SỞ GD & ĐT NGHỆ AN TRƯỜNG THPT ĐẶNG THÚC HỨA GV: Trần Đình Hiền KỲ THI HỌC SINH GIỎI TRƯỜNG NĂM HỌC : 2009 - 2010 MÔN THI : TOÁN - LỚP 12 Thời gian làm bài : 180 phút Câu I: 1) Giải phương trình : ( ) 1 1 sin 2 1 sin 2 cos sin 2 2 cos sin x x x x x x + − − = + − 2) Cho x,y > 0 thỏa mãn 5 2 4 x y π + < . Chứng minh rằng : .sin cos( ) .sin y x x y x y + < . Câu II: 1) Tìm m để hệ phương trình sau có nghiệm : ( ) 2 2 2 2 2 2 1 8 ( 3) 1 16 mxy y y y x y my y + − = − + − − = 2) Tính tổng : 0 1 2 2007 2008 2008 2008 2008 2008 2008 2008 . . 1.2 2.3 3.4 ( 1)( 2) 2008.2009 2009.2010 k C C C C C C S k k = + + + + + + + + + , (k ∈ N, 0≤ k ≤ 2008). Câu III: 1) Cho x,y ≥ 0 và x 2 + y 2 = 1 .Tìm GTNN, GTLN của 2 2 1 1 x y P y x = + + + 2) Cho dãy số (u n ) với u 1 = 1 và 1 1 2 2 n n n u u u + = + ÷ , với n ∈ N, n ≥ 2 . Chứng minh dãy số (u n ) hội tụ và tính lim u n . Câu IV: 1) Cho tam giác ABC có A(1; 2), B(2; - 1) và 1 1 cos ;cos 2 10 A B= = − . Tìm tọa độ đỉnh C. 2) Cho hình chóp S.ABC , M là một điểm bên trong tam giác ABC. Qua M vẽ những đường thẳng lần lượt song song với các cạnh SA, SB, SC cắt các mặt SBC, SCA, SAB theo thứ tự tại A’, B’, C’. a) Chứng minh rằng: ' ' 'MA MB MC SA SB SC + + có giá trị không đổi khi M thay đổi khi M di động trong tam giác ABC. b) Xác định M để MA’.MB’.MC’ có giá trị lớn nhất. Câu V: Cho hàm số f: R R→ thỏa mãn điều kiện ( ) ( ) ( ) 2, , 3 f x f y f xy x y x y R − = + + ∀ ∈ Hãy tính giá trị f(2009). ………… Hết ………… . SỞ GD & ĐT NGHỆ AN TRƯỜNG THPT ĐẶNG THÚC HỨA GV: Trần Đình Hiền KỲ THI HỌC SINH GIỎI TRƯỜNG NĂM HỌC : 2 009 - 2 010 MÔN THI : TOÁN - LỚP 12 Thời gian. 2008 2008 2008 2008 2008 2008 2008 . . 1.2 2.3 3.4 ( 1)( 2) 2008.2 009 2 009. 2 010 k C C C C C C S k k = + + + + + + + + + , (k ∈ N, 0≤ k ≤ 2008). Câu
2
Cho hình chóp S.ABC ,M là một điểm bên trong tam giác ABC. Qu aM vẽ những đường thẳng lần lượt song song với các cạnh SA, SB, SC cắt các mặt SBC, SCA, SAB theo thứ tự tại A’, B’, C’ (Trang 1)