1. Trang chủ
  2. » Trung học cơ sở - phổ thông

50 bai hinh on vao 10 co loi giai

41 662 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 1,64 MB

Nội dung

Onthi.net 50 toán hình học lớp Bài Cho tam giác ABC có ba góc nhọn nội tiếp đờng tròn (O) Các đờng cao AD, BE, CF cắt H cắt đờng tròn (O) lần lợt M,N,P Chứng minh rằng: Tứ giác CEHD, nội tiếp Bốn điểm B,C,E,F nằm đờng tròn AE.AC = AH.AD; AD.BC = BE.AC H M đối xứng qua BC Xác định tâm đờng tròn nội tiếp tam giác DEF Lời giải: Xét tứ giác CEHD ta có: CEH = 900 ( Vì BE đờng cao) CDH = 900 ( Vì AD đờng cao) => CEH + CDH = 1800 Mà CEH CDH hai góc đối tứ giác CEHD , Do CEHD tứ giác nội tiếp Theo giả thiết: BE đờng cao => BE AC => BEC = 900 CF đờng cao => CF AB => BFC = 900 Nh E F nhìn BC dới góc 900 => E F nằm đờng tròn đờng kính BC Vậy bốn điểm B,C,E,F nằm đờng tròn Xét hai tam giác AEH ADC ta có: AEH = ADC = 900 ; Â góc chung => AEH ADC => AE AH = => AE.AC = AH.AD AD AC * Xét hai tam giác BEC ADC ta có: BEC = ADC = 900 ; C góc chung => BEC ADC => BE BC = => AD.BC = BE.AC AD AC Ta có C1 = A1 ( phụ với góc ABC) C2 = A1 ( hai góc nội tiếp chắn cung BM) => C1 = C2 => CB tia phân giác góc HCM; lại có CB HM => CHM cân C => CB đơng trung trực HM H M đối xứng qua BC Theo chứng minh bốn điểm B,C,E,F nằm đờng tròn => C1 = E1 ( hai góc nội tiếp chắn cung BF) Cũng theo chứng minh CEHD tứ giác nội tiếp C1 = E2 ( hai góc nội tiếp chắn cung HD) E1 = E2 => EB tia phân giác góc FED Chứng minh tơng tự ta có FC tia phân giác góc DFE mà BE CF cắt H H tâm đờng tròn nội tiếp tam giác DEF Bài Cho tam giác cân ABC (AB = AC), đờng cao AD, BE, cắt H Gọi O tâm đờng tròn ngoại tiếp tam giác AHE Chứng minh tứ giác CEHD nội tiếp Chứng minh ED = BC Bốn điểm A, E, D, B nằm đờng tròn Chứng minh DE tiếp tuyến đờng tròn (O) Onthi.net Tính độ dài DE biết DH = Cm, AH = Cm Lời giải: Xét tứ giác CEHD ta có: CEH = 900 ( Vì BE đờng cao) CDH = 900 ( Vì AD đờng cao) => CEH + CDH = 1800 Mà CEH CDH hai góc đối tứ giác CEHD , Do CEHD tứ giác nội tiếp Theo giả thiết: BE đờng cao => BE AC => BEA = 900 AD đờng cao => AD BC => BDA = 900 Nh E D nhìn AB dới góc 900 => E D nằm đờng tròn đờng kính AB Vậy bốn điểm A, E, D, B nằm đờng tròn Theo giả thiết tam giác ABC cân A có AD đờng cao nên đờng trung tuyến => D trung điểm BC Theo ta có BEC = 900 Vậy tam giác BEC vuông E có ED trung tuyến => DE = BC Vì O tâm đờng tròn ngoại tiếp tam giác AHE nên O trung điểm AH => OA = OE => tam giác AOE cân O => E1 = A1 (1) Theo DE = BC => tam giác DBE cân D => E3 = B1 (2) Mà B1 = A1 ( phụ với góc ACB) => E1 = E3 => E1 + E2 = E2 + E3 Mà E1 + E2 = BEA = 900 => E2 + E3 = 900 = OED => DE OE E Vậy DE tiếp tuyến đờng tròn (O) E Theo giả thiết AH = Cm => OH = OE = cm.; DH = Cm => OD = cm áp dụng định lí Pitago cho tam giác OED vuông E ta có ED2 = OD2 OE2 ED2 = 52 32 ED = 4cm Bài Cho nửa đờng tròn đờng kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Qua điểm M thuộc nửa đờng tròn kẻ tiếp tuyến thứ ba cắt tiếp tuyến Ax , By lần lợt C D Các đờng thẳng AD BC cắt N Chứng minh AC + BD = CD Chứng minh AB tiếp tuyến đờng tròn đờng kính CD Chứng minh COD = 90 Chứng minh MN AB Chứng minh AC BD = AB Xác định vị trí M để chu vi tứ giác ACDB đạt Chứng minh OC // BM giá trị nhỏ Lời giải: Onthi.net Theo tính chất hai tiếp tuyến cắt ta có: CA = CM; DB = DM => AC + BD = CM + DM Mà CM + DM = CD => AC + BD = CD Theo tính chất hai tiếp tuyến cắt ta có: OC tia phân giác góc AOM; OD tia phân giác góc BOM, mà AOM BOM hai góc kề bù => COD = 900 Theo COD = 900 nên tam giác COD vuông O có OM CD ( OM tiếp tuyến ) áp dụng hệ thức cạnh đờng cao tam giác vuông ta có OM2 = CM DM, Mà OM = R; CA = CM; DB = DM => AC BD =R2 => AC BD = AB 4 Theo COD = 90 nên OC OD (1) Theo tính chất hai tiếp tuyến cắt ta có: DB = DM; lại có OM = OB =R => OD trung trực BM => BM OD (2) Từ (1) Và (2) => OC // BM ( Vì vuông góc với OD) Gọi I trung điểm CD ta có I tâm đờng tròn ngoại tiếp tam giác COD đờng kính CD có IO bán kính Theo tính chất tiếp tuyến ta có AC AB; BD AB => AC // BD => tứ giác ACDB hình thang Lại có I trung điểm CD; O trung điểm AB => IO đờng trung bình hình thang ACDB => IO // AC , mà AC AB => IO AB O => AB tiếp tuyến O đờng tròn đờng kính CD Theo AC // BD => CN AC CN CM , mà CA = CM; DB = DM nên suy = = BN BD BN DM => MN // BD mà BD AB => MN AB ( HD): Ta có chu vi tứ giác ACDB = AB + AC + CD + BD mà AC + BD = CD nên suy chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ CD nhỏ , mà CD nhỏ CD khoảng cách giữ Ax By tức CD vuông góc với Ax By Khi CD // AB => M phải trung điểm cung AB Bài Cho tam giác cân ABC (AB = AC), I tâm đờng tròn nội tiếp, K tâm đờng tròn bàng tiếp góc A , O trung điểm IK Tơng tự ta Chứng minh B, C, I, K nằm đờng tròn có ICK = 900 nh B Chứng minh AC tiếp tuyến đờng tròn (O) C nằm đ3 Tính bán kính đờng tròn (O) Biết AB = AC = 20 Cm, BC = ờng tròn đờng kính IK 24 Cm B, C, I, K Lời giải: (HD) nằm đờng tròn Vì I tâm đờng tròn nội tiếp, K tâm đờng tròn bàng Ta có C1 = tiếp góc A nên BI BK hai tia phân giác hai góc kề bù đỉnh B C2 (1) ( CI phân giác Do BI BK hayIBK = 90 góc ACH Onthi.net C2 + I1 = 900 (2) ( IHC = 900 ) I1 = ICO (3) ( tam giác OIC cân O) Từ (1), (2) , (3) => C1 + ICO = 900 hay AC OC Vậy AC tiếp tuyến đờng tròn (O) Từ giả thiết AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm AH2 = AC2 HC2 => AH = 20 12 = 16 ( cm) 2 CH2 = AH.OH => OH = CH = 12 = (cm) AH 16 OC = OH + HC = + 12 = 225 = 15 (cm) Bài Cho đờng tròn (O; R), từ điểm A (O) kẻ tiếp tuyến d với (O) Trên đờng thẳng d lấy điểm M ( M khác A) kẻ cát tuyến MNP gọi K trung điểm NP, kẻ tiếp tuyến MB (B tiếp điểm) Kẻ AC MB, BD MA, gọi H giao điểm AC BD, I giao điểm OM AB Chứng minh tứ giác AMBO nội tiếp (HS tự làm) Chứng minh năm điểm O, K, A, M, B nằm Vì K trung điểm NP đờng tròn nên OK NP ( quan hệ Chứng minh OI.OM = R2; OI IM = IA2 đờng kính Chứng minh OAHB hình thoi Chứng minh ba điểm O, H, M thẳng hàng Tìm quỹ tích điểm H M di chuyển đờng thẳng d Lời giải: Onthi.net Và dây cung) => OKM = 900 Theo tính chất tiếp tuyến ta có OAM = 900; OBM = 900 nh K, A, B nhìn OM dới góc 900 nên nằm đờng tròn đờng kính OM Vậy năm điểm O, K, A, M, B nằm đờng tròn Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R => OM trung trực AB => OM AB I Theo tính chất tiếp tuyến ta có OAM = 900 nên tam giác OAM vuông A có AI đờng cao áp dụng hệ thức cạnh đờng cao => OI.OM = OA2 hay OI.OM = R2; OI IM = IA Ta có OB MB (tính chất tiếp tuyến) ; AC MB (gt) => OB // AC hay OB // AH OA MA (tính chất tiếp tuyến) ; BD MA (gt) => OA // BD hay OA // BH => Tứ giác OAHB hình bình hành; lại có OA = OB (=R) => OAHB hình thoi Theo OAHB hình thoi => OH AB; theo OM AB => O, H, M thẳng hàng( Vì qua O có đờng thẳng vuông góc với AB) (HD) Theo OAHB hình thoi => AH = AO = R Vậy M di động d H di động nhng cách A cố định khoảng R Do quỹ tích điểm H M di chuyển đờng thẳng d nửa đờng tròn tâm A bán kính AH = R Bài Cho tam giác ABC vuông A, đờng cao AH Vẽ đờng tròn tâm A bán kính AH Gọi HD đờng kính đờng tròn (A; AH) Tiếp tuyến đờng tròn D cắt CA E Chứng minh tam giác BEC cân Gọi I hình chiếu A BE, Chứng minh AI = AH Chứng minh BE tiếp tuyến đờng tròn (A; AH) Chứng minh BE = BH + DE Lời giải: (HD) AHC = ADE (g.c.g) => ED = HC (1) AE = AC (2) Vì AB CE (gt), AB vừa đờng cao vừa đờng trung tuyến BEC => BEC tam giác cân => B1 = B2 Onthi.net Hai tam giác vuông ABI ABH có cạnh huyền AB chung, B1 = B2 => AHB = AIB => AI = AH AI = AH BE AI I => BE tiếp tuyến (A; AH) I DE = IE BI = BH => BE = BI+IE = BH + ED Bài Cho đờng tròn (O; R) đờng kính AB Kẻ tiếp tuyến Ax lấy tiếp tuyến điểm P cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) M Từ (1) (2) => ABM = Chứng minh tứ giác APMO nội tiếp đợc đ AOP (3) ờng tròn Chứng minh BM // OP Đờng thẳng vuông góc với AB O cắt tia BM N Chứng minh tứ giác OBNP hình bình hành Biết AN cắt OP K, PM cắt ON I; PN OM kéo dài cắt J Chứng minh I, J, K thẳng hàng Lời giải: (HS tự làm) Ta có ABM nội tiếp chắn cung AM; AOM góc tâm AOM (1) OP tia phân giác AOM AOM ( t/c hai tiếp tuyến cắt ) => AOP = chắn cung AM => ABM = (2) Mà ABM AOP hai góc đồng vị nên suy BM // OP (4) Xét hai tam giác AOP OBN ta có : PAO=900 (vì PA tiếp tuyến ); NOB = 900 (gt NOAB) Onthi.net => PAO = NOB = 900; OA = OB = R; AOP = OBN (theo (3)) => AOP = OBN => OP = BN (5) Từ (4) (5) => OBNP hình bình hành ( có hai cạnh đối song song nhau) Tứ giác OBNP hình bình hành => PN // OB hay PJ // AB, mà ON AB => ON PJ Ta có PM OJ ( PM tiếp tuyến ), mà ON PM cắt I nên I trực tâm tam giác POJ (6) Dễ thấy tứ giác AONP hình chữ nhật có PAO = AON = ONP = 900 => K trung điểm PO ( t/c đờng chéo hình chữ nhật) (6) AONP hình chữ nhật => APO = NOP ( so le) (7) Theo t/c hai tiếp tuyến cắt Ta có PO tia phân giác APM => APO = MPO (8) Từ (7) (8) => IPO cân I có IK trung tuyến đông thời đờng cao => IK PO (9) Từ (6) (9) => I, J, K thẳng hàng Bài Cho nửa đờng tròn tâm O đờng kính AB điểm M nửa đờng tròn ( M khác A,B) Trên nửa mặt phẳng bờ AB chứa nửa đờng tròn kẻ tiếp tuyến Ax Tia BM cắt Ax I; tia phân giác góc IAM cắt nửa đờng tròn E; cắt tia BM F tia BE cắt Ax H, cắt AM K 1) Chứng minh rằng: EFMK tứ giác nội tiếp 2) Chứng minh rằng: AI2 = IM IB 3) Chứng minh BAF tam giác cân 4) Chứng minh : Tứ giác AKFH hình thoi 5) Xác định vị trí M để tứ giác AKFI nội tiếp đợc đờng tròn Lời giải: Ta có : AMB = 900 ( nội tiếp chắn nửa đờng tròn ) => KMF = 900 (vì hai góc kề bù) AEB = 900 ( nội tiếp chắn nửa đờng tròn ) => KEF = 900 (vì hai góc kề bù) => KMF + KEF = 1800 Mà KMF KEF hai góc đối tứ giác EFMK EFMK tứ giác nội tiếp Ta có IAB = 900 ( AI tiếp tuyến ) => AIB vuông A có AM IB ( theo trên) áp dụng hệ thức cạnh đờng cao => AI2 = IM IB Theo giả thiết AE tia phân giác góc IAM => IAE = MAE => AE = ME (lí => ABE =MBE ( hai góc nội tiếp chắn hai cung nhau) => BE tia phân giác góc ABF (1) Theo ta có AEB = 900 => BE AF hay BE đờng cao tam giác ABF (2) Từ (1) (2) => BAF tam giác cân B BAF tam giác cân B có BE đờng cao nên đồng thời đơng trung tuyến => E trung điểm AF (3) Từ BE AF => AF HK (4), theo AE tia phân giác góc IAM hay AE tia phân giác HAK (5) Onthi.net Từ (4) (5) => HAK tam giác cân A có AE đờng cao nên đồng thời đơng trung tuyến => E trung điểm HK (6) Từ (3) , (4) (6) => AKFH hình thoi ( có hai đờng chéo vuông góc với trung điểm đờng) (HD) Theo AKFH hình thoi => HA // FH hay IA // FK => tứ giác AKFI hình thang Để tứ giác AKFI nội tiếp đợc đờng tròn AKFI phải hình thang cân AKFI hình thang cân M trung điểm cung AB Thật vậy: M trung điểm cung AB => ABM = MAI = 450 (t/c góc nội tiếp ) (7) Tam giác ABI vuông A có ABI = 450 => AIB = 450 (8) Từ (7) (8) => IAK = AIF = 450 => AKFI hình thang cân (hình thang có hai góc đáy nhau) Vậy M trung điểm cung AB tứ giác AKFI nội tiếp đợc đờng tròn Bài Cho nửa đờng tròn (O; R) đờng kính AB Kẻ tiếp tuyến Bx lấy hai điểm C D thuộc nửa đờng tròn Các tia AC AD cắt Bx lần lợt E, F (F B E) Chứng minh AC AE không đổi Chứng minh ABD = DFB Chứng minh CEFD tứ giác nội tiếp Lời giải: C thuộc nửa đờng tròn nên ACB = 900 ( nội tiếp chắn nửa đờng tròn ) => BC AE ABE = 900 ( Bx tiếp tuyến ) => tam giác ABE vuông B có BC đờng cao => AC AE = AB2 (hệ thức cạnh đờng cao ), mà AB đờng kính nên AB = 2R không đổi AC AE không đổi ADB có ADB = 900 ( nội tiếp chắn nửa đờng tròn ) => ABD + BAD = 900 (vì tổng ba góc tam giác 1800)(1) ABF có ABF = 900 ( BF tiếp tuyến ) => AFB + BAF = 900 (vì tổng ba góc tam giác 1800) (2) Từ (1) (2) => ABD = DFB ( phụ với BAD) Tứ giác ACDB nội tiếp (O) => ABD + ACD = 1800 ECD + ACD = 1800 ( Vì hai góc kề bù) => ECD = ABD ( bù với ACD) Theo ABD = DFB => ECD = DFB Mà EFD + DFB = 1800 ( Vì hai góc kề bù) nên suy ECD + EFD = 1800, mặt khác ECD EFD hai góc đối tứ giác CDFE tứ giác CEFD tứ giác nội tiếp Onthi.net Bài 10 Cho đờng tròn tâm O đờng kính AB điểm M nửa đờng tròn cho AM < MB Gọi M điểm đối xứng M qua AB S giao điểm hai tia BM, MA Gọi P chân đơng vuông góc từ S đến AB Chứng minh bốn điểm A, M, S, P nằm đờng tròn Gọi S giao điểm MA SP Chứng minh tam giác PSM cân Chứng minh PM tiếp tuyến đờng tròn Lời giải: Ta có SP AB (gt) => SPA = 900 ; AMB = 900 ( nội tiếp chắn nửa đờng tròn ) => AMS = 900 Nh P M nhìn AS dới góc 900 nên nằm đờng tròn đờng kính AS Vậy bốn điểm A, M, S, P nằm đờng tròn Vì Mđối xứng M qua AB mà M nằm đờng tròn nên M nằm đờng tròn => hai cung AM AM có số đo => AMM = AMM ( Hai góc nội tiếp chắn hai cung nhau) (1) Cũng Mđối xứng M qua AB nên MM AB H => MM// SS ( vuông góc với AB) => AMM = ASS; AMM = ASS (vì so le trong) (2) => Từ (1) (2) => ASS = ASS Theo bốn điểm A, M, S, P nằm đờng tròn => ASP=AMP (nội tiếp chắn AP ) => ASP = AMP => tam giác PMS cân P Tam giác SPB vuông P; tam giác SMS vuông M => B1 = S1 (cùng phụ với S) (3) Tam giác PMS cân P => S1 = M1 (4) Tam giác OBM cân O ( có OM = OB =R) => B1 = M3 (5) Từ (3), (4) (5) => M1 = M3 => M1 + M2 = M3 + M2 mà M3 + M2 = AMB = 900 nên suy M1 + M2 = PMO = 900 => PM OM M => PM tiếp tuyến đờng tròn M Bài 11 Cho tam giác ABC (AB = AC) Cạnh AB, BC, CA tiếp xúc với đờng tròn (O) điểm D, E, F BF cắt (O) I , DI cắt BC M Chứng minh : Tam giác DEF có ba góc nhọn Onthi.net DF // BC Tứ giác BDFC nội tiếp BD BM = CB CF Lời giải: (HD) Theo t/c hai tiếp tuyến cắt ta có AD = AF => tam giác ADF cân A => ADF = AFD < 900 => sđ cung DF < 1800 => DEF < 900 ( góc DEF nội tiếp chắn cung DE) Chứng minh tơng tự ta có DFE < 900; EDF < 900 Nh tam giác DEF có ba góc nhọn Ta có AB = AC (gt); AD = AF (theo trên) => AD AF => = AB AC DF // BC DF // BC => BDFC hình thang lại có B = C (vì tam giác ABC cân) => BDFC hình thang cân BDFC nội tiếp đợc đờng tròn Xét hai tam giác BDM CBF Ta có DBM = BCF ( hai góc đáy tam giác cân) BDM = BFD (nội tiếp chắn cung DI); CBF = BFD (vì so le) => BDM = CBF => BDM CBF => BD BM = CB CF Bài 12 Cho đờng tròn (O) bán kính R có hai đờng kính AB CD vuông góc với Trên đoạn thẳng AB lấy điểm M (M khác O) CM cắt (O) N Đờng thẳng vuông góc với AB M cắt tiếp tuyến N đờng tròn P Chứng minh : Ta có OMP = 900 ( Tứ giác OMNP nội tiếp PM AB ); ONP = 900 Tứ giác CMPO hình bình hành (vì NP tiếp tuyến ) CM CN không phụ thuộc vào vị trí điểm M Nh M N nhìn Khi M di chuyển đoạn thẳng AB P chạy OP dới góc 900 đoạn thẳng cố định Lời giải: Onthi.net so le) Mà OMA = OAM ( tam giác OAM cân O có OM = OA = R) => HAM = OAM => AM tia phân giác góc OAH Vẽ dây BD OA => ằAB = ằAD => ABD = ACB Ta có OAH = DBC ( góc có cạnh tơng ứng vuông góc nhọn) => OAH = ABC - ABD => OAH = ABC - ACB hay OAH = B - C a) Theo giả thiết BAC = 600 => B + C = 1200 ; theo B C = OAH => B - C = 200 B + C = 120 B = 70 => 0 0 B C = 20 C = 50 2 R R R R (4 3) b) Svp = SqBOC - S V BOC = R 120 = R = 3600 2 12 Bài 31 Cho tam giác ABC có ba góc nhọn nội tiếp (O; R), biết BAC = 600 Tính số đo góc BOC độ dài BC theo R ằ =1200 * Theo sđ BC Vẽ đờng kính CD (O; R); gọi H giao điểm ba => BC cạnh tam đờng cao tam giác ABC Chứng minh BD // AH giác nội tiếp (O; R) AD // BH => BC = R Tính AH theo R CD đờng kính => Lời giải: ằ =1200 ( t/c góc nội tiếp ) DBC = 900 hay DB Theo giả thiết BAC = 600 => sđ BC BC; theo giả thiết AH => BOC = 1200 ( t/c góc tâm) Onthi.net đờng cao => AH BC => BD // AH Chứng minh tơng tự ta đợc AD // BH Theo DBC = 900 => DBC vuông B có BC = R ; CD = 2R => BD2 = CD2 BC2 => BD2 = (2R)2 (R )2 = 4R2 3R2 = R2 => BD = R Theo BD // AH; AD // BH => BDAH hình bình hành => AH = BD => AH = R Bài 32 Cho đờng tròn (O), đờng kính AB = 2R Một cát tuyến MN quay quanh trung điểm H OB Chứng minh MN di động , trung điểm I MN I trung điểm MN => nằm đờng tròn cố định OI MN I ( quan hệ đờng Từ A kẻ Ax MN, tia BI cắt Ax C Chứng minh tứ kính dây cung) = > OIH giác CMBN hình bình hành = 900 Chứng minh C trực tâm tam giác AMN Khi MN quay quanh H C di động đờng Cho AM AN = 3R2 , AN = R Tính diện tích phần hình tròn (O) nằm tam giác AMN Lời giải: (HD) Onthi.net OH cố địmh nên MN di động I di động nhng nhìn OH cố định dới góc 900 I di động đờng tròn đờng kính OH Vậy MN di động , trung điểm I MN nằm đờng tròn cố định Theo giả thiết Ax MN; theo OI MN I => OI // Ax hay OI // AC mà O trung điểm AB => I trung điểm BC, lại có I trung điểm MN (gt) => CMBN hình bình hành ( Vì có hai đờng chéo cắt trung điểm đờng ) CMBN hình bình hành => MC // BN mà BN AN ( ANB = 900 góc nội tiếp chắn nửa đờng tròn ) => MC AN; theo AC MN => C trực tâm tam giác AMN Ta có H trung điểm OB; I trung điểm BC => IH đờng tung bình OBC => IH // OC Theo giả thiết Ax MN hay IH Ax => OC Ax C => OCA = 900 => C thuộc đờng tròn đờng kính OA cố định Vậy MN quay quanh H C di động đờng tròn đờng kính OA cố định Ta có AM AN = 3R2 , AN = R => AM =AN = R => AMN cân A (1) Xét ABN vuông N ta có AB = 2R; AN = R => BN = R => ABN = 600 ABN = AMN (nội tiếp chắn cung AN) => AMN = 600 (2) Từ (1) (2) => AMN tam giác => SAMN = => S = S(O) - SAMN = R - 3R 3R R (4 3 = 4 Bài 33 Cho tam giác ABC nội tiếp (O; R), tia phân giác góc BAC cắt BC I, cắt đờng tròn M Lời giải: Chứng minh OM BC 2 Chứng minh MC = MI.MA AM phân giác BAC Kẻ đờng kính MN, tia phân giác góc B => BAM = CAM C cắt đờng thẳng AN P Q Chứng ẳ = CM ẳ => M trung điểm minh bốn điểm P, C , B, Q thuộc đ- => BM ờng tròn cung BC => OM BC Onthi.net Xét MCI MAC có MCI =MAC (hai góc nội tiếp chắn hai cung nhau); M góc chung => MCI MAC => MC MI = => MC2 = MI.MA MA MC (HD) MAN = 900 (nội tiếp chắn nửa đờng tròn ) => P1 = 900 K1 mà K1 góc tam giác AKB nên K1 = A1 + B1 = P1 = 900 ( A B + ).(1) 2 C A B + (t/c phân giác góc ) => 2 A B + CQ tia phân giác góc ACB => C1 = = (1800 - A - B) = 900 ( ) 2 2 (2) Từ (1) (2) => P1 = C1 hay QPB = QCB mà P C nằm nửa mặt phẳng bờ BQ nên nằm cung chứa góc 900 ( Vậy bốn điểm P, C, B, Q thuộc đờng tròn A B ) dựng BQ + 2 Bài 34 Cho tam giác ABC cân ( AB = AC), BC = Cm, chiều cao AH = Cm, nội tiếp đờng tròn (O) đờng kính AA Tính bán kính đờng tròn (O) tức AAđi qua H => Kẻ đờng kính CC, tứ giác CACA hình gì? Tại sao? ACA vuông C có đ3 Kẻ AK CC tứ giác AKHC hình gì? Tại sao? BC ờng cao CH = = = Tính diện tích phần hình tròn (O) nằm tam giác 2 ABC Lời giải: (HD) Vì ABC cân A nên đờng kính AA đờng tròn ngoại tiếp đờng cao AH xuất phát từ đỉnh A trùng nhau, Onthi.net 3cm; AH = 4cm => CH2 = AH.AH => AH = CH 32 = = = 2,5 => AA AH 4 => AA = AH + HA = + 2,5 = 6,5 9cm) => R = AA : = 6,5 : = 3,25 (cm) Vì AA CC hai đờng kính nên cắt trung điểm O đờng => ACAC hình bình hành Lại có ACA = 900 (nội tiếp chắn nửa đờng tròn ) nên suy tứ giác ACAC hình chữ nhật Theo giả thiết AH BC; AK CC => K H nhìn AC dới góc 900 nên nằm đờng tròn đờng kính AC hay tứ giác ACHK nội tiếp (1) => C2 = H1 (nội tiếp cung chắn cung AK) ; AOC cân O ( OA=OC=R) => C2 = A2 => A2 = H1 => HK // AC ( có hai góc so le nhau) => tứ giác ACHK hình thang (2) Từ (1) (2) suy tứ giác ACHK hình thang cân Bài 35 Cho đờng tròn (O), đờng kính AB cố định, điểm I nằm A O cho AI = 2/3 AO Kẻ dây MN vuông góc với AB I, gọi C điểm tuỳ ý thuộc cung lớn MN cho C không trùng với M, N B Nối AC cắt MN E Chứng minh tứ giác IECB nội tiếp Theo giả thiết MN Chứng minh tam giác AME đồng dạng với tam giác AB I => EIB = 900; ACM ACB nội tiếp chắn nửa đ3 Chứng minh AM2 = AE.AC Chứng minh AE AC AI.IB = AI ờng tròn nên ACB = 900 Hãy xác định vị trí C cho khoảng cách từ N hay ECB = 900 đến tâm đờng tròn ngoại tiếp tam giác CME nhỏ Lời giải: Onthi.net => EIB + ECB = 1800 mà hai góc đối tứ giác IECB nên tứ giác IECB tứ giác nội tiếp Theo giả thiết MN AB => A trung điểm cung MN => AMN = ACM ( hai góc nội tiếp chắn hai cung nhau) hay AME = ACM Lại thấy CAM góc chung hai tam giác AME AMC tam giác AME đồng dạng với tam giác ACM Theo AME ACM => AM AE = => AM2 = AE.AC AC AM AMB = 900 (nội tiếp chắn nửa đờng tròn ); MN AB I => AMB vuông M có MI đờng cao => MI2 = AI.BI ( hệ thức cạnh đờng cao tam giác vuông) áp dụng định lí Pitago tam giác AIM vuông I ta có AI2 = AM2 MI2 => AI2 = AE.AC - AI.BI Theo AMN = ACM => AM tiếp tuyến đờng tròn ngoại tiếp ECM; Nối MB ta có AMB = 900 , tâm O1 đờng tròn ngoại tiếp ECM phải nằm BM Ta thấy NO1 nhỏ NO1 khoảng cách từ N đến BM => NO1 BM Gọi O1 chân đờng vuông góc kẻ từ N đến BM ta đợc O1 tâm đờng tròn ngoại tiếp ECM có bán kính O1M Do để khoảng cách từ N đến tâm đờng tròn ngoại tiếp tam giác CME nhỏ C phải giao điểm đờng tròn tâm O1 bán kính O1M với đờng tròn (O) O1 hình chiếu vuông góc N BM Bài 36 Cho tam giác nhọn ABC , Kẻ đờng cao AD, BE, CF Gọi H trực tâm tam giác Gọi M, N, P, Q lần lợt hình chiếu vuông góc D lên AB, BE, CF, AC Chứng minh : Các tứ giác DMFP, DNEQ hình chữ nhật chứng minh tơng tự ta có Các tứ giác BMND; DNHP; DPQC nội tiếp B1=P1 (2) Hai tam giác HNP HCB đồng dạng Từ (1) (2) => HNP Bốn điểm M, N, P, Q thẳng hàng HCB Lời giải: & (HS tự làm) Theo chứng minh DNHP nội tiếp => N2 = D4 (nội tiếp chắn cung HP); HDC có HDC = 900 (do AH đờng cao) HDP có HPD = 900 (do DP HC) => C1= D4 (cùng phụ với DHC)=>C1=N2 (1) Onthi.net Theo chứng minh DNMB nội tiếp => N1 = D1 (nội tiếp chắn cung BM).(3) DM // CF ( vuông góc với AB) => C1= D1 ( hai góc đồng vị).(4) Theo chứng minh C1 = N2 (5) Từ (3), (4), (5) => N1 = N2 mà B, N, H thẳng hàng => M, N, P thẳng hàng (6) Chứng minh tơng tự ta cung có N, P, Q thẳng hàng (7) Từ (6), (7) => Bốn điểm M, N, P, Q thẳng hàng Bài 37 Cho hai đờng tròn (O) (O) tiếp xúc A Kẻ tiếp tuyến chung BC, B (O), C (O) Tiếp tuyến chung A cắt tiếp tuyến chung BC I Chứng minh tứ giác OBIA, AICO nội tiếp Chứng minh BAC = 900 Tính số đo góc OIO Tính độ dài BC biết OA = 9cm, OA = 4cm Lời giải: ( HS tự làm) Theo tính chất hai tiếp tuyến cắt ta có IB = IA , IA = IC ABC có AI = BC =>ABC vuông A hay BAC =900 Onthi.net Theo tính chất hai tiếp tuyến cắt ta có IO tia phân giác BIA; I0là tia phân giác CIA mà hai góc BIA CIA hai góc kề bù => I0 I0=> 0I0= 900 Theo ta có 0I0 vuông I có IA đờng cao (do AI tiếp tuyến chung nên AI OO) => IA2 = A0.A0 = = 36 => IA = => BC = IA = = 12(cm) Bài 38 Cho hai đờng tròn (O) ; (O) tiếp xúc A, BC tiếp tuyến chung ngoài, B(O), C (O) Tiếp tuyến chung A cắ tiếp tuyến chung BC M Gọi E giao điểm OM AB, F giao điểm OM AC Chứng minh : Chứng minh tứ giác OBMA, AMCO nội tiếp Tứ giác AEMF hình chữ nhật ME.MO = MF.MO OO tiếp tuyến đờng tròn đờng kính BC BC tiếp tuyến đờng tròn đờng kính OO Lời giải: ( HS tự làm) Theo tính chất hai tiếp tuyến cắt ta có MA = MB =>MAB cân M Lại có ME tia phân giác => ME AB (1) Chứng minh tơng tự ta có MF AC (2) Theo tính chất hai tiếp tuyến cắt ta có MO MO tia phân giác hai góc kề bù BMA CMA => MO MO (3) Từ (1), (2) (3) suy tứ giác MEAF hình chữ nhật Theo giả thiết AM tiếp tuyến chung hai đờng tròn => MA OO=> MAO vuông A có AE MO ( theo ME AB) MA2 = ME MO (4) Tơng tự ta có tam giác vuông MAO có AFMO MA2 = MF.MO (5) Từ (4) (5) ME.MO = MF MO Onthi.net Đờng tròn đờng kính BC có tâm M theo MB = MC = MA, đờng tròn qua Avà co MA bán kính Theo OO MA A OO tiếp tuyến A đờng tròn đờng kính BC (HD) Gọi I trung điểm OO ta có IM đờng trung bình hình thang BCOO => IMBC M (*) Ta cung chứng minh đợc OMO vuông nên M thuộc đờng tròn đờng kính OO => IM bán kính đờng tròn đờng kính OO (**) Từ (*) (**) => BC tiếp tuyến đờng tròn đờng kính OO Bài 39 Cho đờng tròn (O) đờng kính BC, dấy AD vuông góc với BC H Gọi E, F theo thứ tự chân đờng vuông góc kẻ từ H đến AB, AC Gọi ( I ), (K) theo thứ tự đờng tròn ngoại tiếp tam giác HBE, HCF Hãy xác định vị trí tơng đối đờng tròn (I) (O); (K) (O); (I) (K) Tứ giác AEHF hình gì? Vì sao? Chứng minh AE AB = AF AC Chứng minh EF tiếp tuyến chung hai đờng tròn (I) (K) Xác định vị trí H để EF có độ dài lớn Lời giải: 1.(HD) OI = OB IB => (I) tiếp xúc (O) OK = OC KC => (K) tiếp xúc (O) IK = IH + KH => (I) tiếp xúc (K) Ta có : BEH = 900 ( nội tiếp chắn nửa đờng tròn ) => AEH = 900 (vì hai góc kề bù) (1) CFH = 900 ( nội tiếp chắn nửa đờng tròn ) => AFH = 900 (vì hai góc kề bù).(2) BAC = 900 ( nội tiếp chắn nửa đờng tròn hay EAF = 900 (3) Từ (1), (2), (3) => tứ giác AFHE hình chữ nhật ( có ba góc vuông) Theo giả thiết ADBC H nên AHB vuông H có HE AB ( BEH = 900 ) => AH2 = AE.AB (*) Tam giác AHC vuông H có HF AC (theo CFH = 900 ) => AH2 = AF.AC (**) Từ (*) (**) => AE AB = AF AC ( = AH2) Theo chứng minh tứ giác AFHE hình chữ nhật, gọi G giao điểm hai đờng chéo AH EF ta có GF = GH (tính chất đờng chéo hình chữ nhật) => GFH cân G => F1 = H1 KFH cân K (vì có KF KH bán kính) => F2 = H2 => F1 + F2 = H1 + H2 mà H1 + H2 = AHC = 900 => F1 + F2 = KFE = 900 => KF EF Onthi.net Chứng minh tơng tự ta có IE EF Vậy EF tiếp tuyến chung hai đờng tròn (I) (K) e) Theo chứng minh tứ giác AFHE hình chữ nhật => EF = AH OA (OA bán kính đờng tròn (O) có độ dài không đổi) nên EF = OA AH = OA H trùng với O Vậy H trùng với O túc dây AD vuông góc với BC O EF có độ dài lớn Bài 40 Cho nửa đờng tròn đờng kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Trên Ax lấy điểm M kẻ tiếp tuyến MP cắt By N Chứng minh tam giác MON đồng dạng với tam giác APB Chứng minh AM BN = R2 Tính tỉ số S MON R AM = S APB Tính thể tích hình nửa hình tròn APB quay quanh cạnh AB sinh Lời giải: Theo tính chất hai tiếp tuyến cắt ta có: OM tia phân giác góc AOP ; ON tia phân giác góc BOP, mà AOP BOP hai góc kề bù => MON = 900 hay tam giác MON vuông O APB = 900((nội tiếp chắn nửa đờng tròn) hay tam giác APB vuông P Theo tính chất tiếp tuyến ta có NB OB => OBN = 900; NP OP => OPN = 900 =>OBN+OPN =1800 mà OBN OPN hai góc đối => tứ giác OBNP nội tiếp =>OBP = PNO Xét hai tam giác vuông APB MON có APB = MON = 900; OBP = PNO => APB MON Theo MON vuông O có OP MN ( OP tiếp tuyến ) áp dụng hệ thức cạnh đờng cao tam giác vuông ta có OP2 = PM PM Mà OP = R; AM = PM; BN = NP (tính chất hai tiếp tuyến cắt ) => AM BN = R2 Theo OP2 = PM PM hay PM PM = R2 mà PM = AM = R R => PM = => PN = R2: 2 R = 2R R 5R + 2R = 2 MN 5R Theo APB MON => = : 2R = = k (k tỉ số đồng dạng) AB => MN = MP + NP = Vì tỉ số diện tich hai tam giác đồng dạng bình phơng tỉ số đồng dạng nên ta có: S MON S MON 25 = k => = ữ= S APB S APB 16 Onthi.net Bài 41 Cho tam giác ABC , O trung điển BC Trên cạnh AB, AC lần lợt lấy điểm D, E cho DOE = 600 Chứng minh tích BD CE không đổi Chứng minh hai tam giác BOD; OED đồng dạng Từ suy tia DO tia phân giác góc BDE Vẽ đờng tròn tâm O tiếp xúc với AB Chứng minh đờng tròn tiếp xúc với DE Lời giải: Tam giác ABC => ABC = ACB = 600 (1); DOE = 60 (gt) =>DOB + EOC = 1200 (2) DBO có DOB = 600 => BDO + BOD = 1200 (3) Từ (2) (3) => BDO = COE (4) BD BO = Từ (2) (4) => BOD CEO => => BD.CE = CO CE BO.CO mà OB = OC = R không đổi => BD.CE = R2 không đổi Theo BOD CEO => BD OD BD OD BD BO = = => = mà CO = BO => (5) CO OE BO OE OD OE Lại có DBO = DOE = 600 (6) Từ (5) (6) => DBO DOE => BDO = ODE => DO tia phân giác BDE Theo DO tia phân giác BDE => O cách DB DE => O tâm đờng tròn tiếp xúc với DB DE Vậy đờng tròn tâm O tiếp xúc với AB tiếp xúc với DE Onthi.net Bài 42 Cho tam giác ABC cân A có cạnh đáy nhỏ cạnh bên, nội tiếp đờng tròn (O) Tiếp tuyến B C lần lợt cắt AC, AB D E Chứng minh : BD2 = AD.CD Tứ giác BCDE nội tiếp BC song song với DE Lời giải: Xét hai tam giác BCD ABD ta có CBD = BAD ( Vì góc nội tiếp góc tiếp tuyến với dây chắn BD CD = cung), lại có D chung => BCD ABD => AD BD => BD2 = AD.CD Theo giả thiết tam giác ABC cân A => ABC = ACB => EBC = DCB mà CBD = BCD (góc tiếp tuyến với dây chắn cung) => EBD = DCE => B C nhìn DE dới góc B C nằm cung tròn dựng DE => Tứ giác BCDE nội tiếp Tứ giác BCDE nội tiếp => BCE = BDE ( nội tiếp chắn cung BE) mà BCE = CBD (theo ) => CBD = BDE mà hai góc so le nên suy BC // DE Bài 43 Cho đờng tròn (O) đờng kính AB, điểm M thuộc đờng tròn Vẽ điểm N đối xứng với A qua M, BN cắt (O) C Gọi E giao điểm AC BM Chứng minh tứ giác MNCE nội tiếp 3.Theo giả thiết A N đối xứng qua Chứng minh NE AB M nên M trung Gọi F điểm đối xứng với E qua M Chứng minh FA tiếp điểm AN; F E tuyến (O) xứng qua M Chứng minh FN tiếp tuyến đờng tròn (B; BA) nên M trung điểm Lời giải: (HS tự làm) EF => AENF (HD) Dễ thấy E trực tâm tam giác NAB => NE AB hình bình hành => Onthi.net FA // NE mà NE AB => FA AB A => FA tiếp tuyến (O) A Theo tứ giác AENF hình bình hành => FN // AE hay FN // AC mà AC BN => FN BN N N F _ / M _ C / E A O H B BAN có BM đờng cao đồng thời đờng trung tuyến ( M trung điểm AN) nên BAN cân B => BA = BN => BN bán kính đờng tròn (B; BA) => FN tiếp tuyến N (B; BA) Bài 44 AB AC hai tiếp tuyến đờng tròn tâm O bán kính R ( B, C tiếp điểm ) B Vẽ CH vuông góc AB H, cắt (O) E cắt OA D Chứng minh CO = CD H Chứng minh tứ giác OBCD hình thoi I E Gọi M trung điểm CE, Bm cắt OH I O Chứng minh I trung điểm OH D A Tiếp tuyến E với (O) cắt AC K Chứng minh M ba điểm O, M, K thẳng hàng K Lời giải: C Theo giả thiết AB AC hai tiếp tuyến đờng tròn tâm O => OA tia phân giác BOC => BOA = COA (1) OB AB ( AB tiếp tuyến ); CH AB (gt) => OB // CH => BOA = CDO (2) Onthi.net Từ (1) (2) => COD cân C => CO = CD.(3) theo ta có CO = CD mà CO = BO (= R) => CD = BO (4) lại có OB // CH hay OB // CD (5) Từ (4) (5) => BOCD hình bình hành (6) Từ (6) (3) => BOCD hình thoi M trung điểm CE => OM CE ( quan hệ đờng kính dây cung) => OMH = 900 theo ta có OBH =900; BHM =900 => tứ giác OBHM hình chữ nhật => I trung điểm OH M trung điểm CE; KE KC hai tiếp tuyến => O, M, K thẳng hàng Bài 45 Cho tam giác cân ABC ( AB = AC) nội tiếp đờng tròn (O) Gọi D trung điểm AC; tiếp tuyến đờng tròn (O) A cắt tia BD E Tia CE cắt (O) F Chứng minh BC // AE Chứng minh ABCE hình bình hành Gọi I trung điểm CF G giao điểm BC OI So sánh BAC BGO Lời giải: (HS tự làm) Xét hai tam giác ADE CDB ta có EAD = BCD (vì so le ) AD = CD (gt); ADE = CDB (đối đỉnh) => ADE = CDB => AE = CB (1) Theo AE // CB (2) Từ (1) (2) => AECB hình bình hành I trung điểm CF => OI CF (quan hệ đờng kính dây cung) Theo AECB hình bình hành => AB // EC => OI AB K, => BKG vuông K Ta cng có BHA vuông H => BGK = BAH ( cung phụ với ABH) mà BAH = BAC (do ABC cân nên AH phân giác) => BAC = 2BGO Onthi.net [...]... CAD = 450 hay FAC = 450 (2) Từ (1) và (2) suy ra FBC là tam giác vuông cân tại F Onthi.net 3 Theo trên BFC = 900 => CFM = 900 ( vì là hai góc kề bù); CDM = 900 (t/c hình vuông) => CFM + CDM = 1800 mà đây là hai góc đối nên tứ giác CDMF nội tiếp một đờng tròn suy ra CDF = CMF , mà CDF = 450 (vì AEDC là hình vuông) => CMF = 450 hay CMB = 450 Ta cũng có CEB = 450 (vì AEDC là hình vuông); BKC = 450 (vì... lại có C là góc chung => OMC NDC => CM CO => CM CN = CO. CD mà CO = R; CD = 2R nên CO. CD = 2R2 không đổi => = CD CN CM.CN =2R2 không đổi hay tích CM CN không phụ thuộc vào vị trí của điểm M 4 ( HD) Dễ thấy OMC = DPO (c.g.c) => ODP = 900 => P chạy trên đờng thẳng cố định vuông góc với CD tại D Vì M chỉ chạy trên đoạn thẳng AB nên P chỉ chạy trên doạn thẳng A B song song và bằng AB Bài 13 Cho tam giác ABC...Onthi.net => M và N cùng nằm trên đờng tròn đờng kính OP => Tứ giác OMNP nội tiếp 2 Tứ giác OMNP nội tiếp => OPM = ONM (nội tiếp chắn cung OM) Tam giác ONC cân tại O vì có ON = OC = R => ONC = OCN => OPM = OCM Xét hai tam giác OMC và MOP ta có MOC = OMP = 900; OPM = OCM => CMO = POM lại có MO là cạnh chung => OMC = MOP => OC = MP (1) Theo giả thiết Ta có CD AB; PM AB => CO/ /PM (2) Từ... 450 (vì ABHK là hình vuông) Nh vậy K, E, M cùng nhìn BC dới một góc bằng 450 nên cùng nằm trên cung chứa góc 450 dựng trên BC => 5 điểm b, k, e, m, c cùng nằm trên một đờng tròn 4 CBM có B = 450 ; M = 450 => BCM = 450 hay MC BC tại C => MC là tiếp tuyến của đờng tròn ngoại tiếp tam giác ABC Bài 24 Cho tam giác nhọn ABC có B = 450 Vẽ đờng tròn đờng kính AC có tâm O, đờng tròn này cắt BA và BC tại D... và MON có APB = MON = 900; OBP = PNO => APB MON 2 Theo trên MON vuông tại O có OP MN ( OP là tiếp tuyến ) áp dụng hệ thức giữa cạnh và đờng cao trong tam giác vuông ta có OP2 = PM PM Mà OP = R; AM = PM; BN = NP (tính chất hai tiếp tuyến cắt nhau ) => AM BN = R2 3 Theo trên OP2 = PM PM hay PM PM = R2 mà PM = AM = R R => PM = => PN = R2: 2 2 R = 2R 2 R 5R + 2R = 2 2 MN 5R 5 Theo trên APB MON =>... tại N 1 Chứng minh tam giác MON đồng dạng với tam giác APB 2 Chứng minh AM BN = R2 3 Tính tỉ số S MON R khi AM = S APB 2 4 Tính thể tích của hình do nửa hình tròn APB quay quanh cạnh AB sinh ra Lời giải: 1 Theo tính chất hai tiếp tuyến cắt nhau ta có: OM là tia phân giác của góc AOP ; ON là tia phân giác của góc BOP, mà AOP và BOP là hai góc kề bù => MON = 900 hay tam giác MON vuông tại O APB = 900((nội... giác vuông cân 3 Cho biết ABC > 450 ; gọi M là giao điểm của BF và ED, Chứng minh 5 điểm b, k, e, m, c cùng nằm trên một đờng tròn 4 Chứng minh MC là tiếp tuyến của đờng tròn ngoại tiếp tam giác ABC Lời giải: 1 Theo giả thiết ABHK là hình vuông => BAH = 450 Tứ giác AEDC là hình vuông => CAD = 450; tam giác ABC vuông ở A => BAC = 900 => BAH + BAC + CAD = 450 + 900 + 450 = 1800 => ba điểm H, A, D thẳng... tròn đờng kính BD => BHCD là tứ giác nội tiếp 2 BHCD là tứ giác nội tiếp => BDC + BHC = 1800 (1) BHK là góc bẹt nên KHC + BHC = 1800 (2) Onthi.net Từ (1) và (2) => CHK = BDC mà BDC = 450 (vì ABCD là hình vuông) => CHK = 450 3 Xét KHC và KDB ta có CHK = BDC = 450 ; K là góc chung => KHC KDB => KC KH = => KC KD = KH.KB KB KD 4 (HD) Ta luôn có BHD = 900 và BD cố định nên khi E chuyển động trên cạnh... AB (gt) => EC2 = AC BC EC2 = 10. 40 = 400 => EC = 20 cm Theo trên EC = MN => MN = 20 cm 4 Theo giả thiết AC = 10 Cm, CB = 40 Cm => AB = 50cm => OA = 25 cm Ta có S(o) = OA2 = 252 = 625 ; S(I) = IA2 = 52 = 25 ; S(k) = KB2 = 202 = 400 Ta có diện tích phần hình đợc giới hạn bởi ba nửa đờng tròn là S = S= 1 ( S(o) - S(I) - S(k)) 2 1 1 ( 625 - 25 - 400 ) = 200 = 100 314 (cm2) 2 2 Bài 15 Cho... ngoài BC, B (O), C (O) Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I 1 Chứng minh các tứ giác OBIA, AICO nội tiếp 2 Chứng minh BAC = 900 3 Tính số đo góc OIO 4 Tính độ dài BC biết OA = 9cm, OA = 4cm Lời giải: 1 ( HS tự làm) 2 Theo tính chất hai tiếp tuyến cắt nhau ta có IB = IA , IA = IC 1 ABC có AI = BC =>ABC vuông tại A hay BAC 2 =900 Onthi.net 3 Theo tính chất hai tiếp tuyến

Ngày đăng: 11/08/2016, 22:15

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w