1. Trang chủ
  2. » Giáo Dục - Đào Tạo

100 bai tap hinh on vao 10 co huong dan

53 66 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 701,5 KB

Nội dung

MỘT TRĂM BÀI TẬP HÌNH HỌC LỚP Phần 2: 50 tập Bài 51:Cho (O), từ điểm A nằm đường tròn (O), vẽ hai tt AB AC với đường tròn Kẻ dây CD//AB Nối AD cắt đường tròn (O) E C/m ABOC nội tiếp Chứng tỏ AB2=AE.AD �  ACB � C/m góc AOC BDC cân CE kéo dài cắt AB I C/m IA=IB B I A O E D C Hình 51 1/C/m: ABOC nt:(HS tự c/m) � chung 2/C/m: AB2=AE.AD Chứng minh ADB ∽ ABE , có E � � (góc tt dây) Sđ ABE = sđ cung BE Sđ � = BDE � (góc nt chắn BE � ) sñ BE �  ACB � 3/C/m AOC �  ABC � * Do ABOC nt AOC (cùng chắn cung AC); AC = AB (t/c �  ACB � � AOC �  ACB � tt cắt nhau)  ABC cân A ABC � = sñ BEC � � * sñ ACB (góc tt dây); sđ BDC = sđ 2 � (góc nt) BEC � = ACB � � = BDC � �  BCD �  BDC mà ABC (do CD//AB)  BDC  BDC cân ôû B �  ECB � 4/ Ta coù $ (góc tt dây; góc nt I chung; IBE IE IB   IB2=IE.IC IB IC � �  BE � ) mà Xét IAE ICA có $ = sđ ( DB I chung; sđ IAE chaén cung BE) IBE∽ICB � � = sñ CE= � sñ ECA � �  BC � sđ IAE � = sđ (BC-BE) BDC cân B DB  IAE∽ICA IA IE  IA2=IE.IC Từ vàIA2=IB2 IA=IB IC IA Bài 52: Cho ABC (AB=AC); BC=6; Đường cao AH=4(cùng đơn vò độ dài), nội tiếp (O) đường kính AA’ Tính bán kính (O) Kẻ đường kính CC’ Tứ giác ACA’C’ hình gì? Kẻ AKCC’ C/m AKHC hình thang cân Quay ABC vòng quanh trục AH Tính diện tích xung quanh hình tạo A 1/Tính OA:ta có BC=6; đường cao AH=4  AB=5; ABA’ vuông BBH =AH.A’H C' K O BH A’H= = AH AA’=AH+HA’= H B C A' AO= 25 25 2/ACA’C’ hình gì? Hình Do O trung điểm 52 AA’ CC’ACA’C’ Hình bình hành Vì AA’=CC’(đường kính đường tròn)AC’A’C hình chữ nhật 3/ C/m: AKHC thang cân:  ta có AKC=AHC=1vAKHC nội tiếp.HKC=HAC(cùng chắn cung HC) mà OAC cân OOAC=OCAHKC=HCAHK//ACAKHC hình thang  Ta lại có:KAH=KCH (cùng chắn cung KH) KAO+OAC=KCH+OCAHình thang AKHC có hai góc đáy nhau.Vậy AKHC thang cân 4/ Khi Quay  ABC quanh trục AH hình sinh hình nón Trong BH bán kính đáy; AB đường sinh; AH đường cao hình nón 2 Sxq= p.d= 2.BH.AB=15 1 3 Bài 53:Cho(O) hai đường kính AB; CD vuông góc với Gọi I trung điểm OA Qua I vẽ dây MQOA (M cung AC ; Q AD) Đường thẳng vuông góc với MQ M cắt (O) P C/m: a/ PMIO thang vuông b/ P; Q; O thẳng hàng V= B.h= BH2.AH=12 Gọi S Giao điểm AP với CQ Tính Góc CSP Gọi H giao điểm AP với MQ Cmr: a/ MH.MQ= MP2 b/ MP tiếp tuyến đường tròn ngoại tiếp QHP 1/ a/ C/m MPOI thang vuông Vì OIMI; COIO(gt) CO//MI mà MPCO S MPMIMP//OIMPOI H thang vuông b/ C/m: P; Q; O thẳng A B I haøng: O Do MPOI laø thang J vuông IMP=1v hay QMP=1v QP đường kính (O) Q; O; P thẳng hàng Q D 2/ Tính góc CSP: Ta có Hình 53 sđ CSP= sđ(AQ+CP) 1 (góc có đỉnh sđ nằm CM=QD  CP=QD  sđ CSP= sđ(AQ+CP)= CSP= đường tròn) mà o cung sđ(AQ+QD) = sđAD=45o Vậy CSP=45 CP = CM C M P 3/ a/ Xét hai tam giác vuông: MPQ MHP có : Vì  AOM cân O; I trung điểm AO; MIAOMAO tam giác cân M AMO tam giác  cung AM=60o MC = CP =30o  cung MP = 60o  cung AM=MP  góc MPH= MQP (góc nt chắn hai cung nhau.) MHP∽MQP đpcm b/ C/m MP tiếp tuyến đường tròn ngoại tiếp  QHP Gọi J tâm đtròn ngoại tiếp QHP.Do cung AQ=MP=60o HQP cân H QHP=120oJ nằm đường thẳng HO HPJ tam giác mà HPM=30 oMPH+HPJ=MPJ=90o hay JPMP P nằm đường tròn ngoại tiếp HPQ đpcm Bài 54: Cho (O;R) cát tuyến d không qua tâm O.Từ điểm M d (O) ta kẻ hai tiếp tuyến MA MB với đườmg tròn; BO kéo dài cắt (O) điểm thứ hai C.Gọi H chân đường vuông góc hạ từ O xuống d.Đường thẳng vuông góc với BC O cắt AM taïi D C/m A; O; H; M; B nằm đường tròn C/m AC//MO MD=OD Đường thẳng OM cắt (O) E F Chứng tỏ MA2=ME.MF Xác đònh vò trí điểm M d để MAB tam giác đều.Tính diện tích phần tạo hai tt với đường tròn trường hợp B 1/Chứng minh OBM=OAM=OHM=1v 2/ C/m AC//OM: Do MA MB hai tt cắt BOM=OMB MA=MB MO đường trung trực ABMOAB Mà BAC=1v (góc nt chắn nửa đtròn CAAB Vậy AC//MO d E F O D C A H Hình 54 Do OD//MB (cùng CB)DOM=OMB(so le) mà OMB=OMD(cmt)DOM=DMODOM cân Dđpcm 3/C/m: MA2=ME.MF: Xét hai tam giác AEM MAF có góc M chung C/mMD=OD Sđ AFM= sđcungAE(góc nt chắn cungAE) EAM=A FM Sđ EAM= sd cungAE(góc tt dây) MAE∽MFAđpcm 4/Vì AMB tam giác đềugóc OMA=30oOM=2OA=2OB=2R Gọi diện tích cần tính S.Ta có S=S OAMB -Squạt AOB Ta có AB=AM= OM  OA =R S AMBO= BA.OM= R2  Squaït=   2R R = R 120 R R 3   R2 = S= R2 = 360 3 ÐÏ(&(ÐÏ Bài 55: Cho nửa (O) đường kính AB, vẽ tiếp tuyến Ax By phía với nửa đường tròn Gọi M điểm cung AB N điểm đoạn AO Đường thẳng vuông góc với MN M cắt Ax By D vaø C C/m AMN=BMC C/mANM=BMC DN cắt AM E CN cắt MB F.C/m FEAx Chứng tỏ M trung điểm DC x D y M C E F A N Hình 55 B O 1/C/m AMN=BMA Ta có AMB=1v(góc nt chắn nửa đtròn) NMDCNMC=1v vậy: AMB=AMN+NMB=NMB+BMC=1v AMN=BMA 2/C/m ANM=BCM: Do cung AM=MB=90o.dây AM=MB MAN=MBA=45o.(AMB vuông cân M)MAN=MBC=45o Theo c/mt CMB=AMN ANM=BCM(gcg) 3/C/m EFAx Do ADMN ntAMN=AND(cùng chắn cung AN) Do MNBC ntBMC=CNB(cùng chắn cung CB)  AND=CNB Mà AMN=BMC (chứng minh câu 1) Ta lại có AND+DNA=1vCNB+DNA=1v ENC=1v mà EMF=1v EMFN nội tiếp EMN= EFN(cùng chắn cung NE) EFN=FNB  EF//AB maø ABAx  EFAx 4/C/m M trung điểm DC: Ta có NCM=MBN=45o.(cùng chắn cung MN) NMC vuông cân M MN=NC Và NDC vuông cân NNDM=45o MND vuông cân M MD=MN MC= DM đpcm ÐÏ(&(ÐÏ Bài 56: Từ điểm M nằm (O) kẻ hai tiếp tuyến MA MB với đường tròn Trên cung nhỏ AB lấy điểm C kẻ CDAB; CEMA; CFMB Gọi I K giao điểm AC với DE BC với DF C/m AECD nt C/m:CD2=CE.CF Cmr: Tia đối tia CD phân giác goùc FCE C/m IK//AB A F K C x M D O I E B Hình 56 1/C/m: AECD nt: (dùng phương pháp tổng hai góc đối) 2/C/m: CD2=CE.CF Xét hai tam giác CDF CDE có: -Do AECD ntCED=CAD(cùng chắn cung CD) -Do BFCD ntCDF=CBF(cùng chắn cung CF) Và sđ CBF= sđ cung BC(góc tt dây)FDC=DEC Mà sđ CAD= sđ cung BC(góc nt chắn cung BC) Do AECD nt BFCD nt DCE+DAE=DCF+DBF=2v.Mà MBD=DAM(t/c hai tt cắt nhau)DCF=DCE.Từ và CDF∽CEDđpcm 3/Gọi tia đối tia CD Cx,Ta có góc xCF=180 o-FCD xCE=180o-ECD.Mà theo cmt có: FCD= ECD xCF= xCE.đpcm 4/C/m: IK//AB Ta có CBF=FDC=DAC(cmt) Do ADCE ntCDE=CAE(cùng chắn cung CE) ABC+CAE(góc nt góc tt… chắn cung)CBA=CDI.trong CBA có BCA+CBA+CAD=2v hay KCI+KDI=2vDKCI nội tiếp KDC=KIC (cùng chắn cung CK)KIC=BACKI//AB Bài 57: Cho (O; R) đường kính AB, Kẻ tiếp tuyến Ax Ax lấy điểm P cho P>R Từ P kẻ tiếp tuyến PM với đường tròn C/m BM/ / OP Đường vuông góc với AB O cắt tia BM N C/m OBPN hình bình hành AN cắt OP K; PM cắt ON I; PN OM kéo dài cắt J C/m I; J; K thẳng hàng N P J Q I K M A O B Hình 57 1/ C/m:BM//OP: Ta có MBAM (góc nt chắn nửa đtròn) OPAM (t/c hai tt cắt nhau)  MB//OP 2/ C/m: OBNP hình bình hành: Xét hai  APO OBN có A=O=1v; OA=OB(bán kính) NB//AP  POA=NBO (đồng vò)APO=ONB PO=BN Mà OP//NB (Cmt)  OBNP hình bình hành 3/ C/m:I; J; K thẳng hàng: Ta có: PMOJ PN//OB(do OBNP hbhành) mà ONABONOJI trực tâm OPJIJOP -Vì PNOA hình chữ nhật P; N; O; A; M nằm đường tròn tâm K, mà MN//OP MNOP thang cânNPO= � � MOP, ta lại có NOM = MPN (cùng chắn cung NM)  IPO= IOP IPO cân I Và KP=KOIKPO Vậy K; I; J thẳng hàng & Bài 58:Cho nửa đường tròn tâm O, đường kính AB; đường thẳng vuông góc với AB O cắt nửa đường tròn C Kẻ tiếp tuyến Bt với đường tròn AC cắt tiếp tuyến Bt I C/m ABI vuông cân Lấy D điểm cung BC, gọi J giao điểm AD với Bt C/m AC.AI=AD.AJ C/m JDCI nội tiếp Tiếp tuyến D nửa đường tròn cắt Bt K Hạ DHAB Cmr: AK qua trung điểm DH I Hình 58 1/C/m ABI vuông cân(Có nhiều cáchsau C/m cách): C -Ta có ACB=1v(góc nt J chắn nửa D đtròn)ABC vuông K C.Vì OCAB trung N điểm OAOC=COB=1v  cung AC=CB=90o A B O H CAB=45 o o (goùc nt ABC vuông cân C Mà BtAB có góc CAB=45  ABI vuông cân B 2/C/m: AC.AI=AD.AJ Xét hai ACD AIJ có góc A chung sđ góc CDA= sđ cung AC =45o Mà  ABI vuông cân BAIB=45 o.CDA=AIB ADC∽AIJđpcm 3/ Do CDA=CIJ (cmt) CDA+CDJ=2v CDJ+CIJ=2vCDJI nội tiếp 4/Gọi giao điểm AK DH N Ta phải C/m:NH=ND -Ta có:ADB=1v DK=KB(t/c hai tt cắt nhau) KDB=KBD.Mà KBD+DJK= 1v KDB+KDJ=1vKJD=JDKKDJ cân K KJ=KD KB=KJ -Do DH JBAB(gt)DH//JB p dụng hệ Ta lét tam giác AKJ AKB ta coù: DN AN NH AN DN NH    ;  maø JK=KBDN=NH JK AK KB AK JK KB ÐÏ(&(ÐÏ Bài 59: Cho (O) hai đường kính AB; CD vuông góc với Trên OC lấy điểm N; đường thẳng AN cắt đường tròn M Chứng minh: NMBO nội tiếp CD đường thẳng MB cắt E Chứng minh CM MD phân giác góc góc góc AMB C/m hệ thức: AM.DN=AC.DM Nếu ON=NM Chứng minh MOB tam giác E C M N A O B 1/C/m NMBO nội tiếp:Sử dụng tổng hai góc đối) 2/C/m CM MD phân giác góc góc góc AMB: -Do ABCD trung điểm O AB CD.Cung AD=DB=CB=AC=90 o sđ D Hình 59 sđcungAD=45o AMD= 2 sđ DMB= sđcung DB=45o.AMD=DMB=45o.Tương tự CAM=45o EMC=CMA=45o.Vậy CM MD phân giác góc góc góc AMB 3/C/m: AM.DN=AC.DM Xét hai tam giác ACM NMD có CMA=NMD=45 o.(cmt) Và CAM=NDM(cùng chắn cung CM)AMC∽DMNđpcm 4/Khi ON=NM ta c/m MOB tam giác Do MN=ONNMO vcân NNMO=NOM.Ta lại có: NMO+OMB=1v NOM+MOB=1vOMB=MOB.Mà OMB=OBM OMB=MOB=OBMMOB tam giác ÐÏ(&(ÐÏ Bài 60: Cho (O) đường kính AB, d tiếp tuyến đường tròn C Gọi D; E theo thứ tự hình chiếu A B lên đường thẳng d C/m: CD=CE Cmr: AD+BE=AB Bài 87: ChoABC có góc nhọn.Vẽ đường tròn tâm O đường kính BC.(O) cắt AB;AC D E.BE CD cắt H Chứng minh:ADHE nội tiếp C/m:AE.AC=AB.AD AH kéo dài cắt BC F.Cmr:H tâm đường tròn nội tiếp DFE Gọi I trung điểm AH.Cmr IE tiếp tuyến (O) A I E D x Hình 87 H B F O C 1/Cm:ADHE nội tiếp: Ta có BDC=BEC=1v(góc nt chắn nửa đường tròn) ADH+AEH=2vADHE nt 2/C/m:AE.AC=AB.AD Ta chứng minh AEB ADC đồng dạng 3/C/m H tâm đường tròn ngoại tiếp tam giác DEF: Ta phải c/m H giao điểm đường phân giác tam giác DEF -Tứ giác BDHF ntHED=HBD(cùng chắn cung DH).Mà EBD=ECD (cùng chắn cung DE).Tứ gáic HECF ntECH=EFH(cùng chắn cung HE) EFH=HFDFH phân giác DEF -Tứ gáic BDHF ntFDH=HBF(cùng chắn cung HF).Mà EBC=CDE(cùng chắn cung EC)EDC=CDFDH phân giác góc FDEH là… 4/ C/m IE tiếp tuyến (O):Ta có IA=IHIA=IE=IH= AH (tính chất trung tuyến tam giác vuông)IAE cân IIEA=IAE.Mà IAE=EBC (cùng phụ với góc ECB) AEI=xEC(đối đỉnh)Do OEC cân O OEC=OCE xEC+CEO =EBC +ECB=1v Hay xEO=1v Vậy OEIE điểm E nằm đường tròn (O)đpcm ÐÏ(&(ÐÏ Bài 88: Cho(O;R) (O’;r) cắt Avà B.Qua B vẽ cát tuyến chung CBDAB (C(O)) cát tuyến EBF bất kỳ(E(O)) Chứng minh AOC AO’D thẳng hàng Gọi K giao điểm đường thẳng CE DF.Cmr:AEKF nt Cm:K thuộc đường tròn ngoại tiếp ACD Chứng tỏ FA.EC=FD.EA A E  O C  O’ Hình 88 B F D K 1/C/m AOC AO’D thẳng hàng: -Vì ABCD Góc ABC=1vAC đường kính (O)A;O;C thẳng hàng.Tương tự AO’D thẳng hàng 2/C/m AEKF nt: Ta có AEC=1v(góc nt chắn nửa đường tròn tâm O.Tương tự AFD=1v hay AFK=1v AEK+AFK=2vđpcm 3/Cm: K thuộc đường tròn ngoại tếp ACD Ta có EAC=EBC(cùng chắn cung EC).Góc EBC=FBD(đối đỉnh).Góc FBD=FAD(cùng chắn cung FD).Mà EAC+ECA=90 o ADF=ACE ACE+ACK=2vADF+ACK=2vK nằm đường tròn ngoại tiếp … 4/C/m FA.EC=FD.EA Ta chứng minh hai tam giác vuông FAD EAC đồng dạng EAC=EBC(cùng hcắn cung EC)EBC=FBD(đối đỉnh) FBD=FAD(cùng chắn cung FD)EAC=FADđpcm ÐÏ(&(ÐÏ Bài 89: Cho ABC có A=1v.Qua A dựng đường tròn tâm O bán kính R tiếp xúc với BC B dựng (O’;r) tiếp xúc với BC C.Gọi M;N trung điểm AB;AC,OM ON kéo dài cắt K Chứng minh:OAO’ thẳng hàng CM:AMKN nội tiếp Cm AK tiếp tuyến hai đường tròn K nằm BC Chứng tỏ 4MI2=Rr Hình 89 O’ A O M B I N K C 1/C/m AOO’ thẳng hàng: -Vì M trung điểm dây ABOMAB nên OM phân giác góc AOB hay BOM=MOA Xét hai tam giác BKO AKO có OA=OB=R; OK chung BOK=AOK (cmt) KBO=KAO  góc OBK=OAK mà OBK=1v OAK=1v Chứng minh tương tự ta có O’AK=1v Nên OAK+O’AK=2v đpcm 2/Cm:AMKN nội tiếp:Ta có Vì AMK=1v(do OMA=1v) ANK=1v AMK+ANK=2v đpcm Cần lưu ý AMKN hình chữ nhật 3/C/m AK tiếp tuyến (O) O’) -Theo chứng minh Góc OAK=1v hay OAAK điểm A nằm đường tròn (O)đpcm.Chứng minh tương tự ta có AK tt (O’) -C/m K nằm BC: Theo tính chất hai tt cắt ta có:BKO=OKA AKO’=O’KC Nhưng AMKN hình chữ nhậtMKN=1v hay OKA+O’KA=1v tức có nghóa góc BKO+O’KC=1v BKO+OKA+AKO’+O’KC=2vK;B;C thẳng hàng đpcm 4/ C/m: 4MI2=Rr Vì OKO’ vuông K có đường cao KA.p dụng hệ thue=ức lượng tam giác vuông có AK2=OA.O’A.Vì MN=AK MI=IN hay MI= AKđpcm ÐÏ(&(ÐÏ Bài 90: Cho tứ giác ABCD (AB>BC) nội tiếp (O) đường kính AC; Hai đường chéo AC DB vuông góc với Đường thẳng AB CD kéo dài cắt E; BC AD cắt F Cm:BDEF nội tiếp Chứng tỏ:DA.DF=DC.DE Gọi I giao điểm DB với AC M giao điểm đường thẳng AC với đường tròn ngoại tiếp AEF Cmr: DIMF nội tiếp Gọi H giao điểm AC với FE Cm: AI.AM=AC.AH E Hình 90 B A O I C H M D F 1/ Cm:DBEF nt: Do ABCD nt (O) đường kính ACABC=ADC=1v (góc nt chắn nửa đường tròn) FBE=EDF=1vđpcm 2/ C/m DA.DF=DC.DE: Xét hai tam giác vuông DAC DEF có: Do BFAE EDAF nên C trực tâm AEFGóc CAD=DEF(cùng phụ với góc DFE)đpcm 3/ Cm:DIMF nt: Vì ACBD(gt) DIM=1v I trung điểm DB(đường kính vuông góc với dây DB)ADB cân A AEF cân A (Tự c/m yếu tố này)Đường tròn ngoại tiếp AEF có tâm nằm đường AM góc AFM=1v(góc nt chắn nửa đường tròn)DIM+DFM=2vđpcm 4/ Bài 91: Cho (O) (O’) tiếp xúc A.Đường thẳng OO’ cắt (O) (O’) B C (khác A) Kẻ tiếp tuyến chung DE(D(O)); DB CE kéo dài cắt M Cmr: ADEM nội tiếp Cm: MA tiếp tuyến chung hai đường tròn ADEM hình gì? Chứng tỏ:MD.MB=ME.MC 1/Cm:ADEM nt: Vì AEC=1v ADB=1v(góc nt chắn nửa đtròn) ADM+AEM=2vđpcm B O A O’ 2/C/m C MA tiếp tuyến hai đường tròn; E -Ta có sđADE= sđ D cungAD=sđ DBA.Và ADE=AME(vì M Hình chắn cung AE tứ 91 giác ADME Tương tự ta có AMB=ACMHai tam giác ABM ACM nt)ABM=AMC có hai cặp góc tương ứng nhauCặp góc cònlại nhau.Hay BAM=MAC.Ta lại có BAM+MAC=2vBAM=MAC=1v hay OAAM điểm A nằm đtròn… 3/ADEM hình gì? Vì BAM=1vABM+AMB=1v.Ta có MA tt đtrònDAM=MBA (cùng nửa cung AD).Tương tự MAE=MCA.Mà theo cmt ta có ACM=AMB Nên DAM+MAE=ABM+ACM=ABM+AMB=1v.Vậy DAE=1v nên ADEM hình chữ nhật 4/Cm: MD.MB=ME.MC Tam giác MAC vuông A có đường cao AE.p dụng hệ thức lượng tam giác vuông ta có:MA 2=ME.MC.Tương tự tam giác vuông MAB có MA2=MD.MBđpcm ÐÏ(&(ÐÏ Bài 92: Cho hình vuông ABCD.Trên BC lấy điểm M Từ C hạ CK với đường thẳng AM Cm: ABKC nội tiếp Đường thẳng CK cắt đường thẳng AB N.Từ B dựng đường vuông góc với BD, đường cắt đường thẳng DK E Cmr: BD.KN=BE.KA Cm: MN//DB Cm: BMEN hình vuông A Hình 92 B N M D K E C 1/Cm: ABKC nội tiếp: Ta có ABC=1v (t/c hình vuông); AKC=1v(gt)  đpcm 2/Cm: BD.KN=BE.KA.Xét hai tam giác vuông BDE KAN có: Vì ABCD hình vuông nên nội tiếp đường tròn có tâm giao điểm hai đường chéo.Góc AKC=1vA;K;C nằm đtròn đường kính AC.Vậy điểm A;B;C;D;K nằm đường tròn.Góc BDK=KDN (cùng chắn cung BK)BDE~KAN BD BE  đpcm KA KN 3/ Cm:MN//DB.Vì AKCN CBAN ;AK cắt BC MM trực tâm tam giác ANCNMAC.Mà DBAC(tính chất hình vuông)MN//DB 4/Cm:BNEM hình vuông: Vì MN//DBDBM=BMN(so le) mà DBM=45oBMN =45oBNM tam giác vuông cânBN=BM.Do BEDB(gt)và o o BDM=45 MBE=45 MBE tam giác vuông cân BM phân giác tam giác MBN;Ta dễ dàng c/m MN phân giác góc BMNBMEN hình thoi lại có goác B vuông nên BMEN hình vuông ÐÏ(&(ÐÏ Bài 93: Cho hình chữ nhật ABCD(AB>AD)có AC cắt DB O Gọi M điểm OB N điểm đối xứng với C qua M Kẻ NE; NF NP vuông góc với AB; AD; AC; PN cắt AB Q Cm: QPCB nội tiếp Cm: AN//DB Chứng tỏ F; E; M thẳng hàng Cm: PEN tam giác cân F A P I Q N E B O M D C 1/C/m QPCB nội tiếp:Ta có:NPC=1v(gt) QBC=1v(tính chất hình chữ nhật).đpcm 2/Cm:AN//DB O giao điểm hai đường chéo hình chữ nhậtO trung điểm AC.Vì C N đối xứng với qua MM trung điểm NC OM đường trung bình ANCOM//AN hay AN//DB 3/Cm:F;E;M thẳng hàng Gọi I giao điểm EF AN.Dễ dàng chứng minh AFNE hình chữ nhậtAIE OAB tam gíc cânIAE=IEA ABO=BAO.Vì AN//DB IAE=ABO(so le)IEA=EACEF//AC hay IE//AC Vì I trung điểm AN;M trung điểm NCIM đường trung bình ANCMI//AC .Từ và Ta có I;E;M thẳng hàng.Mà F;I;E thẳng hàng F;F;M thẳng hàng 4/C/mPEN cân:Dễ dàng c/m ANEP nội tiếpPNE=EAP(cùng chắn cung PE).Và PNE=EAN(cùng chắn cung EN).Theo chứng minh câu ta suy NAE=EAPENP=EPNPEN cân E ÐÏ(&(ÐÏ Bài 94: Từ đỉnh A hình vuông ABCD,ta kẻ hai tia tạo với góc 45o Một tia cắt cạnh BC E cắt đường chéo DB P Tia cắt cạnh CD F cắt đường chéo DB Q Cm:E; P; Q; F; C nằm đường tròn Cm:AB.PE=EB.PF Cm:SAEF=2SAPQ Gọi M trung điểm AE.Cmr: MC=MD A B M P E Q D F C 1/Cm:E;P;Q;C;F cuøng nằm đường tròn: Ta có QAE=45o.(gt) QBC=45o(t/c hình vuông)ABEQ nội tiếp ABE+AQE=2v mà ABE=1vAQE=1v.Ta có AQE vuông Q có góc QAE=45oAQE vuông cânAEQ=45o.Ta lại có EAF=45o(gt) PDF=45o APFD nội tiếpAPF+ADF=2v mà ADF=1vAPF=1v ECF=1v  Từ E;P;Q;F;C nằm đường tròn đường kính EF 2/Chứng minh: AB.PE=EB.PF.Xét hai tam giác vuông ABE có: -Vì ABEQ ntBAE=BQE(Cùng chắn cung BE) BAE=PFE -Vì QPEF ntPQE=PEF(Cùng chắn cung PE) đpcm 3/Cm: :SAEF=2SAPQ Theo cm AQE vuông cân QAE= AQ  QE = AQ Vì QPEF nt PEF=AQP(cùng phụ với góc PQF);Góc QAP chung S & AE & & = AQP~AEF AEF && S AQP & AQ &&   =2đpcm 4/Cm: MC=MD.Học sinh chứng minh hai MAD=MBC có BC=AD; MBE=MEB=DAE;AM=BM Bài 95: Cho hình chữ nhật ABCD có hai đường chéo cắt O.Kẻ AH BK vuông góc với BD AC.Đường thẳng AH BK cắt I.Gọi E F trung điểm DH BC.Từ E dụng đường thẳng song song với AD.Đường cắt AH J C/m:OHIK nội tiếp Chứng tỏ KHOI Từ E kẻ đườngthẳng song song với AD.Đường cắt AH J.Chứng tỏ:HJ.KC=HE.KB Chứng minh tứ giác ABFE nội tiếp đường tròn A B 1/Cm:OHIK nt (Hs tự chứng J O minh) 2/CmF HKOI H K Tam giác ABI E cóC hai D đường cao DH AK cắt O OI đường cao thứ ba I OIAB Ta có OKIH ntOKE=OIE(cùng chắn cung OH).Vì OIAB ADAB OI//ADOIH=HAD(so le).Mà HAD=HBA(cùng phụ với góc D).Do ABCD hình chữ nhật nên ABH+ACE OKH=OCEHK//AB.Mà OIAB OIKH 3/Cm: HJ.KC=HE.KB Chứng minh hai tam giác vuông HJE KBC đồng dạng 4/Chứng minh ABFE nội tiếp: VìAHBE;EJ//AD ADABEJABBJ đường cao thứ ba tam giác ABEBJAE Vì E trung điểm DH;EJ//ADEJ 2 đường trung bình tam giác ADHEJ//= AB;BF= BC mà BC//=ADJE//=BFBJEF hình bình hànhJB//EF.Mà BJAEEFAE hay AEF=1v;Ta lại có ABF=1vABFE nt ÐÏ(&(ÐÏ Bài 96: Cho ABC, phân giác góc góc góc B C gặp theo thứ tự I J.Từ J kẻ JH; JP; JK vuông góc với đường thẳng AB; BC; AC Chứng tỏ A; I; J thẳng hàng Chứng minh: BICJ nt BI kéo dài cắt đường thẳng CJ E Cmr:AEAJ C/m: AI.AJ=AB.AC A E I B P C K H 1/Chứng minh A;I;J thẳng J hàng: Vì Bài 97: Từ đỉnh A hình vuông ABCD ta kẻ hai tia Ax Ay cho: Ax cắt cạnh BC P,Ay cắt cạnh CD Q.Kẻ BKAx;BIAy DMAx,DNAy Chứng tỏ BKIA nội tiếp Chứng minh AD2=AP.MD Chứng minh MN=KI Chứng tỏ KIAN x B P C K y N M A Q I D Bài 98: Cho hình bình hành ABCD có góc A>90 o.Phân giác góc A cắt cạnh CD đường thẳng BC I K.Hạ KH KM vuông góc với CD AM Chứng minh KHDM nt Chứng minh:AB=CK+AM Bài 99: Cho(O) tiếp tuyến Ax.Trên Ax lấy điểm C gọi B trung điểm AC Vẽ cát tuyến BEF.Đường thẳng CE CF gặp lại đường tròn điểm thứ hai M N.Dựng hình bình hành AECD Chứng tỏ D nằm đường thẳng EF Chứng minh AFCD nội tiếp Chứng minh:CN.CF=4BE.BF Chứng minh MN//AC A M B D E C N F 1/Chứng minh D nằm đường thẳng EF:Do ADCE hình bình hành nên E;B;D thẳng hàng.Mà F;E;B thẳng hàngđpcm 2/Cm:AFCD nội tiếp: -Do ADCE hình bình hànhBC//AEgóc BCA=ACE(so le) -sđCAE= sđcung AE(góc tt dây) sđ AFE= sđ cung AE CAE=AFE.BCN=BFAAFCD nội tiếp 2/Cm CN.CF=4BE.BF -Xét hai tam gáic BAE BFA có góc ABF chung AFB=BAE(chứng minh trên)BAE~BFA AB2=BE.BF Tương tự hai tam giác CAN CFA đồng AB BE  BF AB dạngAC2=CN.CF.Nhưng ta lại có AB= AC.Do đó trở thành: AC2=BE.BF hay AC2=4BE.BF Từ  đpcm 4/cm MN//AC Do ADCE hbhBAC=ACE(so le).Vì ADCF nt DAC=DFC(cùng chắn cung DC).Ta lại có EMN=EFN(cùng chắn cung EN)ACM=CMNMN//AC ÐÏ(&(ÐÏ Bài 100: Trên (O) lấy điểm A;B;C.Gọi M;N;P theo thứ tự điểm cung AB;BC;AC AM cắt MP BP K I.MN cắt AB E Chứng minh BNI cân PKEN nội tiếp Chứng minh AN.BD=AB.BN Chứng minh I trực tâm MPN IE//BC 1/C/m BNI cân Ta có A sđBIN= sñ(AP+BN) P M F K sñIBN= sñ(CP+CN) O Maø Cung AP=CP; E I BN=CN(gt) B C BIN=IBNBNI cân N 2/Chứng tỏ PKEN N nội tiếp: điểm P;N làm Vì cung AM=MBANM=MPB hay KPE=KNEHai với hai đầu đoạn thẳng KE…đpcm 3/C/m AN.DB=AB.BN Xét hai tam giác BND ANB có góc N chung;Góc NBD=NAB(cùng chắn cung NC=NB)đpcm 4/ Chứng minh I trực tâm MNP: Gọi giao điểm MP với AB;AC F D.Ta có: sđ AFD= sđ cung (AP+MB)(góc có đỉnh đường tròn.) sđ ADF= sđ cung(PC+AM) (góc có đỉnh đường tròn.) Mà Cung AP=PC;MB=AMAFD=ADFAFD cân A có AN phân giác góc BAC(Vì Cung BN=NC nên BAN=NAC)ANMP hay NA đường cao NMP.Bằng cách làm tương tự ta chứng minh I trực tâm tam gáic MNP C/m IE//BC.Ta có BNI cân N có NE phân giác NE đường trung trực BIEB=EIBEI cân E.Ta có EBI=EIB.Do EBI=ABP=PBC (hai góc nội tiếp chắn hai cung PA=PC).Nên PBC=EIBEI//BC & ÐÏ( (ÐÏ Heát ... MP2 b/ MP tiếp tuyến đường tròn ngoại tiếp QHP 1/ a/ C/m MPOI thang vuông Vì OIMI; CO IO(gt) CO/ /MI mà MP CO S MPMIMP//OIMPOI H thang vuông b/ C/m: P; Q; O thẳng A B I hàng: O Do MPOI thang... kính) NB//AP  POA=NBO (đồng vò)APO=ONB PO=BN Mà OP//NB (Cmt)  OBNP hình bình hành 3/ C/m:I; J; K thẳng hàng: Ta có: PMOJ PN//OB(do OBNP hbhành) mà ON AB ON OJI trực tâm OPJIJOP -Vì PNOA... B vuông N 2/C/m:CMPO hình bình hành: Ta có: P CDAB;MPAB CO/ / y MP. Hình 67 Do OPNM nội tiếpOPM=ONM(cùng chắn cung OM) OCN cân O ONM=OCMOCM=OPM Gọi giao điểm MP với (O) K.Ta có PMN=KMC(đ

Ngày đăng: 06/11/2019, 08:01

TỪ KHÓA LIÊN QUAN

w