Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 32 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
32
Dung lượng
1,64 MB
Nội dung
MỤC LỤC NỘI DUNG Mở đầu 1.1 Lý chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng ngiên cứu 1.4 Phương pháp nghiên cứu Nội dung sáng kiến 2.1 Cơ sở lí luận 2.2 Thực trạng vấn đề trước áp dụng SKKN 2.3 Giải vấn đề I NHÓM CÂU HỎI VỀ SỰ BIẾN THIÊN CỦA HÀM SỐ II NHÓM CÂU HỎI VỀ CỰC TRỊ CỦA HÀM SỐ III NHÓM CÂU HỎI VỀ SỰ TƯƠNG GIAO ĐỒ THỊ IV NHÓM CÂU HỎI VỀ ĐƯỜNG TIỆM CẬN V NHÓM CÂU HỎI VỀ GTLN, NN CỦA HÀM SỐ 2.4 Hiệu SKKN Kết luận, kiến nghị TÀI LIỆU THAM KHẢO DANH MỤC CÁC SKKN ĐÃ ĐƯỢC XẾP LOẠI PHỤ LỤC Trang 1 1 1 2 13 15 17 19 20 21 22 1-7 Mở đầu 1.1 Lí chọn đề tài Đứng trước kì thi THPT Quốc Gia tới, trước tình hình đề thi trắc nghiệm với câu hỏi xoáy vào nhiều khía cạnh khác nhau, với nhiều cách hỏi khác giả thiết ngày xuất câu hỏi mới, lạ hóc búa Nhiều học sinh thấy chán nãn mệt mỏi Bản thân giáo viên dạy lớp 12A4 12A5 trường THPT Yên Định 1, đối tượng học sinh chủ yếu học sinh có học lực mức trung bình khá, em cố gắng, nổ lực học tập Tôi trăn trở với khó khăn mà em gặp phải Làm để hệ thống kiến thức, phương pháp giải, phương pháp hỏi để giúp em bớt khó khăn q trình ơn tập chủ động tiếp cận câu hỏi Một ý tưởng để thực “Câu hỏi mở ôn tập phần hàm số cho học sinh khối 12” Đó tên đề tài mà chọn để nghiên cứu 1.2 Mục đích nghiên cứu Xây dựng hệ thống tập phát triển theo nhiều khía cạnh khác nhau, nói cách khác tập cho học sinh làm quen với toán mở để ôn tập tốt phần hàm số chương trình lớp 12 từ tạo hứng thú, động lực phương pháp để em ôn tập tốt chương sau 1.3 Đối tượng nghiên cứu Đề tài viết mảng kiến thức phần hàm số thuộc chương trình giải tích lớp 12 THPT Và hướng tới đối tượng học sinh có học lực từ yếu đến khá, giỏi trường THPT Yên Định 1.4 Phương pháp nghiên cứu Tôi chủ yếu sử dụng phương pháp thực nghiệm (nghiên cứu trực tiếp giảng dạy lớp 12A5) Ngồi sử dụng phương pháp: - Phương pháp quan sát (công việc dạy - học giáo viên học sinh) - Phương pháp đàm thoại, vấn (lấy ý kiến giáo viên học sinh thông qua trao đổi trực tiếp) Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm a Cơ sở triết học: Theo triết học vật biện chứng, mâu thuẫn động lực thúc đẩy trình phát triển Vì trình giúp đỡ học sinh, người giáo viên cần trọng gợi động học tập giúp em thấy mâu thuẫn điều chưa biết với khả nhận thức mình, phát huy tính chủ động sáng tạo học sinh việc lĩnh hội tri thức b Cơ sở tâm lí học: Theo nhà tâm lí học: Con người bắt đầu tư tích cực nảy sinh nhu cầu tư duy, đứng trước khó khăn cần phải khắc phục c Cơ sở giáo dục học: Để giúp em học sinh học tập tốt hơn, người giáo viên cần tạo cho học sinh hứng thú học tập Cần cho học sinh thấy nhu cầu nhận thức quan trọng, người muốn phát triển cần phải có tri thức, cần phải học hỏi tổng hợp kiến thức cho riêng d Theo luật giáo dục Việt Nam có viết: “Phương pháp giáo dục phổ thơng cần phát huy tính tích cực, tự giác, chủ động sáng tạo học sinh, phù hợp với đặc điểm lớp học, môn học, bồi dưỡng phương pháp tự học, rèn luyện kĩ vận dụng kiến thức, tác động đến tính cảm, đem lại niềm vui, hứng thú học tập học sinh” 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Kiến thức rộng, câu hỏi đa dạng, có rải rác đề thi thử trường, khó tổng hợp Nhiều học sinh cảm thấy chán nãn mệt mỏi 2.3 Giải vấn đề Xuất phát từ bảng biến thiên quen thuộc…! Cho hàm số f ( x ) có bảng biến thiên hình vẽ đây: Ta đặt câu hỏi liên quan nêu phương pháp giải ! Trước tiên kiểm tra nhanh học sinh tính đồng biến, nghịch biến hàm số Các điểm cực trị, tiệm cận, tương giao với trục tọa độ đồ thị hàm số Sau xây dựng câu hỏi khó hơn, đòi hỏi tư cao I NHÓM CÂU HỎI VỀ SỰ BIẾN THIÊN CỦA HÀM SỐ Câu 1: Xét biến thiên hàm số: y = f ( x ) Phương pháp: - Tính đạo hàm y′ hàm số - Giải phương trình: y′ = - Giải bất phương trình: y′ > (hoặc y′ < ) - Lập bảng biến thiên kết luận Ta có: y′ = f ( x ) ′ = ( x′ ) f ′ ( x ) = f ′ ( x ) y′ = ⇔ f ′ ( x ) = ⇔ x = ±1 ⇔ x = ± 2 x > 2x > y′ > ⇔ f ′ ( x ) > ⇔ ⇔ x < − 1 x < − 1 1 y ÷ = f ( 1) = 0; y − ÷ = f ( −1) = 2 2 Từ ta có bảng biến thiên: Lưu ý: Vẫn xét dấu y′ mà khơng cần giải bất phương trình y′ > Đó ta thử dấu khoảng Sau sử dụng quy tắc đan dấu y′ qua nghiệm bội lẻ không đổi dấu qua nghiệm bội chẵn (tính nghiệm tử mẫu, y′ hàm phân thức) Chẳng hạn: 1 để thử dấu khoảng − ; ÷ ta chọn x = Ta có: 2 1 y′ ( ) = f ′ ( 2.0 ) = f ′ ( ) < Suy y′ < khoảng − ; ÷ 2 Câu 2: Xét biến thiên hàm số y = f ( − x ) Tương tự câu Ta có bảng biến thiên: Lưu ý: Ta lấy đối xứng đồ thị hàm số y = f ( x ) qua trục Oy để đồ thị hàm số y = f ( − x ) từ suy bảng biến thiên Câu 3: Xét biến thiên hàm số y = f ( − x ) Tương tự câu Ta có bảng biến thiên: Bình luận: Do y = f ( − x ) = f − ( x − 3) nên ta tịnh tiến đồ thị (hay BBT) hàm số y = f ( − x ) câu sang bên phải đơn vị ta đồ thị (hay BBT) hàm số y = f ( − x ) câu ( ) Câu 4: Xét biến thiên hàm số y = f x + Ta có: y′ = f x + ′ = x f ′ x + x = x = ′ ′ y = ⇔ x f x + = ⇔ ⇔ 2 f ′ x + = x + = ±1 ⇔ x = (nghiệm bội 3) x2 + > f ′ x +1 > ⇔ ⇔ x ≠ x + < − Từ ta có bảng biến thiên: ( ) ( ( ( ) ) ( ) ) Câu tác giả lấy ý tưởng từ nguồn tham khảo số [II] Bình luận: Nếu sử dụng lưu ý câu 1: y′ ( 1) = f ′ ( ) > Ta có bảng biến thiên: ( ) Câu 5: Xét biến thiên hàm số y = f − x Tương tự câu sử dụng lưu ý câu Ta có bảng biến thiên: Câu 6: Xét biến thiên hàm số y = f Ta có: y′ = 2x + x + x +1 f ′ ( ) ( ) x2 + x + x2 + x + ; x = − x = − 2 2 x + = y′ = ⇔ ⇔ x + x + = −1 ⇔ x = −1 f ′ x + x +1 = x = x + x +1 =1 BBT: ( ) Bình luận: Qua số ví dụ trên, ta thấy việc xét biến thiên hàm số y = f ( u ( x ) ) trở nên quen thuộc dễ hiểu II NHÓM CÂU HỎI VỀ CỰC TRỊ CỦA HÀM SỐ Nhắc lại số phép suy đồ thị: Cho đồ thị ( C ) : y = f ( x ) Lấy đối xứng ( C ) qua trục Oy ta đồ thị ( C1 ) : y = f ( − x ) Lấy đối xứng ( C ) qua trục Ox ta đồ thị ( C2 ) : y = − f ( x ) Lấy đối xứng ( C ) qua gốc tọa độ O ta đồ thị ( C3 ) : y = − f ( − x ) Tịnh tiến ( C ) lên a đơn vị (a > 0) theo trục Oy ta đồ thị ( C4 ) : y = f ( x ) + a Tịnh tiến ( C ) xuống a đơn vị (a > 0) theo trục Oy ta đồ thị ( C5 ) : y = f ( x ) − a Tịnh tiến ( C ) sang phải a đơn vị (a > 0) theo trục Ox ta đồ thị ( C6 ) : y = f ( x − a ) Tịnh tiến ( C ) sang trái a đơn vị (a > 0) theo trục Ox ta đồ thị ( C7 ) : y = f ( x + a ) Đồ thị ( C8 ) : y = f ( x ) gồm hai phần: - Phần 1: Là phần đồ thị ( C ) nằm phía trục Ox (tính điểm nằm trục Ox ) - Phần 2: Là phần đối xứng với phần phía trục Ox đồ thị ( C ) , qua trục Ox Đồ thị ( C9 ) : y = f ( x ) gồm hai phần: - Phần 1: Là phần đồ thị ( C ) nằm phải trục Oy (tính điểm nằm trục Oy - Phần 2: Là phần đối xứng với phần qua trục Oy Câu 7: Hàm số y = f ( x ) có điểm cực trị ? Dựa BBT ta vẽ phác họa đồ thị ( C ) : y = f ( x ) sau: Sau dựa vào phép suy đồ thị thứ nêu suy đồ thị hàm số y = f ( x ) : ⇒ Hàm số y = f ( x ) có điểm cực trị Câu 8: Hàm số y = f ( x ) + có điểm cực trị ? Tịnh tiến đồ thị hàm số y = f ( x ) theo trục Oy lên đơn vị, ta đồ thị hàm số y = f ( x ) + Các câu từ – 19 tác giả lấy ý tưởng từ nguồn tham khảo số [I] ⇒ Hàm số y = f ( x ) + có điểm cực trị Bình luận: Các phép tịnh tiến toàn hay lấy đối xứng tồn đồ thị hàm số khơng làm thay đổi số điểm cực trị Tức hàm số: y = f ( − x ) ; y = − f ( x ) ; y = − f ( − x ) ; y = f ( x ) ± a; y = f ( x ± a ) (hằng số a > ) có số điểm cực trị số điểm cực trị hàm số y = f ( x ) Câu 9: Hàm số y = f ( x ) có điểm cực trị ? Sử dụng phép suy đồ thị thứ nêu ta phác họa đồ thị hàm số y= f ( x): ⇒ Hàm số y = f ( x ) có điểm cực trị Câu 10: Hàm số y = f ( x − ) có điểm cực trị ? Sử dụng phép suy đồ thị thứ nêu ta phác họa đồ thị hàm số y = f ( x ) Sau tịnh tiến sang phải đơn vị ta đồ thị hàm số y= f ( x−2) Các câu từ – 19 tác giả lấy ý tưởng từ nguồn tham khảo số [I] ⇒ Hàm số y = f ( x − ) có điểm cực trị Bình luận: Học sinh dễ nhầm lẫn theo kiểu: Tịnh tiến đồ thị ( C ) : y = f ( x ) sang phải đơn vị, sau lấy đối xứng qua trục Oy Có thể nhận xét: Số điểm cực trị hàm số y = f ( x − ) số điểm cực trị hàm số y = f ( x ) Câu 11: Hàm số y = f ( x ) − có điểm cực trị ? Tịnh tiến đồ thị ( C ) xuống đơn vị ta đồ thị hàm số y = f ( x ) − Sau sử dụng phép suy đồ thị thứ ta đồ thị hàm số y = f ( x ) − ⇒ Hàm số y = f ( x ) − có điểm cực trị Các câu từ – 19 tác giả lấy ý tưởng từ nguồn tham khảo số [I] Ta có: y = Do: lim x →+∞ ( x + 1) f ( x) (x − x + 3) a ( x − x0 ) ( x − 1) = a ( x − x0 ) ( x − 1) ( x + 1) ( x − 1) ( x − 3) a ( x − x0 ) ( x + 1) ( x − 1) ( x − 3) 2 = lim x →+∞ ( x + 1) ( x − 3) = ⇒ TCN: y = Dễ thấy đường TCĐ: x = −1; x = Vậy đồ thị hàm số y = ( x + 1) f ( x) (x − x + 3) có tất đường tiệm cận (đứng ngang) V NHÓM CÂU HỎI VỀ GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT Câu 33: Gọi M , m GTLN, NN hàm số y = f ( sinx ) Tính tổng M + m Đặt t = sinx, t ∈ [ −1;1] Ta có: Maxf ( sinx ) = Max f ( t ) = t = −1 ( sinx = −1) [ −1;1] Minf ( sinx ) = Min f ( t ) = t = ( sinx = 1) [ −1;1] ⇒ M + m = 4 Câu 34: Tìm GTLN hàm số y = f ( 2sin x + 2cos x − 3) 4 Đặt: t = 2sin x + 2cos x − = −1 − sin x, t ∈ [ −2; −1] Ta có: Maxy = Max f ( t ) = t = −1 ( sin x = ) [ −2;−1] 4x Câu 35: Tìm GTNN hàm số y = f ÷ đoạn [ 0; 2] x +1 4x , x∈ [ 0;2] Lập bảng biến thiên ⇒ t ∈ [ 0;2] x2 + y = Min f ( t ) = t = x = ± Ta có: Min [ 0;2] [ 0;2] Đặt: t = ( ) Câu 36: Nếu f ( x ) hàm số đa thức bậc Hãy tìm số giá trị tham số thực m để GTLN hàm số y = f ( x ) + m [ −3;3] 30 Theo (câu 28) ta tìm được: f ( x ) = x − x + *) Xét: h ( x ) = f ( x ) + m = x − 3x + + m, ∀x∈ [ −3;3] Câu 36 tác giả lấy ý tưởng từ nguồn tham khảo số [II] 17 Đựa vào BBT hàm số f ( x ) ta suy BBT hàm số h ( x ) đoạn [ −3;3] sau: ⇒ h ( x ) ∈ [ m − 16; m + 20] ⇒ Max y = Max h ( x ) = Max { m − 16 , m + 20 } [ −3;3] [ −3;3] *) Nếu: m − 16 < m + 20 thì: m = 10 ( tm ) Max y = 30 ⇔ m + 20 = 30 ⇔ [ −3;3] m = −50 ( l ) *) Nếu: m − 16 ≥ m + 20 thì: m = 46 ( l ) Max y = 30 ⇔ m − 16 = 30 ⇔ [ −3;3] m = −14 ( tm ) Vậy có giá trị m thỏa mãn Câu 37: Nếu f ( x ) hàm số đa thức bậc Hãy tìm điều kiện tham số thực m để GTLN hàm số y = f ( x ) + m [ −3;3] nhỏ 30 y = Max { m − 16 , m + 20 } *) Theo câu trên, ta có: Max [ −3;3] m − 16 < 30 m∈ ( −14;46 ) Max y < 30 ⇔ ⇔ Do đó: [ −3;3] m + 20 < 30 m∈ ( −50;10 ) ⇔ m∈ ( −14;10 ) m − 16 > 30 Bình luận: Max y > 30 ⇔ [ −3;3] m + 20 > 30 Câu 38: Nếu f ( x ) hàm số đa thức bậc Hãy tìm số giá trị nguyên tham số thực m để GTNN hàm số y = f ( x ) + m [ −3;3] nhỏ 30 *) Ta biết biết: h ( x ) = f ( x ) + m ∈ [ m − 16; m + 20] *) Nếu: m − 16 ≤ ≤ m + 20 ⇔ −20 ≤ m ≤ 16 Câu 37 tác giả lấy ý tưởng từ nguồn tham khảo số [I] 18 y = Min h ( x ) = < 30 Nên trường hợp có 37 giá trị nguyên thì: Min [ −3;3] [ −3;3] m thỏa mãn *) Nếu: m − 16 < m + 20 < ⇔ m < −20 Min y = Min h ( x ) = m + 20 [ −3;3] [ −3;3] y < 30 ⇔ m + 20 < 30 ⇔ −50 < m < 10 Ta có: Min [ −3;3] Đối chiếu điều kiện xét ⇒ −50 < m < −20 Nên trường hợp có 29 giá trị nguyên m thỏa mãn *) Nếu: < m − 16 < m + 20 ⇔ m > 16 Min y = Min h ( x ) = m − 16 [ −3;3] [ −3;3] Min y < 30 ⇔ m − 16 < 30 ⇔ −14 < m < 46 [ −3;3] Đối chiếu điều kiện xét ⇒ 16 < m < 46 Nên trường hợp có 29 giá trị nguyên m thỏa mãn Vậy có tất 95 giá trị nguyên m thỏa mãn yêu cầu tốn Bình luận: Khi biết cụ thể hàm số ta lại có nhiều câu hỏi khác khai thác Tới tơi xin kết thúc viết 2.4 Hiệu SKKN - Học sinh cảm thấy hứng thú tiết học ôn tập, biết câu hỏi đa dạng thường xuất phát từ chất tốn gốc mà em biết, từ em sáng tạo câu hỏi khác cho giả thiết Các em cảm thấy tự tin chủ động tiếp cận câu hỏi Đặc biệt thu hút học sinh có học lực yếu với câu hỏi từ mức độ nhận biết mà em tự đặt đến câu hỏi khó hơn, nâng dần mức độ để phù hợp với học sinh có lực học khá, giỏi Điều minh chứng rõ nét kiểm tra cho lớp khối 12 mà trực tiếp giảng dạy, lực học học sinh hai lớp tương đương nên đề, tất nhiên đảm bảo tính khách quan Nội dung kiểm tra chương hai lớp ôn tập xong phần hàm số khoảng thời gian Trong lớp 10A4 tơi cho em ơn tập bình thường ơn luyện đề phần hàm số, lớp 12A5 tổng hợp theo phương pháp nêu SKKN Kết thu có khác biệt rõ, thể bảng sau: Lớp Sĩ số 12A4 12A5 40 41 Tỉ lệ điểm Giỏi 5% 12% Khá 25% 37% TB 57% 46% Yếu 13% 5% 19 - Được đồng nghiệp đánh giá cao Một số thầy, cô giáo trường dạy khối 12 áp dụng vào giảng dạy thu hiệu tích cực Kết luận, kiến nghị 3.1 Kết luận: Bài viết thể rõ ràng ý tưởng tơi Mong ý tưởng có ích cho thầy, cô giáo việc soạn dạy ôn tập cho học sinh 3.2 Kiến nghị: - Đối với nhà trường: Nhà trường tạo điều kiện trang thiết bị dạy học, để giáo viên có điều kiện tìm tòi thực phương pháp dạy học - Đối với tổ, nhóm chun mơn: Tăng cường trao đổi chuyên môn, đặc biệt thành viên nhóm chun mơn tích cực chia sẻ phương pháp dạy học, phương pháp giải tập mới, hiệu để đồng nghiệp trao đổi, đánh giá, hoàn thiện vận dụng vào dạy học XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 20 tháng năm 2018 Tôi xin cam đoan sáng kiến kinh nghiệm viết, khơng chép nội dung người khác Người viết SKKN Nguyễn Tư Tám TÀI LIỆU THAM KHẢO 20 [I] Đề thi thử trường THPT, sở GD&ĐT nước năm học 2016 – 2017 2017 – 2018 [II] Các đề minh họa, đề thi BGD năm học 2016 – 2017 2017 – 2018 21 DANH MỤC CÁC ĐỀ TÀI SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG ĐÁNH GIÁ XẾP LOẠI CẤP PHÒNG GD&ĐT, CẤP SỞ GD&ĐT VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN Họ tên tác giả: Nguyễn Tư Tám Chức vụ đơn vị cơng tác: Giáo viên tốn trường THPT Yên Định TT Tên đề tài SKKN Cấp đánh giá xếp loại Dạy học khám phá vận dụng BĐT Côsi Sở Giáo Dục & Đào Tạo Kết đánh giá xếp loại Năm học đánh giá xếp loại C 2016 22 PHỤ LỤC BÀI TẬP RÈN LUYỆN Câu 1: Cho hàm số f ( x ) liên tục ¡ \ { 1} , có bảng biến thiên hình vẽ đây: Hãy khoảng đồng biến, nghịch biến điểm cực trị hàm số y = f ( x) Đồ thị hàm số y = f ( x ) có tất đường tiệm cận (đứng ngang) ? Xác định số giao điểm đồ thị hàm số y = f ( x ) trục hoành Xét biến thiên hàm số y = f ( − x ) ( ) Xét biến thiên hàm số y = f − x Hàm số y = f ( x ) có điểm cực trị ? Hàm số y = f ( x ) − có điểm cực trị ? ( ) Xét biến thiên hàm số y = f − x − ( ) Tìm điều kiện tham số thực m để hàm số y = f x + x + m có điểm cực trị ? 10 Hàm số y = f ( x ) − 3 có điểm cực trị ? 11 Tìm điều kiện tham số thực m để hàm số y = f ( x ) − f ( x ) + m có điểm cực trị ? 12 Phương trình f x − x + − = có nghiệm thực phân biệt ? ( ( ) ) 13 Tìm m để phương trình f x − x + m − = có nghiệm thực phân biệt ? 14 Đồ thị hàm số y = có tất đường tiệm cận (đứng ngang) ? f ( x) 15 Đồ thị hàm số y = có tất đường tiệm cận f ( x) − f ( x) + (đứng ngang) ? Câu 2: [Sở GD & ĐT Hà Tỉnh – 2018] Cho đồ thị hàm bậc ba y = f ( x ) hình vẽ Hỏi đồ thị hàm số (x y= + 4x + ) x2 + x có đường x f ( x ) − f ( x ) tiệm cận đứng ? A B C D Câu 3: [Chuyên Nguyễn Thị Minh Khai -Sóc Trăng-Lần 2-2018] Có giá trị nguyên tham số m để hàm số y = x − 25 x + 60 x + m có điểm cực trị? A 42 B 21 C 40 D 20 Câu 4: [Chuyên Nguyễn Thị Minh Khai-Sóc Trăng-Lần 2-2018] Gọi S tập hợp tất giá trị tham số m cho giá trị lớn hàm số y = x − x − x + m đoạn [ −2;4] 16 Số phần tử S A B D C Câu 5: [Chuyên Nguyễn Thị Minh Khai-Sóc Trăng-Lần 2-2018] Cho hàm số y = f ( x ) Hàm số y = f ′ ( x ) có đồ thị hình bên Hàm số y = f ( − x ) nghịch biến khoảng ? A ( −1; +∞ ) B ( 0;2 ) C ( −∞; −1) D ( 1;3) y x -3 -2 -1 Câu 6: [Chuyên Vĩnh Phúc - Lần - 2018] Cho hàm số đa thức bậc ba y = f ( x ) có đồ thị hình vẽ Tất giá trị tham số m để hàm số y = f ( x ) + m có ba điểm cực trị A m ≤ −1 m ≥ C m = −1 m = B m ≤ −3 m ≥ D ≤ m ≤ Câu 7: [THPT Hà Trung - Lần - 2018] Cho hàm số y = f ( x ) có đạo hàm ¡ có đồ thị hình vẽ bên Đặt g ( x ) = f ( x) −3 f ( x) Tìm số nghiệm phương trình g ′ ( x ) = A B C D Câu 8: [Chuyên ĐH Vinh - Lần - 2018] Cho hàm số y = f ( x ) có bảng biến thiên hình vẽ Số nghiệm phương trình f ( x ) − = A B C Câu 9: Cho hàm số y = f ( x ) có đạo hàm ¡ D Đường cong hình vẽ bên đồ thị hàm số y = f ′ ( x ) , ( y = f ′ ( x ) liên tục ¡ ) Xét hàm số g ( x ) = f ( x − ) Mệnh đề sai? A Hàm số g ( x ) nghịch biến ( −∞; −2 ) B Hàm số g ( x ) đồng biến ( 2;+∞ ) C Hàm số g ( x ) nghịch biến ( −1;0 ) D Hàm số g ( x ) nghịch biến ( 0;2 ) Câu 10: Cho hàm số f ( x ) = x − x + có đồ thị đường cong hình Phương trình ( x − x + ) − ( x3 − x + ) + = có nghiệm thực phân biệt A B C Câu 11: Cho hàm số y = f ( x ) có đồ thị y = f ′ ( x ) hình vẽ D y -1 -3 O x -2 3 Xét hàm số: g ( x ) = f ( x ) − x − x + x + 2018 4 Mệnh đề ? A g ( x ) = g ( −1) g ( x ) = g ( 1) B [ −3;1] [ −3;1] g ( x ) = g ( −3 ) C [ −3;1] D g ( x ) = [ −3;1] Câu 12: Hình vẽ bên đồ thị hàm số y = f ( x ) g ( −3) + g ( 1) y x O -3 -6 Gọi S tập hợp giá trị nguyên dương tham số m để hàm số y = f ( x − 1) + m có điểm cực trị Tổng giá trị tất phần tử S A 12 B 15 C 18 D Câu 13: Cho hàm số y = f ( x ) Xác định liên tục ¡ , có đạo hàm f ′ ( x ) Biết đồ thị hàm số f ′ ( x ) hình vẽ Số điểm cực trị hàm số g ( x ) = f ( x ) + x A B C D Câu 14: Cho hàm số y = f ( x ) có đạo hàm liên tục ¡ Bảng biến thiên hàm số y = f ′ ( x ) đoạn [ −1;3] hình vẽ x Hàm số y = f 1 − ÷+ x nghịch biến khoảng cho ? 2 A ( 2;4 ) B ( 0;2 ) C ( −2;0 ) D ( −4; −2 ) Câu 15: Cho hàm số y = f ( x ) Đồ thị hàm số y = f ′ ( x ) hình vẽ Hàm số y = f ( x ) đồng biến khoảng cho ? A ( 0;2 ) B − ;0 ÷ C ( −2; −1) Câu 16: Cho hàm số f ( x ) có đạo hàm hàm số f ′ ( x ) 1 D − ; ÷ 2 ¡ Biết hàm số y = f ′ ( x − ) + có đồ thị hình vẽ bên Hàm số f ( x ) nghịch biến khoảng ? A ( −∞;2 ) B ( −1;1) 3 5 C ; ÷ 2 2 D ( 2; +∞ ) Câu 17: [Chuyên Hạ Long – Quảng Ninh – Lần - 2018] Cho hàm số y = f ( x) có đạo hàm cấp f ¢( x ) đạo hàm cấp hai f ¢¢( x ) ¡ Biết đồ thị hàm số y = f ( x ) , y = f ¢( x ) , y = f ¢¢( x ) đường cong ( C1 ) , ( C2 ) , ( C3 ) hình vẽ bên Hỏi đồ thị hàm số y = f ( x ) , y = f ¢( x ) , y = f ¢¢( x ) theo thứ tự ? A ( C2 ) , ( C1 ) , ( C3 ) B ( C1 ) , ( C2 ) , ( C3 ) C ( C3 ) , ( C2 ) , ( C1 ) D ( C3 ) , ( C1 ) , ( C2 ) - ... cận câu hỏi Một ý tưởng để thực Câu hỏi mở ôn tập phần hàm số cho học sinh khối 12 Đó tên đề tài mà chọn để nghiên cứu 1.2 Mục đích nghiên cứu Xây dựng hệ thống tập phát triển theo nhiều khía... em học sinh học tập tốt hơn, người giáo viên cần tạo cho học sinh hứng thú học tập Cần cho học sinh thấy nhu cầu nhận thức quan trọng, người muốn phát triển cần phải có tri thức, cần phải học hỏi. .. bội chẵn Do số điểm cực trị hàm số cho số nghiệm bội lẻ phương trình ( ) Vậy số điểm cực trị hàm số y = f ( x ) số điểm cực trị hàm số y = f ( x ) điểm cực trị Câu 16: Hàm số y = f