Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 113 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
113
Dung lượng
2,66 MB
Nội dung
Bài soạn Tiết 1 2. mệnh đề mệnh đề chứa biến. I. Mục tiêu. 1. Về kiến thức - Nắm đợc khái niện mệnh đề.Nhận biết một caau có phải mệnh đề không? - Nắm đợc các khái niệm mệnh đề phủ định, kéo theo, tơng đơng. - Nám khái niệm mệnh đề chứa biến. 2. Về kỹ năng. - Biết lập mệnh đề phủ định của một mệnh đề phủ định, mệnh đề kéo theo và mệnh đề tơng đơng. - Biết chuyển mệnh đề chứa biến thành mệnh đề. - Biết sử dụng các ký hiệu mọi và tồn tại. 3. Về t duy và thái độ. - Rèn luyện t duy logíc, biết quy lạ về quen. - Cẩn thận chính xác trong tính toán, lập luận. II. Chuẩn bị của giáo viên và học sinh. - Chuẩn bị của học sinh: + Đồ dùng học tập nh: Thớc kẻ compa - Chuẩn bị của giáo viên: + Các bảng phụ, đồ dùng dạy học. + Phiếu học tập. III. Phơng pháp dạy học. + Phơng pháp mở vấn đáp thông qua các hoạt động điều khiển t duy, đan xen nhóm. IV. Tiến trình của bài học và các hoạt động. A. Các tình huống học tập. * Tình huống 1: Khái niệm mệnh đề mệnh đề phủ định, mệnh đề kéo theo, mệnh đề đảo, mệnh đề tơng đơng. - Hoạt động 1: Khái niệm nmệnh đề, nhận biết một câu có phải mệnh đề không? - Hoạt động 2: Mệnh đè phủ định VD củng cố. 1 - Hoạt động 3:Mệnh đề kéo theo và mệnh đề đảo. - Hoạt động 4:Mệnh đề tơng đơng. * Tình huống 2: Mệnh đề chứa biến các ký hiệu mọi tồn tại, mệnh đề phủ định của mệnh đề có chứa các ký hiệu mọi và tồn tại. - Hoạt động 5: Khái niệm mệnh đề chứa biến. - Hoạt động 6: Các ký hiệu mọi và tồn tại. - Hoạt động 7: Mệnh đề phủ định có chứa ký hiệu mọi và tồn tại. B. Tiến trình bài học. 1. Kiểm tra bài cũ: Lồng vào các hoạt động của bài mới 2. Bài mới. * Tình huống 1: Khái niệm mệnh đề mệnh đề phủ định, mệnh đề kéo theo, mệnh đề đảo, mệnh đề tơng đơng. - Hoạt động 1: Khái niệm nmệnh đề, nhận biết một câu có phải mệnh đề không? - VD1: Xét các câu sau: a. Hà Nội là thủ đô của Việt Nam. b. Thợng Hải là một Thành Phố của ấn Độ. c. Số 7 chia hết cho 2. d. 3 là số nguyên tố. - VD2: Xét các câu sau có phải mệnh đề không? a. Hôm nay trời đẹp quá. b. Lan thuộc bài cha? Hoạt động của HS Hoạt động của GV - Nghe hiểu câu hoi. - Tìm phơng án thắng. - Nhận xét kết kết quả. - Tự kháI quát niệm mệnh đề. - Ghi nhận kiến thức. - Giao nhiệm vụ cho học sinh. - Kiểm tra kết quả của học sinh. - Cho học sinh nhận xét. - Chính xác hoá bài toán. - Đa ra kháI niệm mệnh đề. - Cho học sinh ghi nhận kiến thức. - Hoạt động 2: Mệnh đè phủ định VD củng cố. - VD3: An và Bình đang tranh luận với nhau: An nói: 2 là số nguyên tố Bình nói: 2 không phảI là số nguyên tố Hai câu nói của An và Bình có phảI là mệnh đề không?. Xác định tính đúng sai và mối quan hệ của hai mệnh đề. - VD4: Lập mệnh đề phủ định của các mệnh đề sau và cho biết tính đúng sai của nó. A = 2 là số vô tỉ B = Pari là thủ đô của nớc Anh C = 2002 chia hết cho 4 D = 3 là số chẵn Hoạt động của HS Hoạt động của GV 2 - Nghe hiểu nội dung. - Tìm phơng án thắng. - KháI quát thành định nghĩa mệnh đề phủ định. - Ghi nhận kiến thức. -Phân nhóm học sinh. - Nêu các ví dụ. - Sửa sai nếu cần. - Đa ra kháI niệm mệnh đề phủ định. - Cho học sinh ghi nhận kiến thức. - Hoạt động 3: Mệnh đề kéo theo và mệnh đề đảo - VD5: Xét mệnh đề: Nếu An vợt đền đổ thì An vi phạm luật giao thông mệnh đề trên đợc lập từ hai mệnh đề nào? xét tính đúng sai của nó. - VD6: Cho tứ giác ABCD xét mệnh đề P = Tứ giác ABCD là hình chữ nhật, Q = Tứ giác ABCD có hai đờng chéo bằng nhau Phát biểu mệnh đề P Q bằng nhiều cách khác nhau. Lập mệnh đề Q P và xét tình đúng sai của mệnh đề. Hoạt động của HS Hoạt động của GV - Nghe hiểu câu hỏi - Tìm câu trả lời. - Một học sinh trả lời. - HS khác nhận xét. - Tự kháI quát định nghĩa mệnh đề kéo theo. - Ghi nhận kiến thức. - Giao niệm vụ cho học sinh. - Kiểm tra kết quả của học sinh. - Chỉnh sửa nếu cần. - Chính xác hoá kết quả. - Chú ý cách phát biểu khác nhau. - Cho học sinh ghi nhận kết quả. - Hoạt động 4: Mệnh đề tơng đơng. - VD7: Cho hai mệnh đề. P = Tam giác ABC đều, Q = Tam giác ABC có 3 góc bằng nhau a. Lập mệnh đề P Q, Q P xét tính đúng sai. b. Lập mệnh đề P nếu và chỉ nếu Q hoặc P khi và chỉ khi Q. Hoạt động của HS Hoạt động của GV - Nghe hiểu câu hỏi. - Tìm phơng án thắng. - Thông báo kết quả cho giáo viên. - Nhận xét câu trả lời. - Ghi nhận kiến thức. - Giao nhiệm vụ cho học sinh. - Nhận xét kết quả của học sinh. - Chính xác hoá các câu trả lời của học sinh. - Đa ra kháI niệm mệnh đề tơng đơng. - Cho học sinh ghi nhận kiến thức. - Hoạt động 5: KháI niệm mệnh đề chứa biến. - VD9: Xét các câu sau có phảI mệnh đề không? Khi nào chúng trở thành mệnh đề? a. x lớn hơn 4 b. n là số nguyên tố nếu n là số tự nhiên c. Q(x, y) y + 1 > 2x với mọi x, y thuộc R - VD10 (SGK). 3 Hoạt động của HS Hoạt động của GV - Nghe hiểu câu hỏi. - Tìm phơng án thắng. - Chỉnh sửa nếu cần. - Tự kháI quát thành mệnh đề chứa biến. - Ghi nhận kiến thức. - Giao nhiệm vụ cho học sinh. - Kiểm tra kết quả của học sinh. - Chỉnh sửa nếu cần - Nêu kháI niệm mệnh đề chứa biến. - Cho học sinh ghi nhận kiến thức. - Hoạt động 6: Các ký hiệu mọi và tồn tại. Hoạt động của HS Hoạt động của GV - Hiểu kí hiệu , - BIết cách gắn chúng vào các mệnh đề chứa biến để đợc các mệnh đề. - Làm ví dụ 9 và 10. - Ghi nhận kiến thức. - Trình bày kháI niệm. - Chỉnh sửa kết quả của học sinh. - Cho học sinh ghi nhận kiến thức. - Hoạt động 7: Mệnh đề phủ định có chứa ký hiệu mọi và tồn tại. Hoạt động của HS Hoạt động của GV - Học sinh nhận nhiệm vụ. - Tìm phơng án thắng. - Tự kháI quát thanh kháI niệm. - Ghi nhận kiến thức. - Giao nhiệm vụ cho học sinh. - Đa ra kháI niệm. - Cho học sinh ghi nhận kiến thức. * Củng cố. - Hệ thống lại kiến thức toàn bài. * Bài tập: Làm các bài tập trong SGK Bài soạn Tiết 3 - 4. áp dụng mệnh đề vào suy luận toán học. I. Mục tiêu. 1. Về kiến thức 4 - Hiểu rõ một số phơng pháp suy luận toán học. - Nắm vững các phơng pháp chứng minh trực tiếp và chứng minh bằng phản chứng. - Biết phát biểu mệnh đề đảo, định lí đảo biết sử dụng các thuật ngữ điều kiện cần; điều kiện đủ; điều kiện cần và đủ trong toán học. 2. Về kỹ năng. - Chứng minh đợc một số mệnh đề bằng phơng pháp phản chứng - 3. Về t duy và thái độ. - Hiểu cách chứng minh một số mệnh đề bằng phơng pháp phản chứng. - Biết sử dụng các thuật ngữ điều kiện cần; điều kiện đủ; điều kiện cần và đủ trong toán học. - Cẩn thận chính xác. II. Chuẩn bị của giáo viên và học sinh. - Chuẩn bị của học sinh: + Đồ dùng học tập : Thớc kẻ, compa - Chuẩn bị của giáo viên: + Các bảng phụ, đồ dùng dạy học. + Phiếu học tập. III. Phơng pháp dạy học. + Phơng pháp mở vấn đáp thông qua các hoạt động điều khiển t duy. IV. Tiến trình của bài học và các hoạt động. A. Các hoạt động. - Hoạt động 1: Bài tập kiểm tra bài cũ. - Hoạt động 2: Định lí và chứng minh định lí , ví dụ. - Hoạt động 3: Điều kiện cần, điều kiện đủ, ví dụ minh hoạ. - Hoạt động 4: Định lí đảo, điều kiện cần và đủ B. Tiến trình bài học. - Hoạt động 1: Bài tập kiểm tra bài cũ Hoạt động của học sinh Hoạt động của giáo viên - P(7) : Đúng - P(4) : Sai. - Cho mệnh đề chứa biến P(n): n 2 1 chia hết cho 4, với n là số nguyên.Xét xem mỗi mệnh đề P(7) và P(4) đúng 5 hay sai?. - Hoạt động 2: Định lí và chứng minh định lí , ví dụ. Hoạt động của học sinh Hoạt động của giáo viên - Với mọi số tự nhiên n, nếu n là số lẻ thì n 2 1 chia hết cho 4. - Lấy x X mà P(x) đúng, chứng minh Q(x) đúng. - Tìm câu trả lời. - Ghi nhận kiến thức. - VD: Xét định lý n 2 1 chia hết cho 4.Phát biểu định lý trên một cách đầy đủ? - Trong toán học, định lý là một mệnh đề đúng. Nhiều định lý đợc phát biểu dới dạng: ; ( ) ( )x X P x Q x (1) (trong đó P(x), Q(x) là những mệnh đề chứa biến, X là một tập hợp nào đó). - CM định lý dạng (1) là dùng những suy luận và những kiến thức đã biết để khẳng định mệnh đề (1) là đúng. - Nêu các bớc chứng minh định lý dạng (1)? - VD: CM trực tiếp định lý ở VD trên. - Cho học sinh ghi nhận kiến thức. - Hoạt động 3: Điều kiện cần, điều kiện đủ, ví dụ minh hoạ. Hoạt động của học sinh Hoạt động của giáo viên - Đọc hiểu nội dung câu hỏi - Tìm phơng án thắng - Ghi nhận kiến thức. - Cho định lý dới dạng: ; ( ) ( )x X P x Q x (2) P(x) là giả thiết, Q(x) là kết luận. - ĐL (2) còn đợc phát biểu : + P(x) là điều kiện đủ để có Q(x). + Q(x) là điều kiện cần để có P(x). - VD: Xét định lý với mọi số tự nhiên n, nếu n chia hết cho 24 thì nó chia hết cho 8 - Hãy phát biểu 2 mệnh đề chứa biến P(n) và Q(n)? - Phát biểu định lý trên dới dạng điều kiện cần và đủ. - Hoạt động 4: Định lí đảo, điều kiện cần và đủ Hoạt động của học sinh Hoạt động của giáo viên 6 - ; ( ) ( )x X P x Q x (3) - Nghe hiểu câu hỏi. - Tìm câu trả lời - Ghi nhận kiến thức. - Phát biểu mệnh đề đảo của định lý dạng (2)? - GV phát biểu kháI niệm điều kiện cần và đủ. - Cho học sinh ghi nhận kiến thức. * Củng cố. - Phát biểu mệnh đề đảo của ĐL (1)?. * Bài tập: Làm các bài tập 6 đến 11Trong SGK Bài soạn Tiết 5 - 6. luyện tập mệnh đề - áp dụng mệnh đề vào suy luận toán học I. Mục tiêu. 1. Về kiến thức - Ôn tập lại kiến thức đã học trong các bài 1 và 2., hiểu rõ nh thế nào là mệnh đề, mệnh đề phủ định, mệnh đề kéo theo, mệnh đề đảo, mệnh đề tơng đơng, mệnh đề chứa biến, cách sử dụng các ký hiệu mọi và tồn tại. Phân biệt đợc giả thiết kết luậncủa định lí, điều kiện cần, điều kiện đủ, điều kiện vần và đủ. 2. Về kỹ năng. - Vận dụng thành thạo các kiến thức để giảI các bit toán trong sách giáo khoa. 3. Về t duy và thái độ. - Rèn luyện t duy logíc, biết quy lạ về quen. - Cẩn thận chính xác trong tính toán, lập luận. II. Chuẩn bị của giáo viên và học sinh. - Chuẩn bị của học sinh: + Đồ dùng học tập nh: Thớc kẻ compa - Chuẩn bị của giáo viên: + Các bảng phụ, đồ dùng dạy học. + Phiếu học tập. 7 III. Phơng pháp dạy học. + Phơng pháp mở vấn đáp thông qua các hoạt động điều khiển t duy, đan xen nhóm. IV. Tiến trình của bài học và các hoạt động. A. Các tình huống học tập. * Tình huống 1: Luyện tập về mệnh đề, mệnh đề phủ định, mệnh đề kéo theo,mệnh đề đảo, mệnh đề tơng đơng, mệnh đề chứa biến. - Hoạt động 1:Tìm hiểu nhiệm vụ. - Hoạt động 2: Học sinh độc lập thực hiện nhiệm vụ theo từng nhóm có sự hớng dẫn của giáo viên. Mỗi nhóm thảo luậnvà đa ra kết quả chung của nhóm. - Hoạt động 3:Trình bày kết quả của mỗi nhóm, giáo viên hớng dẫn các nhóm còn lại nhận xét, chính xác hoá kết quả. * Tình huống 2: Luyện tập về áp dụng mệnh đề vào suy luận toán học. - Hoạt động 4: Từ kết quả bài toán 2 yêu cầu học sinh phát biểu các mệnh đề ,P Q P Q , dới dạng định lý. Nêu rõ là điều kiện cần , điều kiện đủ, điều kiện cần và đủ. - Hoạt động 5: Củng cố khắc sâu kiến thức, giao nhiệm vụ về nhà cho học sinh. B. Tiến trình bài học. 1. Kiểm tra bài cũ: Lồng vào các hoạt động của bài mới 2. Bài mới. * Tình huống 1: Luyện tập về mệnh đề, mệnh đề phủ định, mệnh đề kéo theo,mệnh đề đảo, mệnh đề tơng đơng, mệnh đề chứa biến. - Hoạt động 1: Tìm hiểu nhiệm vụ. + Đề bài tập: Bài tập 1: Điền dấu x vào ô thích hợp trong bảng sau, riêng với cột cuối cùng ghi rõ mệnh đề phủ định (trờng hợp nào không có thì để trống). Câu Không là MĐ MĐ đúng MĐ sai MĐ phủ định 2 4 1 chia hết cho 5 không hút thuốc Hiện tại ngoài trời đang ma Bạn có làm dợc bài tập này không? 2 , 1n N n + không chia hết cho 4 n N , n(n +1)là một số chính phơng. 2006 là một số chính phơng. 2 ,( 1) 1n R x x 8 Bài tập 2: Trong bảng sau cho các mệnh đề P và Q, hãy phat biểu các mệnh đề P Q và P Q . Cho biết giá trị các mệnh đề đó. P Q P Q P Q Giá trị của MĐ P Q Giá trị của MĐ P Q Tứ giác ABCD có tổng hai góc đối là 180 0 Tứ giác ABCD là tứ giác nội tiếp. 4686 chia hết cho 6 4686 chia hết cho 4 n N , n là số chính ph- ơng n N , n có chữ số tận cùng là 2 An 16 tuổi An học lớp 10 Tam giác ABC vuông tại A Các cạnh tam giác thoả mãn AB 2 + AC 2 = BC 2 Bài tập 3:Cho mệnh đề chứa biến P(n): n = n 2 với n là số nguyên. Điền dấu x vào ô thích hợp. Mệnh đề Đúng Sai P(0) P(1) P(2) P(-1) , ( )n Z P n , ( )n Z P n Bài tập 4: Ký hiệu X là tập hợp các cầu thủ x trong đội tuyển bóng rổ, P(x) là mệnh đề chứa biến: x cao trên 180 cm chọn phơng án trả lời đúng trong các phơng án cho sau đay. Mệnh đề , ( )x X P x khẳng định rằng: (A) Mọi cầu thủ trong đội tuyển bóng rổ đề cảotên 180cm. (B) Trong số các cầu thủ của đội tuyển bóng rổ có một số cầu thủ cao trên 180cm. (C) Bất cứ ai cao trên 180cm đều là cầu thủ của đội tuyển bóng rổ. (D) Có một số ngời cao trên 180cm là cầu thủ của đội tuyển bóng rổ. Hoạt động của HS Hoạt động của GV - Nhận bài tập từ giáo viên, nhóm trởng đọc đề cho cả nhóm cùng nghe. - Nêu các thắc mắc về đề bài - Định hớng cách giải bài toán - Chia học sinh thành các nhóm nhỏ. - Phát đề bài cho học sinh. - Giao nhiệm vụ cho từng nhóm, mỗi nhóm làm một câu. 9 - Hoạt động 2: Học sinh độc lập thực hiện nhiệm vụ theo từng nhóm có sự hớng dẫn của giáo viên. Mỗi nhóm thảo luậnvà đa ra kết quả chung của nhóm. Hoạt động của HS Hoạt động của GV - Mỗi học sinh nghe hiểu đề bài và độc lập ghi kết quả ra giấy nháp. - So sánh số lợng kết quả của mình với học sinh khác. - Thảo luận theo từng nhóm để đa ra kết quả chung của mỗi nhóm. - Nhóm trơng tập hợp các ý kiến của học sinh trong nhóm. -Giao nhiệm vụ cho học sinh, theo dõi hoạt động của học sinhvà hớng dẫn khi cần thiết. - Nhận kết quả và nhận xét nhanh số l- ợng câu trả lời đúng, sai của một học sinhhoàn thành nhiệm vụ nhânh nhất trong mỗi nhóm - Trong khi học sinh so sánh, GV chú ý cho học sinh những sai lầm thờng mắc. - Ghi nhận các ý kiến riêng không thống nhất với ý kiến của nhóm. Hoạt động 3: Trình bày kết quả của mỗi nhóm, giáo viên hớng dẫn các nhóm còn lại nhận xét, chính xác hoá kết quả. Hoạt động của HS Hoạt động của GV - NHóm trởng nào có két quả trớc lên trình bày. - HS các nhóm theo dõi các kết quả của các nhóm khác, nêu ý kiến thắc mắc của mình. - Ghi kết quả cuối cùng vào bảng kết quả. - Cho nhóm trởng mỗi nhóm lên trình bày kết quả. - Yêu cầu các nhóm còn lại theo dõi kết quả, nêu ý kiến nhận xét tắc mắc. - Nhận xét chung kết quả mỗi nhóm. - CHính xác hoá kết quả cho học sinh ghi vào bảng kết quả của mỗi nhóm. * Tình huống 2: Luyện tập về áp dụng mệnh đề vào suy luận toán học Hoạt động4:. Từ kết quả bài toán 2 yêu cầu học sinh phát biểu các mệnh đề ,P Q P Q , dới dạng định lý. Nêu rõ là điều kiện cần , điều kiện đủ, điều kiện cần và đủ. Hoạt động của HS Hoạt động của GV - Phát biểu các mệnh đề thành định lý theo yêu cầu của giáo viên. - Cho học sinh thảo luận để đI đến nhận định tại sao có phát biểu trở thành định lý, có phát biểu lại không - Giao nhiệm vụ cho học sinh: Từ bảng kết quả của bài tập 2, hãy lập mệnh đề đảo P Q . - Yêu cầu học sinh kiểm tra lại xem các phat biểu của mình có phat biểu 10 [...]... tập trong SGK Bài soạn Tiết 10 - 11 Số gần đúng và sai số I Mục tiêu 19 1 Về kiến thức: - Nhận thức đợc tầm quan trọng của số gần đúng - Nắm đợc thế nào là sai số tuyệt đối, sai số tơng đối, độ chính xác của số gần đúng, biết dạng chuẩn của số gần đúng 2 Về kỹ năng: - Biết cách quy tròn số, biết xác định chữ số chắccủa số gần đúng - Biết dùng ký hiệu khoa học để ghi những số rất lớn và rất bé 3 Về t... Định nghĩa: Cho tập hợp khác rỗng D R Hàm số f xác định trên D là một quy tắc đặt tơng ứng mỗi số x thuộc D với một và chỉ một số, ký hiệu là f(x); số f(x) đó gọi là giá trị của hàm số f tại x Tập D gọi là tập xác định (hay miền xác đinh), x gọi là biến số hay đối số của hàm số f Định nghĩa: Hàm số đồng biến, hàm số nghịc biến Cho hàm số f xác định trên K Hàm số f gọi là đồng biến (hay tăng) trên K nếu:... tập hợp - Sai số tuyệt đối, sai số tơng đối, số quy tròn, chữ số chắc , dạng chuẩn của số gần đúng và ký hiệu khao học của một số 2 Về kỹ năng - Rèn luyện kỹ năng biết dùng ngôn ngữ và ký hiệu của lý thuyết tập hợp để diễn đạt các bài toán - Thành thạo các phép toán về hợp giao, lấy phần bù của các tập con thờng gặp của tập số thực - Kỹ năng quy tròn số, xác đinh chữ số chắc và cách viết số dới dạng... lấy ví dụ về số gần đúng Tình huống 2: Tạo tiền đề xuất phát VD4: khi lấy số gần đúng 10/ 3 bằng số 3,3 khi đó độ sai khác là: 10 1 3,3 = (gọi 3 3 là sai số tuyệt đối của số gần đúng 3,3) CH: Vậy sai số tuyệt đối là gì? ĐN sai số tuyệt đối SGK: a = a a VD5: a = 2 , a = 1,41 a = a a GV: Trên thực tế nhiều khi ta không biết a Tuy nhiên, ta có thể đánh giá đợc a không vợt quá một số d > 0 nào... kiến thức - Hoạt động 3: Đồ thị của hàm số chẵn, hàm số lẻ Hoạt động của học sinh - Nghe hiểu câu hỏi - Nêu thắc mắc đề bài - Tìm câu trả lời - Thông báo kết quả với giáo viên - Ghi nhận kiến thức Hoạt động của giáo viên - Chứng minh hàm số y = ax2 là hàm số chẵn - Nêu tính chất của hàm số chẵn và hàm số lẻ - Vẽ đồ thị của một số hàm số chẵn và đồ thị của mtj số hàm số lẻ - Cho học sinh ghi nhận kiến thức... soạn luyện tập đại cơng hàm số I Mục tiêu 1 Về kiến thức - Khái niệm, đồ thị của hàm số, sự biến thiện của hàm số, tính chẵn lẻ cùa hàm số, Tịnh tiến một đồ thị 2 Về kỹ năng - Tìm tập xác định của hàm số, sử dụng tỷ số biến thiên để khảo sát sự biến thiên của hàm số trên một khoảng đã cho và lập bảng biến thiên của nó - Xác định đợc mối quan hệ giữa hai hàm số khi biết đồ thị của hai hàm số này là do... thức: - Hiểu rõ khái niệm hàm số chẵn, hàm số lẻ 33 - Đồ thị hàm số chẵn, hàm số lẻ - Hiểu đợc phép tịnh tiến đồ thị song song với trục toạ độ 2 Về kỹ năng: - Biết cách xác định hàm số chẵn hàm số lẻ, biết vẽ đồ thị hàm số chẵn và hàm số lẻ - Biết tịnh tiến đồ thị song song với trục toạ độ 3 Tduy: - Biết vận dụng kiến thức đã học vào bài mới, liên hệ với khái niệm hàm số đã học - Vận dụng kiến thức... về hàm số Chẵn và hàm số lẻ hàm số chẵn hàm số lẻ - HS thực hiện yêu cầu của GV - Cho ví dụ minh hoạ - Cho ví dụ về hàm số trên thực tế - Cho học sinh ghi nhận kiến thức - Ghi nhận kiến thức - Hoạt động 2: Định nghĩa hàm số chẵn, hàm số lẻ Hoạt động của học sinh Hoạt động của giáo viên - HS đọc định nghĩa (SGK) chỉ ra những vấn đề cần chú ý trong định nghĩa - Nêu kháI niệm hàm số chẵn , hàm số lẻ -... của học sinh - Nắm đợc khái niệm hàm số cho bằng biểu thức, cho ví dụ về hàm số Hoạt động của giáo viên - Yêu cầu HS cho ví dụ về hàm số, tìm tập xác định - Hiểu rõ khái niệm đồ thị hàm số {x0; * Chú ý : y = x2 - 2x - 3 (x là biến số) y0} trên Oxy thoả mãn y0 = f(x0) t = u2 - 2u - 3 (u là biến số) - Tìm giá trị hàm số tại một số điểm cho trớc - Giới thiệu đồ thị hàm số Chiếu bảng 2: (Đồ thị hình 2.1 trang... số f gọi là nghịch biến (hay giảm) trên K nếu: Với mọi x1; x2 K, x1 < x2 => f(x1) > f(x2) Đồ thị hàm số Nếu một hàm số đồng biến trên K thì trên đó đồ thị của nó đi lên Nếu nhà: Các bài tập biến trên 11 (SGK) Bài tập vềmột hàm số nghịch7, 8, 9, 10, K thì trên đó đồ thị của nó đi xuống Hàm số không đổi (hàm số hằng) đồ thị là một đờng thẳng song song với trục Ox Giáo án Tiết15 - 16 Đại cơng về hàm số . sai số tơng đối, độ chính xác của số gần đúng, biết dạng chuẩn của số gần đúng. 2. Về kỹ năng: - Biết cách quy tròn số, biết xác định chữ số chắccủa số. soạn Tiết 10 - 11 Số gần đúng và sai số I. Mục tiêu. 19 1. Về kiến thức: - Nhận thức đợc tầm quan trọng của số gần đúng. - Nắm đợc thế nào là sai số tuyệt