị nguyên m thuộc đoạn  10;10 thỏa mãn yêu cầu toán Câu 27: A Trang 14 Điều kiện xác định hàm số:  x    x  ;     3;  \ 2  x  x     lim y  0;lim y  0;lim y  1;lim y   x  x  x  2  x 2 Câu 28: C f '  x   3x2  x  m; f '  x   x  1;    3x  x  m  x  1;    m  3x  x x  1;    m  max g  x  1;  g  x   3x  x  g '  x   6 x  6; g '  x    x  g '  x   0x  1;    max g  x   g 1   m  1;  Vậy m 3, 4, 5, 6, 7, 8, 9, 10 Câu 29: A Ta có VS MGB SM 1    VS MGB  VS AGB ; mặt khác VS AGB  VS ABC  VS AGB SA 2 Vậy VS MGB  Câu 30: C Dựa vào bảng biến thiên Ta có f  x   f   có bốn nghiệm phân biệt Câu 31: Trang 15 Ta có A ' B '/ / AB nên giao tuyến hai mặt phẳng  MAB  v\a  MAB  qua điểm M song song AB Gọi I, K trung điểm AB A'B' suy MI  MK MI, MK vng góc với AB Khi góc  M AB  v \ a  MA ' B  góc hai đường MI, MK Xét hai trường hợp Trường hợp 1: IMK  600  MIK  600  MIC  300  CC '  2CM  2CI tan 300  a a2 a3  a Suy VABC A ' B 'C '  a  4 Trường hợp 2: IMK  1200  MIK  30  MIC  600 a2 a 3a 3a   3a Suy VABC A ' B 'C '  4 Không chọn đáp án theo đề xuất phản biện Câu 32: B a  hàm số không đồng biến nên ta xét a   x  2a  Ta có f  x     x  2a  x  2b – a  ax  1    x   a   x  a  2b   CC '  2CM  2CI tan 600  Hàm số đồng biến  a   2a    a  2b    a a  b   2 Vậy có cặp  a; b  thỏa mãn Câu 33: D Từ bảng biến thiên hàm số y  f  x  suy bảng biến thiên hàm số y  f  x  Trang 16 Từ suy bảng biến thiên hàm số y  f  x   Nhìn vào bảng biến thiên ta thấy hai điểm cực đại đồ thị hàm số  1;   3; 3 Suy khoảng cách hai điểm cực đại Câu 34: B Vì mặt bên hình chóp tạo với đáy góc 45° nên hình chiếu điểm S (ABCD) trùng với điểm O tâm đường tròn nội tiếp hình thoi ABCD (O giao hai đường chéo) + Vì AB / /CD, CD   SCD   AB / /  SCD  Do đó: d  AB; SC   d  AB;  SCD    d  A;  SCD    2d O;  SCD   Trong mặt phẳng (ABCD) từ kẻ ON  CD mà SO  CD (vì SO   ABCD ) nên CD   SNO    SCD    SNO  Do (SNO) từ O kẻ OH  SN suy OH   SCD   d  O;  SCD    OH Vậy d  AB; SC   2OH + ABC tam giác cạnh a  OB  OD  a Trang 17   SCD    ABCD   CD   ON   ABCD  , ON  CD   SN   SCD  , SN  CD  CD   SON         SCD  ,  ABCD    ON , SN   SNO  450 + OCD vuông : 1 a    ON  2 ON OD OC + SNO vuông cân O nên SO  ON  Vậy d  AB; SC   2OH  a 1 a ;    OH  2 OH ON OS a Câu 35: B Ta có f '  x   ln  x  1  x ; f ' 0  x 1 Phương trình tiếp tuyến đồ thị hàm số y  f  x  điểm có hồnh độ x  là: y  f '  x  x  0  f    1  Đường thẳng y  cắt đường thẳng y  x  điểm A  ;0  2  Vậy suy 2a  b  Câu 36: A Quan sát đồ thị ta thấy  0;    đồ thị hàm số y  x nằm phía đường thẳng y  x nên suy ra: x  x    11 Quan sát đồ thị ta thấy  0;    đồ thị hàm số y  x  hàm đồng biến nằm phía đường  1    x  thẳng y  x nên suy       1   x  x Từ (1) (2) suy      Câu 37: D TXÐ: D   2; 6 Ta có f  x    x2   x  2 x   m 1 f  x  6 x  f ' x  6 x 2   f  x    x  f '  x   2x  x   2x  x     x   x2   x  2 x   m x2 x2 x2  f  x x2 6 x 6 x 2 Vì f  x   10 nên suy f '  x   x   2;6 2;6 Vậy f  x   f    m  36 2;6 Trang 18 Do max f  x   f    44 2;6 Câu 38: D Vì AB / /CD CD   SCD  , SC   SCD  nên d  AB, SC   d  AB,  SCD   Trong tam giác ABC , kẻ đường cao SM Ta có SM  CD Kẻ MI song song với BC cắt AD I  MI  CD CD  SM  Vậy CD  MI  CD   SMI   SM  MI  SMI     Kẻ IH  SM H, ta có d  AB, SC   d  AB,  SCD    d  I ,  SCD    IH Vì IH  IM – MH mà MH  nên IH đạt GTLN MH   H  M Vậy SM   ABCD   VS ABCD  SM S ABCD Đặt x  DM  x   Ta có AM  a  x , SM  SB2  AM  SM  3a  x2 Có AM  3a  x Vậy VS ABCD  a 3a  x đạt giá trị lớn  3ax  x đạt giá trị nhỏ k  10 a3 VS ABCD  Câu 39: D Gọi S1 , S2 , S3 , S4 diện tích tam giác ABC, BCD, CDA ABD Gọi h1 , h2 , h3, h khoảng cách từ điểm M xuống mặt phẳng (ABC); (BCD); (CD1) (ABD) Theo giả thiết thể tích khối tứ diện M ABC, MBCD, MCDA, M ABD nên 1 1 h1S1  h2 S2  h3 S3  h4 S4  h1S1  h2 S2  h3 S4  h4 S 3 3 h S Xét hai mặt phẳng (ABC), (BCD), điểm M phải thỏa mãn h1S1  h2 S2   1 h2 S2 Trang 19 Từ M dựng MH   BCD  ; MK  ( ABC ), gọi I hình chiếu H lên BC, dễ thấy KI vng góc với BC; Ta có MH  MI sin ; MK  MI sin Theo (1), ta có: h1 S1 MI sin  sin      2 h2 S2 MI sin  sin  S MI.sina sin a Do hai mặt phẳng (ABC), (BCD) tứ diện cố định, nên mặt phẳng phân chia hai mặt (BCD) (ABC) thành hai góc  ,  thỏa mãn đẳng thức (2) cố định, tập hợp điểm M thỏa mãn (1) nằm mặt phẳng 1 (là mặt phẳng qua giao tuyến chung BC hợp với mặt (BCD) (ABC) hai góc  ,  tương ứng cố định) nằm mặt phẳng 1' (vng góc với mặt phẳng 1 ) Hoàn toàn tương tự ta xét với cặp mặt phẳng hình tứ diện Trang 20 Theo tính chất giao tuyến chung ba mặt phẳng cắt đồng quy Do có điểm thỏa mãn điều kiện tốn (Hình vẽ minh họa) Câu 40: A Nhận xét: Hàm số y  f  x  hàm số chẵn có đồ thị đối xứng qua trục tung Mặt khác hệ số x dương, nên đồ thị hàm số f  x  có điểm cực trị hồnh độ điểm cực đại ln nhỏ hồnh độ điểm cực tiểu Do để đồ thị hàm số y  f  x  có hai điểm cực đại hàm số f  x  có hai điểm cực trị x1 , x2 thỏa mãn  x1  x2 tức là:    f '  x    3x   m2  1 x  2m   có nghiệm phân biệt x1 , x2 , hay  '  m2   6m    m2  S  0  3  m   2 + Hai nghiệm thỏa mãn  x1  x2 hay   P  2m    Mặt khác, theo giá thiết khoảng cách hai điểm cực đại Như phân tích trên, đồ thị hàm số y  f  x  nhận trục tung làm trục đối xứng, điểm cực đại hàm số f  x  nhỏ điểm cực tiểu hàm số f  x  , lấy đối xứng qua trục tung, ta nhận thấy khoảng cách hai điểm cực đại hai lần hoành độ điểm cực đại hàm số f  x  nghĩa x1   m  1 Với x1  nghiệm phương trình f '  x   nên ta có: 2m2  2m     m  Đối chiếu điều kiện (1) (2), ta nhận m  , x  Với m  1  f '  x     , x1   x1  x2 , tức x1 không điểm cực đại (loại) x   Trang 21 x  Với m   f '  x     , thỏa mãn điều kiện toán (nhận) x   Câu 41: C Gọi I trung điểm AD Gọi K  IC  MN 1 a3 Ta có VM NAB  VM KAB  MI S ABK  Câu 42: A + Tập xác định: D    + Đạo hàm: f '  x   mx  2019 x  '  m  2019 x x2  + Hàm số có cực trị phương trình f '  x   có nghiệm f '  x  đổi dấu x qua nghiệm + Xét phương trình: f '  x    g  x   2019 x x2   m  2019 x  Ta có: g '  x      x  0, x   x 1   lim g  x   2019; lim g  x   2019 suy 2019  g  x   2019 x  x  Vậy 2019  m  2019 Do m nên m2018; ;2018 Vậy có 4037 giá trị nguyên m thỏa mãn toán Câu 43: C Trang 22 Xét hai mặt phẳng (DIJ) (ACD) có: D điểm chung hai mặt phẳng IJ / / AC Suy  ACD    IJD   Dy với Dy đường thẳng qua D song song với IJ    JP / / DI  JP   IDJ  Lại có    P  Dy   P   ACD    P   ACD  Tứ giác DIJP có cặp cạnh đối song song nên DIJP hình bình hành Suy DJ cắt IP trung điểm O đường a3 Suy VP.BCD  VI BCD  VA.BCD  24 Câu 44: D Ta có f '  x   x3   m   x  m Điều kiện cần: Gọi A  x0 ; y0  điểm cố định mà họ đường cong  Cm   A  1;6   qua   A 1;   A 0;3    Giá trị nhỏ f  x  đạt giá trị lớn x  x  điểm cực trị hàm số  f ' 1     m    m   m  1 Điều kiện đủ: Với m  1 hàm số có dạng: f  x   x  x3  x   f '  x   x  3x  x   f ' x    4 x  x   Bảng biến thiên Trang 23 Vậy m  1 thỏa mãn yêu cầu toán f  3  34 – 33 –   54 Câu 45: C Кё C ' P / / AM  P  AC   AM / /  BC ' P   d  AM , BC '  d  AM ,  BC ' P    d ( A,  BC ' P  Gọi H hình chiếu A mp  BC ' P  , K hình chiếu A đường thẳng BC' Suy AH  d ( A,  BC ' P   d  A, BC '  AK Từ ta suy khoảng cách lớn AM v \ ' a BC ' AH  AK Gọi I trung điểm AB, ta có AC '  BC '  a 2, AB  a  C ' I  BC '2  IB  C ' I AB  AK BC '  AK  a C ' I AB a 14  BC ' Câu 46: C Hàm số f  x   x3 – 3x  có tập xác định D  Có f '  x   3x2   f '  x    x  1 Bảng biến thiên Ta có f    Trang 24  f  x   1 1 Từ bảng biến thiên ta có f  f  x    f    f  f  x       f  x     Số nghiệm phương trình (1) (2) số giao điểm đường thẳng y  1, y  đồ thị hàm số f  x  ; Từ dựa vào bảng biến thiên suy phương trình (1) có nghiệm; Phương trình (2) có nghiệm Câu 47: C y '  3ax2  2bx  c Do hàm số có cực đại cực tiểu nên bỏ b2  3ac  tâm đối xứng đồ thị hàm số  b  b  I   ; y    3a  3a   A  x0 , y0  điểm cực đại đồ thị hàm số nên tiếp tuyến A y  y0  b B  xB , y0  giao điểm tiếp tuyến A với đồ thị hàm số nên xB      x0  a b Ta lại có AB   xB  x0    3x0  a  2b   b  A  x0 , y0  điểm cực đại suy tọa độ điểm cực tiểu C    x0 ; y     y0  ( I tâm đối  3a   3a  xứng ) 2b b b Vậy xCD  xCT  x0   x0  x0   3x0   3a 3a a Câu 48: D Diện tích tam giác ABC, SAB SAC S ABC  a2  S ABC  SSAC Thể tích khối chóp S.ABC a3 Ta lại có VSABC  VM SAB  VM SAC  VM ABC VS ABC  Trang 25   d  M ,  SAC    d  M ,  SAB    d  M ,  ABC   d  M ,  SAC    d  M ,  SAB    d  M ,  ABC    a2 a2  3a Áp dụng bất đẳng thức Cauchy ta có: d  M ,  SAC   d  M ,  SAB   d  M ,  d  M ,  SAC    d  M ,  SAB   d   M ,    ABC    3a3   72  Suy giá trị lớn tích khoảng cách từ M đến mặt d  M ,  SAC    d  M ,  SAB    d  M ,  ABC    ABC    a3 đạt 72 a Gọi E hình chiếu M lên mặt phẳng (ABC) EM  a d  M ,  SAB    d  E,  SAB    d  E, AB  d  M ,  SAC    d  E,  SAC    d  E, AC  suy a  rABC Do E tâm đường tròn nội tếp tam giác ABC tâm đường tròn ngoại tiếp tam giác ABC (do tam giác ABC đều) Suy ra d  E , AC   d  E, AB   a a 15 Vậy AM  AE  EM  Câu 49: D AE  Từ giả thiết suy bảng biến thiên f  x x  m  Đường thẳng y  f 1 cắt đồ thị y  f  x  điểm  x   m   p  x  p  x  1 x  p Điều kiện xác định  1  x  p Suy đồ thị hàm số khơng có tiệm cận ngang Lại có x  nghiệm mẫu , nghiệm tử, suy x  không tiệm cận đứng Như vậy, đồ thị có tiệm cận đứng x  p Câu 50: Nhận xét x0 nghiệm phương trình  x0 nghiệm phương trình Trang 26 Do tồn hai nghiệm cothì số nghiệm 4, tổng nghiệm m Đặt t  x    x  thu phương trình f  t   2019 Áp dụng bất đẳng thức a  b  a  b  x 1   x  x  1  x  Áp dụng bất đẳng thức Bunyakovsky ta có x    x   x    x   2 Khi x    x   2  2;  Bảng biến thiên hàm số f t  sau Phương trình có hai nghiệm phân biệt 1  m    m  2018; ; 837 2019 Như có 1182 giá trị nguyên m Trang 27 ... m  m  17  3 ;10  3 ;10  12 m  m  17 17 m  12 1 Khi  A  a  20     20    20 12 60 17 m  12 1 17 9 10 79 5  20  m 60 17 17 Vì m  Z nên m 11 , 12 , ,63 suy có 53 giá trị nguyên m... D 15 17 C 895 - HẾT Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm ĐÁP ÁN 1- C 2-C 3-B 4-B 5-A 6-D 7-A 8-D 9-D 10 -C 11 -B 12 -D 13 -B 14 -C 15 -B 16 -D 17 -D 18 -B 19 -D... nghịch biến 1;   A B C D Vô số Câu 11 : Cho hàm số f  x   x  3x  Giá trị lớn hàm số đoạn  1  210 0 ; 210 0  1  A ta có A A  2200  3. 210 0 B A  f 1  210 0  C A  2200  210 0  D

Ngày đăng: 01/01/2020, 15:08

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w