1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Sáng tác bài toán tọa độ trong không gian có mức độ vận dụng cao từ một số mô hình không gian

22 83 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 1,09 MB

Nội dung

MỤC LỤC Mục Nội Dung Trang Mục lục 1.Mở đầu 1.1 Lý chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng phạm vi nghiên cứu 1.4 Phương pháp nghiên cứu 2.Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận vấn đề 2.2 Thực trạng vấn đề 10 2.3 Giải vấn đề 11 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, thân, đồng nghiệp nhà trường 18 12 Kết luận, kiến nghị 19 13 3.1 Kết luận 19 14 3.2 Kiến nghị 19 1 MỞ ĐẦU 1.1 Lí chọn đề tài Trong kỳ thi THPT Quốc gia, câu hỏi thi mơn Tốn phân thành mức độ, là: nhận biết, thơng hiểu, vận dụng thấp vận dụng cao Việc sáng tác toán vận dụng cao không đơn giản phải đảm bảo yêu cầu về: giới hạn kiến thức SGK, phân loại học sinh đồng thời lời giải không dài, tính tốn khơng q phức tạp để học sinh giải khoảng thời gian ngắn Có nhiều cách để sáng tác toán vận dụng cao, từ tốn thực tế, từ toán gốc tự luận hay từ đặc biệt hóa, tổng quát hóa Để đưa cách sáng tác toán vận dụng cao vậy, chọn đề tài: “SÁNG TÁC BÀI TỐN TỌA ĐỘ TRONG KHƠNG GIAN CĨ MỨC ĐỘ VẬN DỤNG CAO TỪ MỘT SỐ MƠ HÌNH KHƠNG GIAN” 1.2 Mục đích nghiên cứu Để sáng tác tốn mức độ vận dụng cao thường xuất phát từ tốn gốc, từ đề xuất toán liên quan Để định hướng cách giải cho toán vận dụng cao, thường gợi ý cho học sinh tìm cách tư ngược, tìm tốn gốc từ tốn cho, giúp học sinh có phương pháp tư để giải nhiều toán khác Từ giả thiết, tơi xây dựng mơ hình khơng gian với điều kiện giải được, đề xuất cách tạo lập toán vận dụng cao, giúp giáo viên dần hình thành kỹ đề thi trắc nghiệm mơn Tốn, đặc biệt tốn vận dụng cao giúp học sinh hình thành cách tư để giải nhanh toán vận dụng cao 1.3 Đối tượng phạm vi nghiên cứu Từ giả thiết đường thẳng hai mặt cầu, hình thành tình huống, mơ hình tồn tiếp tuyến, tiếp diện chung hai mặt cầu, đặt câu hỏi đưa hướng giải từ tọa độ hóa toán để toán trắc nghiệm mức độ vận dụng cao 1.4 Phương pháp nghiên cứu Đề xuất câu hỏi đưa hướng giải dựa mối liên hệ, tính chất yếu tố giả thiết Thực nghiệm sư phạm: Cho học sinh khá, giỏi làm câu hỏi trắc nghiệm để kiểm tra tính khoa học, hợp lý câu hỏi vận dụng cao NỘI DUNG CỦA SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Với kiến thức hình học khơng gian, đặc biệt tính chất tiếp tuyến, tiếp diện mặt cầu 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Phần lớn giáo viên thường gặp khó khăn sáng tác toán vận dụng cao, giáo viên thường copy có sẵn mạng biến đổi chút thay số hoặc lấy toán tự luận quen thuộc chuyển thể sang hình hình thức trắc nghiệm, khơng có nhiều sáng tạo Sáng kiến kinh nghiệm đề xuất hướng để sáng tạo toán vận dụng cao 2.3 Giải vấn đề Thông qua cách khai thác số mô hình từ giả thiết đường thẳng hai mặt cầu, tồn tiếp tuyến, tiếp diện chung hai mặt cầu, sáng tác lớp toán vận dụng cao tọa độ không gian Chúng ta xuất phát từ giả thiết sau: Trong không gian, cho thẳng d hai mặt cầu: mặt cầu  S1  có tâm I1 , bán kính R1 , mặt cầu  S  có tâm I , bán kính R2 Mơ hình 1: Đường thẳng  đồng phẳng với I1I , vng góc với đường thẳng d đồng thời tiếp xúc với  S1  ,  S  Hướng giải: Nhận xét: Khi giải toán trắc nghiệm, đặc biệt toán mức độ vận dụng cao thường xem xét yêu tố, mối liên hệ đặc biệt giả thiết để đưa hướng giải nhanh TH1: Nếu R1  R2  R  S1  ,  S2  khơng có điểm chung tiếp tuyến chung  S1  ,  S  đồng phẳng với I1I song song với I1 I qua trung điểm M I1I + Nếu d  I1 I có vơ số tiếp tuyến thỏa mãn + Nếu d khơng vng góc I1I , xét mặt phẳng    qua M vuông góc với d , suy tiếp tuyến chung vng góc với d ( có )  S1  ,  S  nằm    Nếu d  I1 ,      R có tiếp tuyến thỏa mãn Nếu d  I1 ,      R khơng có tiếp tuyến thỏa mãn Nếu d  I1 ,      R có tiếp tuyến thỏa mãn Các toán trắc nghiệm: Bài toán 1.1 Trong không gian với hệ tọa độ Oxyz , cho hai mặt cầu:  S1  : x  y  z  x  z    S2  : x  y2  z  y  4z  19 0 hai điểm A  0; 1;3 , B  2; 2;1 Số đường thẳng vng góc với AB , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vô số Hướng dẫn giải:  S1  �1 � I1 � ;0; 1� R1  R  �, ,  S  có tâm I  0;1; 2  , có tâm �2 Ta có R1  R2 I1I   R1  R2 suy  S1  ,  S2  khơng có điểm chung uuur � � r I1I  �  ;1; 1� uuu AB   2; 1; 2  �2 �và vng góc với nên có vơ số đường thẳng vng góc với AB , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S2  Chọn đáp án D Bài tốn 1.2 Trong khơng gian với hệ tọa độ Oxyz , cho hai mặt cầu:  S1  : x  y  z  x  z    S2  : x  y2  z  y  4z  19 0 hai điểm A  1; 2;1 , B  1; 2;3 Số đường thẳng vng góc với AB , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vô số Hướng dẫn giải: Tương tự tốn 1.1 ta có: uuur � � r I1I  �  ;1; 1� uuu �2 �và AB   0;0;2  không vuông góc với �1 � I1I � M � ; ;  � 2 � � Gọi M trung điểm Gọi mặt phẳng    qua M vng góc với AB , phương trình    : z   Ta có d  I1 ,      � có đường thẳng thỏa mãn Chọn đáp án B Bài tốn 1.3 Trong khơng gian với hệ tọa độ Oxyz , cho hai mặt cầu:  S1  : x  y  z  x  2z   2  S2  : x  y  z  y  z  19 0 hai điểm A  2; 1;1 , B  1; 2;3 Số đường thẳng vng góc với AB , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vô số Hướng dẫn giải: Tương tự tốn 1.2 ta có: uuur � � r I1I  �  ;1; 1� uuu AB   1; 1;2  �2 �và khơng vng góc với 15  : x  y  z  0    Gọi   qua M vng góc với AB , phương trình Ta có d  I1 ,       � 24 đường thẳng thỏa mãn Chọn đáp án A Bài tốn 1.4 Trong khơng gian với hệ tọa độ Oxyz , cho hai mặt cầu:  S1  : x  y  z  x  z   2  S2  : x  y  z  y  z  19 0 hai điểm A  1;1;2  , B  1;2;3 Số đường thẳng vng góc với AB , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vơ số Hướng dẫn giải: Tương tự tốn 1.3, ta có: uuur � � r I1I  �  ;1; 1� uuu AB   2;1;1 khơng vng góc với �2 �và Gọi    qua M vng góc với AB , phương trình    : x  y  z  Ta có d  I1 ,       � có đường thẳng thỏa mãn Chọn đáp án C TH2: Nếu R1 �R2 a Xét  S1  ,  S2  rời nhau: + Gọi điểm M thỏa mãn uuur r R uuuu MI1  � MI R2 , suy tiếp tuyến chung  S1  ,  S2  đồng phẳng với I1I qua M + Gọi mặt phẳng    qua M vng góc với d , suy tiếp tuyến chung  S1  ,  S2  đồng phẳng với I1I nằm    Nếu d  I1 ,      R có tiếp tuyến thỏa mãn Nếu d  I1 ,      R khơng có tiếp tuyến thỏa mãn Nếu d  I1 ,      R có tiếp tuyến thỏa mãn b Xét  S1  ,  S  cắt nhau: gọi uuur R uuuu r MI1  MI R2 điểm M thỏa mãn giải tương tự Các toán trắc nghiệm: Bài tốn 1.5 Trong khơng gian với hệ tọa độ Oxyz , cho bốn điểm I  0; 1;3 , J  2;1;1 , K  1;2;3 , H  2;0;4  Gọi  S1  mặt cầu tâm I , bán kính R1  ,  S  mặt cầu tâm J , bán kính R2  Số đường thẳng vng góc với KH , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S2  là: A B.1 C D Vơ số Hướng dẫn giải: Ta có IJ   R1  R2  suy  S1  ,  S  điểm chung Gọi điểm M thỏa mãn � M  4;3; 1 uuu r uuur � MI  �2MJ � � �4 � M�; ; � � � �3 3 � Gọi    qua M vng góc với KH � �  : x  y  z   � d  I ,       �� � : 3x  y  z   � d I ,         � 54 � Vậy có tiếp tuyến thỏa mãn Chọn đáp án C Mơ hình 2: Đường thẳng  đồng phẳng với I1I , cắt đường thẳng d đồng thời tiếp xúc với  S1  ,  S  Hướng giải: Để thuận lợi cho việc chuyển sang toán trắc nghiệm xét số trường hợp sau (có thể khơng cần xét hết khả xảy ra): TH1: Nếu R1  R2  R  S1  ,  S2  cắt Tương tự tốn mơ hình 1, + Nếu d / / I1I khơng có tiếp tuyến thỏa mãn + Nếu d I1I chéo nhau, gọi    mặt phẳng chứa d song song với I1I : Nếu d  I1 ,      R khơng có tiếp tuyến thỏa mãn Nếu d  I1 ,      R có tiếp tuyến thỏa mãn Nếu d  I1 ,      R có tiếp tuyến thỏa mãn + Nếu d đường thẳng I1I cắt có tiếp tuyến thỏa mãn Các toán trắc nghiệm: Bài tốn 2.1 Trong khơng gian với hệ tọa độ Oxyz , cho hai mặt cầu:  S1  : x  y  z  x  z    S2  : x  y  z  y  z   và hai điểm A  2;2;5 , B  3;0;7  Số đường thẳng cắt AB , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vô số Hướng dẫn giải: Ta có R1  R2   S1  ,  S2  cắt uuur � r uuu r �3 � uuu � I1I  �  ;1; 1� AB   1; 2;2  , I1 A  � ;2;6 �� AB / / I1I �2 �, �2 � nên khơng có đường thẳng thỏa mãn Chọn đáp án A Bài tốn 2.2 Trong khơng gian với hệ tọa độ Oxyz , cho hai mặt cầu:  S1  : x  y  z  x  z    S2  : x  y  z  y  z   và hai điểm A  2; 3;4  , B  1;0;1 Số đường thẳng cắt AB , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vô số Hướng dẫn giải: d I ,      Gọi    chứa AB song song với I1I �    : y  z   ,  nên khơng có đường thẳng thỏa mãn Chọn đáp án A Bài toán 2.3 Trong không gian với hệ tọa độ Oxyz , cho hai mặt cầu:  S1  : x  y  z  x  z    S2  : x  y  z  y  z   và hai � 1� � 1� A �2;0; � , B� 3;2; � 2� � � � điểm Số đường thẳng cắt AB , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vô số Hướng dẫn giải: Ta có AB cắt I1I nên có đường thẳng thỏa mãn Chọn đáp án C TH2: Nếu R1 �R2  S1  ,  S  cắt nhau: uuur R uuuu r MI1  MI R M + Gọi điểm thỏa mãn , suy tiếp tuyến chung   S1  ,  S2  , đồng phẳng với I1I qua M + Nếu M �d có vơ số tiếp tuyến thỏa mãn + Nếu I1 �d , gọi H tiếp điểm  với  S1  d�, I I  �I�MH d�, I I  �0   Nếu 1 có tiếp tuyến thỏa mãn Nếu d �I1I có vơ số tiếp tuyến thỏa mãn d�, I I   I�MH  Nếu có tiếp tuyến thỏa mãn Các toán trắc nghiệm: Bài tốn 2.4 Trong khơng gian với hệ tọa độ Oxyz , cho bốn điểm I  0; 1;3 , J  2;1;1 , K  1;2;3 , H  2;1;7  Gọi  S1  mặt cầu tâm I , bán kính R1  ,  S  mặt cầu tâm J , bán kính R2  Số đường thẳng cắt đường thẳng KH , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vô số Hướng dẫn giải: Ta có  R1  R2  IJ   R1  R2  suy  S1  ,  S2  cắt uuu r uuur MI  MJ � M  4;3; 1 Gọi điểm M thỏa mãn 10 uuur x 1 y  z  KH   3; 1;4  � KH :   � M �KH � 3 1 có vơ số tiếp tuyến thỏa mãn Chọn đáp án D Bài toán 2.5 Trong không gian với hệ tọa độ Oxyz , cho bốn điểm I  0; 1;3 , J  2;1;1 , K  1;2;3 , H  3;0; 1 Gọi  S1  mặt cầu tâm I , bán kính R1  ,  S  mặt cầu tâm J , bán kính R2  Số đường thẳng cắt đường thẳng KH , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vơ số Hướng dẫn giải: Tương tự Bài tốn 2.4 suy  S1  ,  S  cắt uuu r uuur MI  MJ � M  4;3; 1 Gọi điểm M thỏa mãn uuur x 1 y  z  KH   2; 2; 4  � KH :   � J �KH 1 2   MJ  R22 � cos KH , IJ  �  � MJ Ta có có hai tiếp tuyến thỏa mãn Chọn đáp án C Bài tốn 2.6 Trong khơng gian với hệ tọa độ Oxyz , cho bốn điểm I  0; 1;3 , J  2;1;1 , K  3;2;1 , H  0; 1;1 Gọi  S1  mặt cầu tâm I , bán kính R1  ,  S  mặt cầu tâm J , bán kính R2  Số đường thẳng cắt đường thẳng KH , đồng phẳng với đường thẳng nối tâm hai mặt cầu tiếp xúc với  S1  ,  S  là: A B.1 C D Vô số Hướng dẫn giải: Tương tự Bài toán 2.4 suy  S1  ,  S  cắt uuu r uuur MI  MJ � M  4;3; 1 Gọi điểm M thỏa mãn 11 �x   t uuur � KH   3; 3;0  � KH : �y   t � J �KH �z  �   MJ  R22 6 � cos KH , IJ    � MJ Ta có có tiếp tuyến thỏa mãn Chọn đáp án B Mơ hình 3: Mặt phẳng  P  chứa đường thẳng d tiếp xúc với  S1  ,  S2  ( tiếp xúc với  S1  cắt  S  theo đường tròn có bán kính r cắt  S1  ,  S  theo đường tròn có bán kính r1 , r2 ) Hướng giải: TH1: Nếu R1  R2  R  S1  ,  S  cắt  P  song song với I1I + Nếu d / / I1I thì: d  d , I1I   R khơng có mặt phẳng thỏa mãn d  d , I1I   R có mặt phẳng thỏa mãn d  d , I1I   R có hai mặt phẳng thỏa mãn + Nếu d I1I chéo gọi    mặt phẳng chứa d song song với I1I d  I1 ,     �R khơng có mặt phẳng thỏa mãn d  I1 ,      R có mặt phẳng thỏa mãn 12 TH2: Nếu R1  R2  R  S1  ,  S2  rời  P  song song với I1I qua trung điểm M I1I + Nếu d / / I1I giống TH + Nếu M �d : d  I1, d   R khơng có mặt phẳng thỏa mãn d  I1 , d   R có mặt phẳng thỏa mãn d  I1, d   R có hai mặt phẳng thỏa mãn + Nếu d I1I chéo gọi    mặt phẳng chứa d song song với I1I ,    mặt phẳng chứa d qua M d  I1 ,      R có mặt phẳng thỏa mãn d  I1 ,     �R khơng có mặt phẳng thỏa mãn d  I1 ,      R có mặt phẳng thỏa mãn d  I1 ,     �R khơng có mặt phẳng thỏa mãn TH3: Nếu R1 �R2 a Xét  S1  ,  S2  rời nhau: uuur r R1 uuuu MI1  � MI R2 M + Gọi điểm thỏa mãn + Gọi mặt phẳng    qua M chứa d (biết M �d , TH M �d giải Mơ hình 4) Nếu d  I1 ,      R1 có mặt phẳng thỏa mãn 13 Nếu b Xét  S1  ,  S  d  I1 ,     �R1 khơng có mặt phẳng thỏa mãn uuur R uuuu r MI1  MI R2 cắt nhau: gọi điểm M thỏa mãn giải tương tự ( Các toán  P  chứa d tiếp xúc với  S1  cắt  S  theo đường tròn có bán kính r cắt  S1  ,  S2  theo đường tròn có bán kính r1 , r2 giải tương tự xin dành cho bạn đọc) Các toán trắc nghiệm: Bài tốn 3.1 Trong khơng gian với hệ tọa độ Oxyz , cho hai mặt cầu:  S1  : x  y  z  x  2z   2  S2  : x  y  z  y  z  19 0 �1 � A � ;1; 1� , B  1;2;0  � � hai điểm Số mặt phẳng chứa AB tiếp xúc với  S1  ,  S2  là: A B.1 C D Vô số Hướng dẫn giải:  S1  �1 � I1 � ;0; 1� R1  R  �, ,  S  có tâm I  0;1; 2  , có tâm �2 Ta có R1  R2 I1I   R1  R2 suy  S1  ,  S2  khơng có điểm chung r �1 �1 � uuu � M � ; ;  � AB  � ;1;1� �2 � Trung điểm I1I �4 2 �và x 1 y  z d  I1 , AB      � M �AB nên có mặt phẳng 2 Ta có thỏa mãn Chọn đáp án C AB : 14 Bài tốn 3.2 Trong khơng gian với hệ tọa độ Oxyz , cho hai mặt cầu:  S1  : x  y  z  x  2z   2  S2  : x  y  z  y  z  19 0 hai điểm A  2;1;4  , B  1;3;0  Số mặt phẳng chứa AB tiếp xúc với  S1  ,  S2  là: A B.1 C D Vô số Hướng dẫn giải: Tương tự Bài toán 3.1 Ta có M �AB Gọi mặt phẳng    chứa AB song song với I1I �    : x  y   Gọi mặt phẳng    chứa AB qua M �    : 26 x  y  z  17  4 � , d  I1 ,      � 749 nên khơng có mặt phẳng thỏa Ta có mãn Chọn đáp án A d  I1 ,      Bài tốn 3.3 Trong khơng gian với hệ tọa độ Oxyz , cho điểm A  1;1;2  , R1  B  2; 1;3 , C  3;1;4  , D  1;0;1 Gọi  S1  mặt cầu tâm A bán kính ,  S2  R2  Có mặt phẳng chứa CD tiếp xúc mặt cầu tâm B bán kính với  S1  ,  S  A B.1 C D Vô số Hướng dẫn giải: Ta có  S1  ,  S  rời � M  3; 3;4  uuur uuur � MA  �2MB � � �5 � M � ; ; � � �3 3 � � M Gọi điểm thỏa mãn Gọi mặt phẳng    qua M chứa CD 15 �    : 3x  z   � d  A,       R1 � �� � �R1 �  : x  y  3z   � d  A,      14 � Suy có mặt phẳng thỏa mãn Chọn đáp án B Bài toán 3.4 Trong không gian với hệ tọa độ Oxyz , cho điểm A  1;1;2  , B  2; 1;3 , C  3;1;4  , D  1;0;1 Gọi  S1  mặt cầu tâm A bán kính R1  ,  S2  mặt cầu tâm B bán kính R2  Có mặt phẳng chứa CD tiếp xúc với  S1  ,  S  A B.1 C D Vô số Hướng dẫn giải: Ta có  S1  ,  S  cắt uuur uuur MA  MB � M  3; 3;4  Gọi điểm M thỏa mãn Gọi mặt phẳng    qua M d A,     �4  R1 chứa CD , ta có  , suy khơng có mặt phẳng thỏa mãn Chọn đáp án A Bài tốn 3.5 Trong khơng gian với hệ tọa độ Oxyz , cho điểm A  1;1;2  , B  2; 1;3 , C  0;0;6  , D  3;0;3 Gọi  S1  mặt cầu tâm A bán kính R1  ,  S2  mặt cầu tâm B bán kính R2  Có mặt phẳng chứa CD , tiếp xúc với  S1  cắt  S  theo đường tròn có bán kính r  A B.1 C D Vô số Hướng dẫn giải: Ta có  S1  ,  S  cắt uuur uuur MA  MB � M  1;5;0  M Gọi điểm thỏa mãn Gọi mặt phẳng    qua M d  A,      �2  R1  :x y z60�   CD chứa , ta có , suy khơng có mặt phẳng thỏa mãn Chọn đáp án A 16 Mơ hình 4: Mặt phẳng  P  song song với đường thẳng d tiếp xúc với  S1  ,  S2  ( tiếp xúc với  S1  cắt  S  theo đường tròn có bán kính r cắt  S1  ,  S2  theo đường tròn có bán kính r1 , r2 ) TH1: Nếu R1  R2  R  S1  ,  S2  cắt  P  song song với I1 I + Nếu d / / I1I có vơ số mặt phẳng thỏa mãn + Nếu d không song song với I1I gọi    mặt phẳng chứa d song song với I1I d  I1 ,      R có mặt phẳng thỏa mãn d  I1 ,     �R có mặt phẳng thỏa mãn + Nếu d I1I chéo gọi    mặt phẳng chứa d song song với I1I d  I1 ,     �R khơng có mặt phẳng thỏa mãn d  I1 ,      R có mặt phẳng thỏa mãn TH: Nếu R1 �R2 : Xét  S1  ,  S  rời nhau: uuur r R uuuu MI1  � MI R2 + Gọi điểm M thỏa mãn + Gọi đường thẳng  qua M song song với d �  � P  Nếu d  I1 ,    R1 khơng có mặt phẳng thỏa mãn Nếu d  I1 ,    R1 có mặt phẳng thỏa mãn 17 Nếu d  I1 ,    R1 có hai mặt phẳng thỏa mãn b Xét  S1  ,  S2  uuur R uuuu r MI1  MI R2 cắt nhau: gọi điểm M thỏa mãn giải tương tự ( Các toán  P  song song d tiếp xúc với  S1  cắt  S  theo đường tròn có bán kính r cắt  S1  ,  S  theo đường tròn có bán kính r1 , r2 giải tương tự xin dành cho bạn đọc) Các toán trắc nghiệm: Bài tốn 4.1 Trong khơng gian với hệ tọa độ Oxyz , cho hai mặt cầu :  S1  : x  y  z  x  y    S2  : x  y  z  x    A  1;4;0  , B 0;1;  hai điểm Số mặt phẳng song song với AB tiếp xúc với  S1  ,  S  là: A B.1 C D Vơ số Hướng dẫn giải:  S1  có tâm I1  1; 2;0  , bán kính R1  ,  S  có tâm I1  3;0;0  , bán kính R2  Ta có R1  R2  I1I  2  R1  R2 suy  S1  ,  S2  cắt Gọi mặt phẳng    chứa AB song song với I1I , ta có    : x  y  z   � d  I1 ,      , suy có mặt phẳng thỏa mãn Chọn đáp án B Bài toán 4.2 �3 � A  1;2; 3 , B � ; ;  � , Oxyz 2 � � Trong không gian với hệ tọa độ , cho điểm C  1;1;4  , D  5;3;0  Gọi  S1  mặt cầu tâm A bán kính R1  ,  S  mặt cầu 18 R2  Có mặt phẳng song song với CD đồng thời tiếp tâm B bán kính xúc với  S1  ,  S  A B.1 C D Vơ số Hướng dẫn giải: Ta có  S1  ,  S2  cắt uuur uuur MA  MB � M  2;1;2  Gọi điểm M thỏa mãn Gọi  qua M song song với x  y 1 z  �:   CD 2 , ta có , suy có mặt phẳng thỏa mãn Chọn đáp án C Bài toán 4.3 �3 � A  1;2; 3 , B � ; ;  � , Oxyz 2 � � Trong không gian với hệ tọa độ , cho điểm C  0;1; 1 , D  1; 1;1 Gọi  S1  mặt cầu tâm A bán kính R1  ,  S  mặt cầu R2  Có mặt phẳng song song với CD đồng thời tiếp tâm B bán kính xúc với  S1  ,  S  A B.1 C D Vơ số Hướng dẫn giải: Ta có  S1  ,  S  cắt Tương tự Bài toán 4.2 �: x  y 1 z    2 , ta có Gọi  qua M song song với CD 74 d  A,     R1  3 , suy khơng có mặt phẳng thỏa mãn Chọn đáp án A Bài tốn 4.4 Trong khơng gian với hệ tọa độ Oxyz , cho điểm A  1;1;2  , B  2; 1;3 , C  2; 1; 1 , D  5;2;0  Gọi  S1  mặt cầu tâm A bán kính R1  ,  S2  mặt cầu tâm B bán kính R2  Có mặt phẳng song song với CD , tiếp xúc với  S1  cắt  S  theo đường tròn có bán kính r  19 A B.1 C D Vô số Hướng dẫn giải: Ta có  S1  ,  S  cắt uuur uuur MA  MB � M  1;5;0  M Gọi điểm thỏa mãn Gọi  qua M song song với x 1 y  z 2090 �:   d  A,     R1  3 , ta có 19 CD , suy có mặt phẳng thỏa mãn Chọn đáp án C 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, thân, đồng nghiệp nhà trường Để kiểm tra hiệu đề tài tiến hành kiểm tra số đối tượng học sinh khá, giỏi lớp trường THPT Đào Duy Từ Trong kiểm tra hình thức trắc nghiệm với 15 câu trắc nghiệm thời gian làm 45 phút Kết thu sau: Lớp 12A4 12A6 Sĩ số học sinh khá, giỏi 35 25 Số câu < Số lượng % 8.6 32 �Số câu đúng

Ngày đăng: 31/10/2019, 14:16

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w