1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ELEPHANT MATH xác SUẤT có LIÊN QUAN đến HÌNH học

5 111 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 315,83 KB

Nội dung

ELEPHANT MATH – THẠC SĨ PHẠM HOÀI TRUNG CHUYÊN LUYỆN THI MỤC TIÊU 8+, 9+ VÀO CÁC TRƯỜNG ĐẠI HỌC NỔI TIẾNG GIẢNG DẠY TOÁN 10; 11 VÀ LUYỆN THI VÀO LỚP 10 ĐĂNG KÍ HỌC TẠI TP CAO LÃNH CÁC EM GỌI VÀO SỐ 0972 611 839 HOẶC INBOX VÀO FACEBOOK: trungpham.elephantmath ELEPHANT MATH XÁC SUẤT CÓ LIÊN QUAN ĐẾN HÌNH HỌC HAVE FUN – LEARN SMART – HIGH SCORE PHONE NUMBER: 0972 611 839 Biên soạn: Thạc sĩ Phạm Hoài Trung Bài Cho hai đường thẳng song song d1 d2 Trên d1 có điểm phân biệt, d2 có n điểm phân biệt n  3, n   Tìm n , biết có 96 tam giác có đỉnh điểm cho Lời giải Cứ điểm không thẳng hàng tạo thành tam giác Do số tam giác tạo thành từ n  điểm gồm: điểm (thẳng hàng) thuộc d1 n điểm (thẳng hàng) thuộc d2 Cn36  C63  Cn3 Theo giả thiết, ta có Cn36  C63  Cn3  96 với n  3, n   n  6! n!  20   96 3!n  3! 3!n  3!  n  n  5n   120  n  n 1 n  576  n   18n  72 n  576    n  8 Đối chiếu điều kiện ta chọn n  thỏa yêu cầu toán Bài Cho hình vng ABCD Trên cạnh AB, BC , CD, DA lấy 1, 2, n điểm phân biệt n  3, n   khác A, B, C, D Tìm n , biết số tam giác lấy từ n  điểm cho 439 Lời giải Cứ điểm không thẳng hàng tạo thành tam giác Do số tam giác tạo thành từ n  điểm gồm: điểm cạnh AB , điểm cạnh BC , điểm (thẳng hàng) cạnh CD n điểm (thẳng hàng) cạnh DA Cn36  C33  Cn3 Theo giả thiết, ta có Cn36  C33  Cn3  439 với n  3, n   n  6! n! 1   439 3!n  3! 3!n  3!  n  n  5n     n  n 1 n  2634  n  10  18n  72n  2520   n  14 Đối chiếu điều kiện ta chọn n  10 thỏa yêu cầu tốn Bài Có đoạn thẳng có độ dài cm , cm, cm , 8cm 10cm Lấy ngẫu nhiên đoạn thẳng đoạn thẳng trên, tính xác suất để đoạn thẳng lấy lập thành tam giác Lời giải Không gian mẫu số cách lấy đoạn thẳng từ đoạn thẳng Suy số phần tử không gian mẫu   C53  10 Gọi A biến cố '' đoạn thẳng lấy lập thành tam giác '' Để ba đoạn thẳng tạo thành tam giác có trường hợp:  cm, cm, 8cm  6 cm, 8cm, 10 cm   cm, 8cm, 10 cm  Suy số phần tử biến cố A A  Vậy xác suất cần tìm P  A   A   10 ELEPHANT MATH – THẠC SĨ PHẠM HOÀI TRUNG CHUYÊN LUYỆN THI MỤC TIÊU 8+, 9+ VÀO CÁC TRƯỜNG ĐẠI HỌC NỔI TIẾNG GIẢNG DẠY TOÁN 10; 11 VÀ LUYỆN THI VÀO LỚP 10 ĐĂNG KÍ HỌC TẠI TP CAO LÃNH CÁC EM GỌI VÀO SỐ 0972 611 839 HOẶC INBOX VÀO FACEBOOK: trungpham.elephantmath Bài Cho 10 điểm phân biệt mặt phẳng cho điểm chúng không thẳng hàng Giả sử đường thẳng nối điểm đôi cắt số đường thẳng đồng quy 10 điểm cho Gọi S tập hợp tam giác tạo đường thẳng Chọn ngẫu nhiên tam giác từ tập S , tính xác suất để tam giác chọn có đỉnh điểm 10 điểm cho Lời giải Số đường thẳng tạo thành từ 10 điểm cho C102  45 Nếu đường thẳng 45 đường thẳng tạo thành tam giác ta có tất C45 tam giác Nhưng thực tế có trường hợp đường thẳng khơng tạo thành tam giác chúng đồng quy Xét điểm 10 điểm cho, ta gọi điểm A ● Có đường thẳng qua A ● Số cách chọn đường thẳng C93 Tương ứng cách chọn có tam giác bị loại (do điểm trùng A ) Vì có 10 điểm nên có tất 10.C93 tam giác bị loại 10.C93  13350 tam giác Suy tập hợp S có C45 Khơng gian mẫu chọn ngẫu nhiên tam giác 13350 tam giác  13350 Suy số phần tử không gian mẫu   C13350 Gọi X biến cố '' Tam giác chọn có đỉnh điểm 10 điểm cho '' Số tam giác tạo thành có đỉnh điểm 10 điểm cho C103  120 Suy số phần tử biến cố X X  C120  120 Vậy xác suất cần tính P  X   X   120  13350 445 Bài Cho đa giác 12 đỉnh A1 A2 A12 nội tiếp đường tròn O  Chọn ngẫu nhiên đỉnh đa giác Tính xác suất để đỉnh chọn tạo thành hình chữ nhật Lời giải Khơng gian mẫu cách chọn ngẫu nhiên đỉnh 12 đỉnh Suy số phần tử không gian mẫu   C124  495 Gọi A biến cố '' đỉnh chọn tạo thành hình chữ nhật '' Gọi đường chéo đa giác 12 A1 A2 A12 qua tâm đường tròn O  đường chéo lớn đa giác cho có  đường chéo lớn Mỗi hình chữ nhật có đỉnh đỉnh 12 đỉnh A1 A2 A12 có đường chéo hai đường chéo lớn Ngược lại, cặp đường chéo lớn có đầu mút đỉnh hình chữ nhật Do số hình chữ nhật tạo thành số cách chọn đường chéo lớn đường chéo lớn Suy số phần tử biến cố A A  C62  15 Vậy xác suất cần tính P  A   A   15  495 33 ELEPHANT MATH – THẠC SĨ PHẠM HOÀI TRUNG CHUYÊN LUYỆN THI MỤC TIÊU 8+, 9+ VÀO CÁC TRƯỜNG ĐẠI HỌC NỔI TIẾNG GIẢNG DẠY TOÁN 10; 11 VÀ LUYỆN THI VÀO LỚP 10 ĐĂNG KÍ HỌC TẠI TP CAO LÃNH CÁC EM GỌI VÀO SỐ 0972 611 839 HOẶC INBOX VÀO FACEBOOK: trungpham.elephantmath Bài Cho đa giác có 30 cạnh Gọi S tập hợp tứ giác tạo thành có đỉnh lấy từ đỉnh đa giác Chọn ngẫu nhiên phần tử S , tính xác suất để hình chữ nhật Lời giải Đa giác có 30 cạnh nên có 30 đỉnh Gọi O  tâm đường tròn ngoại tiếp đa giác Khơng gian mẫu số cách chọn đỉnh 30 đỉnh đa giác Suy số phần tử không gian mẫu   C304  27405 Gọi A biến cố '' tứ giác chọn hình chữ nhật '' Gọi đường chéo đa giác qua tâm 30  15 đường chéo lớn Mỗi hình chữ nhật có đường tròn O  đường chéo lớn đa giác cho có đỉnh đỉnh 30 đỉnh có đường chéo hai đường chéo lớn Ngược lại, cặp đường chéo lớn có đầu mút đỉnh hình chữ nhật Do số hình chữ nhật tạo thành số cách chọn đường chéo lớn 15 đường chéo lớn, tức có tất C152  105 hình chữ nhật  105 Suy số phần tử biến cố A A  C105 Vậy xác suất cần tính P  A   A   105  27405 261 Bài Cho đa giác 2n đỉnh A1 A2 A2 n n  2, n   *  nội tiếp đường tròn O  Biết số tam giác có đỉnh 2n đỉnh nhiều gấp 20 lần số hình chữ nhật có đỉnh 2n đỉnh Tìm n Lời giải Số tam giác có đỉnh 2n đỉnh C2n Gọi đường chéo đa giác A1 A2 A2 n qua tâm đường tròn O  đường chéo lớn đa giác 2n  n đường chéo lớn Mỗi hình chữ nhật có đỉnh đỉnh 2n đỉnh A1 A2 A2 n có đường chéo hai đường chéo lớn Ngược lại, cặp đường chéo lớn có đầu mút đỉnh hình chữ nhật Do số hình chữ nhật tạo thành số cách chọn đường chéo lớn 2n đường chéo lớn, tức có tất C2n hình chữ nhật cho có Theo giả thiết, ta có C23n  20Cn2   n 2 n 12 n    20 2 n ! 3!2 n  3! n n 1 Vậy n  thỏa mãn yêu cầu toán  20 n! 2!n  !  n 1  15  n  ELEPHANT MATH – THẠC SĨ PHẠM HOÀI TRUNG CHUYÊN LUYỆN THI MỤC TIÊU 8+, 9+ VÀO CÁC TRƯỜNG ĐẠI HỌC NỔI TIẾNG GIẢNG DẠY TOÁN 10; 11 VÀ LUYỆN THI VÀO LỚP 10 ĐĂNG KÍ HỌC TẠI TP CAO LÃNH CÁC EM GỌI VÀO SỐ 0972 611 839 HOẶC INBOX VÀO FACEBOOK: trungpham.elephantmath Bài Cho đa giác gồm 2n đỉnh n  2, n   Chọn ngẫu nhiên ba đỉnh số 2n đỉnh đa giác, xác suất ba đỉnh chọn tạo thành tam giác vuông Tìm n Lời giải Khơng gian mẫu số cách chọn đỉnh 2n đỉnh đa giác Suy số phần tử không gian mẫu   C2n Gọi A biến cố '' Ba đỉnh chọn tạo thành tam giác vuông '' Để ba đỉnh chọn tạo thành tam giác vng có hai đỉnh ba đỉnh hai đầu mút đường kính đường tròn ngoại tiếp đa giác đỉnh lại số 2 n   đỉnh lại đa giác Đa giác có 2n đỉnh nên có 2n  n đường kính ● Số cách chọn đường kính Cn1  n ● Số cách chọn đỉnh lại 2 n   đỉnh C21n 2  n  Suy số phần tử biến cố A A  n 2 n   Do xác suất biến cố A P  A   Theo giả thiết, ta có n 2 n   C 2n  A   n 2n   C23n n 2 n   1    n 8 n 2 n 12 n   Vậy n  thỏa mãn yêu cầu toán Bài tập tương tự Cho đa giác  H  có n đỉnh n  , n   Tìm n , biết số tam giác có đỉnh đỉnh  H  khơng có cạnh cạnh  H  gấp lần số tam giác có đỉnh đỉnh  H  có cạnh cạnh  H  Lời giải Số tam giác tạo thành có đỉnh đỉnh đa giác Cn3 Số tam giác tạo thành có cạnh cạnh đa giác n Số tam giác tạo thành có cạnh cạnh đa giác n n   Suy số tam giác tạo thành khơng có cạnh cạnh đa giác Cn3  n  n n   Theo giả thiết, ta có Cn3  n  n n    5.n n    Cn3  6.n n    n  n!  6.n n    n 3! n  3! n  n 1 n  35  n     n  39 n  140    n  Do n  nên ta chọn n  35 thỏa mãn yêu cầu toán  ELEPHANT MATH – THẠC SĨ PHẠM HOÀI TRUNG CHUYÊN LUYỆN THI MỤC TIÊU 8+, 9+ VÀO CÁC TRƯỜNG ĐẠI HỌC NỔI TIẾNG GIẢNG DẠY TOÁN 10; 11 VÀ LUYỆN THI VÀO LỚP 10 ĐĂNG KÍ HỌC TẠI TP CAO LÃNH CÁC EM GỌI VÀO SỐ 0972 611 839 HOẶC INBOX VÀO FACEBOOK: trungpham.elephantmath Bài Trong mặt phẳng tọa độ Oxy cho điểm A 2;0 , B 2;2 , C 4;2 , D 4;0  Chọn ngẫu nhiên điểm có tọa độ  x ; y  với x , y số nguyên nằm hình chữ nhật ABCD (kể điểm nằm cạnh) Tính xác suất để điểm  x ; y  chọn thỏa mãn x  y  Lời giải Dựng thêm đường thẳng y  x  1 , x  , x  , x  Các đường thẳng với cạnh trục tọa độ cắt 21 điểm có tọa độ nguyên Do ta có y B    x ; y  2  x  4,  y  & x , y   Suy số phần tử không gian mẫu   21 Gọi A biến cố '' Chọn điểm  x ; y  thỏa mãn C A -2 D -1 O x x  y  '' Ta có kết thuận lợi cho biến cố A A  2;0 , 2;1, 2;2 , 1;0 , 1;1, 1;2 , 0;0 , 0;1, 1;0  Suy số phần tử biến cố A A  Vậy xác suất cần tính P  A   A    21 Bài 10 Trong mặt phẳng tọa độ Oxy Ở góc phần tư thứ ta lấy điểm phân biệt; góc phần tư thứ hai, thứ ba, thứ tư ta lấy 3, 4, điểm phân biệt (các điểm không nằm trục tọa độ) Trong 14 điểm ta lấy điểm Tính xác suất để đoạn thẳng nối hai điểm cắt hai trục tọa độ Lời giải Không gian mẫu số cách chọn điểm 14 điểm cho Suy số phần tử không gian mẫu   C142  91 Gọi A biến cố '' Đoạn thẳng nối điểm chọn cắt hai trục tọa độ '' Để xảy biến cố A hai đầu đoạn thẳng phải góc phần tư thứ thứ ba phần tư thứ hai thứ tư ● Hai đầu đoạn thẳng góc phần tư thứ thứ ba, có C21C41 cách ● Hai đầu đoạn thẳng góc phần tư thứ hai thứ tư, có C31C51 cách Suy số phần tử biến cố A A  C21C41  C31C51  23 Vậy xác suất cần tính P  A   A   23 91 ... đa giác cho có  đường chéo lớn Mỗi hình chữ nhật có đỉnh đỉnh 12 đỉnh A1 A2 A12 có đường chéo hai đường chéo lớn Ngược lại, cặp đường chéo lớn có đầu mút đỉnh hình chữ nhật Do số hình chữ nhật... lớn có đầu mút đỉnh hình chữ nhật Do số hình chữ nhật tạo thành số cách chọn đường chéo lớn 15 đường chéo lớn, tức có tất C152  105 hình chữ nhật  105 Suy số phần tử biến cố A A  C105 Vậy xác. .. A2 n có đường chéo hai đường chéo lớn Ngược lại, cặp đường chéo lớn có đầu mút đỉnh hình chữ nhật Do số hình chữ nhật tạo thành số cách chọn đường chéo lớn 2n đường chéo lớn, tức có tất C2n hình

Ngày đăng: 28/11/2019, 21:28

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w