1. Trang chủ
  2. » Giáo Dục - Đào Tạo

của một điểm trên mặt phẳng giúp học sinh giải quyết nhanh bài toán tính khoảng cách từ một điểm đến một mặt phẳng trong

14 91 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 889,5 KB

Nội dung

MỤC LỤC Mở đầu 1.1 Lý chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tương nghiên cứu 1.4 Phương pháp nghiên cứu Nội dung sáng kiến 2.1 Cơ sở lý luận 2.1.1 Chủ chương đổi phương pháp dạy học 2.1.2 Căn lý thuyết 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Các giải pháp thực 2.3.1 Giao nhiệm vụ cho học sinh 2.3.2 Các tập điển hình hướng dẫn học sinh làm 2.3.3 Bài tập tương tự 2.4 Hiệu sáng kiến kinh nghiệm Kết luận kiến nghị 3.1 Kết luận 3.2 kiến nghị Phụ lục Tài liệu tham khảo 2 2 3 3 5 9 11 11 11 12 14 1: MỞ ĐẦU 1 Lý chọn đề tài Trong trình dạy học dạng tập khoảng cách từ điểm đến mặt phẳng khơng gian tơi thấy em gặp nhiều khó khăn lúng túng nên ngại học Một phần nội dung khó học sinh, phần sách giáo khoa hình học 11 sách tập hình học 11 khơng rõ bước làm cụ thể mà đưa hệ thống kiến thức yêu cầu học sinh phải tư để làm Vì em thường làm dạng tốn theo ví dụ tập chữa chưa thành thạo suy nghĩ xem nên vận dụng kiến thức để giải toán Vấn đề đặt phải làm để học sinh khơng ngại học có hứng thú học phần Qua q trình giảng dạy lớp tơi nhận thấy để tìm lời giải cho tốn tính khoảng cách từ điểm đến mặt phẳng không gian hầu hết phải xác định hình chiếu điểm mặt phẳng Toán học mơn khoa học rèn luyện tư lơgic, tính sáng tạo tính chích xác cho học sinh hình học khơng gian nói chung dạng tập “Tính khoảng cách từ điểm đến mặt phẳng” nói riêng tốt để thực nhiệm vụ Xu hướng năm gần việc thi toán thi theo hình thức trắc nghiệm Yêu cầu học sinh phải vận dụng cách linh hoạt nhanh Vì phải thành thạo bước giải, tư để từ em giải toán cách nhanh Với lý định viết sáng kiến kinh nghiệm “ Vận dụng cách xác định hình chiếu điểm mặt phẳng giúp học sinh giải nhanh tốn tính khoảng cách từ điểm đến mặt phẳng khơng gian” 1.2 Mục đích nghiên cứu + Đề tài nghiên cứu nhằm mục đích tạo hứng thú học tập nâng cao chất lượng phần tập “ Tính khoảng cách từ điểm đến mặt phẳng không gian” cho học sinh lớp 11 trường Trung học phổ thông Trần Ân Chiêm + Nghiên cứu rút kinh nghiệm, trao đổi với đồng nghiệp nhằm nâng cao chất lượng dạy học phần tập “ Tính khoảng cách từ điểm đến mặt phẳng khơng gian” nói riêng kiến thức mơn hình học khơng gian nói chung 1.3 Đối tượng nghiên cứu + Nghiên cứu định nghĩa; Định lý, tính chất, cơng thức phần quan hệ vng góc phần khoảng cách không gian + Nghiên cứu hứng thú học tập học sinh lớp 11A1, Và 11A5 năm học 2017 – 2018 trường trung học phổ thông Trần Ân Chiêm 1.4 Phương pháp nghiên cứu + Phương pháp nghiên cứu xây dựng sở lý thuyết: nghiên cứu tài liệu dạy học phần quan hệ vng góc khơng gian, phần khoảng cách từ điểm đến mặt phẳng chương trình sách giáo khoa hình học 11 THPT + Phương pháp quan sát: Quan sát trình học tập học sinh hai lớp 11A1 11A5 trường trung học phổ thơng Trần Ân Chiêm + Phương pháp phân tích thống kê: sử dụng thống kê để phân tích thực nghiệm NỘI DUNG SÁNG KIẾN 2.1 Cơ sở lý luận sáng kiến 2.1.1 Chủ chương đổi phương pháp dạy học Tiếp tục đổi mạnh mẽ phương pháp dạy học học theo hướng đại, phát huy tính tích cực, chủ động, sáng tạo vận dụng kiến thức, kỹ người học, khắc phục lối truyền thụ áp đặt chiều, ghi nhớ máy móc Tập trung dạy cách học, cách nghĩ, khuyến khích tự học tạo sở để người học tự cập nhật đổi tri thức, kỹ năng, phát triển lực [1] 2.1.2 Căn lý thuyết a Đường thẳng vng góc với mặt phẳng [2] + Định nghĩa: Đường thẳng d gọi vng góc với mặt phẳng (P) d vng góc với đường thẳng a nằm mặt phẳng (P) + Kí hiệu: d  (P) + Định lý: Nếu đường thẳng vuông góc với hai đường thẳng cắt thuộc mặt phẳng vng góc với mặt phẳng   a; a �(P) � �   b; b �(P) ��   (P) � a �b  I � b Mặt phẳng vng góc với mặt phẳng [2] + Định nghĩa: Hai mặt phẳng gọi vuông góc với góc hai mặt phẳng góc vng + Ký hiệu : (P)  (Q) + Định lý: Điều kiện cần đủ để hai mặt phẳng vng góc với mặt phẳng chứa đường thẳng vng góc với mặt phẳng (a) �(P) b �(Q) � � (P)  (Q) � � � a  (Q) b  (P) � � + Hệ quả: Nếu hai mặt phẳng vng góc với đường thẳng nằm mặt phẳng vng góc với giao tuyến vng góc với mặt phẳng (P)  (Q) � � (P) �(Q)   �� a  (Q) a �(P);a   � � c Khoảng cách từ điểm O đến mặt phẳng (P).[2] + Định nghĩa: Nếu H hình chiếu vng góc điểm O mặt phẳng (P) độ dài đoạn thẳng OH khoảng cách từ O đến mặt phẳng (P) + Ký hiệu: d (O;(P)) 2.2 Thực trạng vấn đề trước áp dụng sáng kiến Trong dạy học phần tập “ Tính khoảng cách từ điểm đến mặt phẳng không gian” thấy học sinh nắm khái niện khoảng cách từ điểm đến mặt phẳng không gian chưa hướng dẫn cụ thể em lúng túng khơng biết dựng khoảng cách dẫn đến khơng tính Đặc biệt với học sinh trường trung học phổ thông Trần Ân Chiêm đa số em học yếu mơn hình mơn hình học khơng gian nên em cảm thấy chán nản khơng thích học Trước áp dụng sáng kiến kinh nghiệm tơi có khảo sát mức độ hứng thú học tập học sinh hai lớp 11A1 11A5 Qua kiểm tra, khảo sát mức độ hứng thú cho kết sau Mức độ hứng thú Rất thích Thích Bình thường Khơng thích Lớp 11A1 10 26 Lớp11A5 30 Tổng 19 56 Biểu đồ mức độ hứng thú học sinh 2.3 Giải pháp thực 2.3.1 Giao nhiệm vụ cho học sinh Chia lớp thành hai nhóm sau giáo viên giao cho học sinh làm tập Bài tập 1: Cho hình lập phương ABCD.A' B 'C ' D ' có tất cạnh a Hãy xác định tính khoảng cách từ điểm A đến mặt phẳng (B DD' B ' ) Bài tập 2: Cho tứ diện ABCD cho tất cạch a Hãy xác định tính khoảng cách từ điểm B đến mặt phẳng (ACD) Nhận xét: Đây hai tập dạng đơn giản tốn xác định tính khoảng cách từ điểm đến mặt phẳng Tuy nhiên sau đưa tập cho em nhận thấy em tổ lúng túng khơng biết hình chiếu điểm A mặt phẳng (B DD' B' ) điểm nào, em tổ hai khơng biết hình chiếu điểm B mặt phẳng (ACD) điểm nào? Từ em khơng xác định khoảng cách cần tìm để tính Giáo viên đưa gợi ý: Yêu cầu học sinh nhắc lại ba tính chất hai mặt phẳng vng góc Sau hỏi học sinh có tính chất sử dụng việc kẻ đường thẳng vng góc xuống mặt phẳng hay khơng? (P)  (Q) � � Tính chất: (P) �(Q)   �� a  (Q) a �(P);a   � � Từ giáo viên cho học sinh tự xây dựng quy trình xác định hình chiếu điểm mặt phẳng Suy xác định khoảng cách từ điểm đến mặt phẳng áp dụng để làm tập vừa Sau giáo viên cho em thảo luận nhóm lời giải tốn Qua tìm cách thức tiến hành bước xác định hình chiếu điểm mặt phẳng chuẩn bị ý kiến người trình bày ngắn gọn trước lớp Các nhóm sau báo cáo số làm có ý kiến tán thành với nhóm trước, ý kiến khác có ý kiến trao đổi, bổ sung, chất vấn, yêu cầu giải đáp Giáo viên tham gia vào thảo luận cuối giáo viên ghi nhớ tổng kết cho học sinh “ bước xác định khoảng cách từ điểm M đến mặt phẳng (P) dựa vào hình chiếu điểm mặt phẳng” Bước 1: Xác định mặt phẳng (Q) qua M: (Q)  (P) ( Chỉ cần mặt phẳng (Q) vuông góc với đường thẳng mặt phẳng (P)) Bước 2: Tìm giao tuyến d  (P) �(Q) Bước 3: Trong mặt phẳng (Q) kẻ MH  d (H hình chiếu điểm M mặt phẳng (P) Khi d  M ;(P)   MH (Chú ý việc tính MH ta dựa vào kết hình học phẳng thường gắn liền với đường cao tam giác, tam giác vuông; hệ thức lượng tam giác …….) 2.3.2 Giáo viên tập điển hình hướng dẫn cho học sinh làm Bài tốn 1:[3] Cho hình chóp S ABCD có đáy ABCD hình vng tâm O cạnh a; Các cạnh bên 2a Xác định tính khoảng cách từ O đến mặt phẳng (SBC) S H A B I O C D Nhận xét: Nếu thực theo bước tốn khơng khó khăn dễ dàng chứng minh SO   ABCD  Gọi I trung điểm BC BC   SOI  � � ��  SOI    SBC  BC � SBC  � Bước 2:  SOI  � SBC   SI Bước 3: Trong  SOI kẻ OH  SI � H hình chiếu O mặt phẳng Bước 1: (SBC) 1 1 30 7.a      � OH  2 Ta có OH SO OI 7a a 7a 30 Bài toán 2.[3] Cho tứ diện OABC có OA; OB; OC vng góc đôi ( Gọi tứ diện vuông đỉnh O) OA  a; OB  b; OC  c Xác định tính khoảng cách từ O đến mặt phẳng (ABC) Hướng dẫn: C H A O Hạ OM  AB M B M Bước 1: AB  (COM ) � ��  OCM    ABC  AB �(ABC) � Bước 2:  OCM  � ABC   CM Bước 3: Trong OCM kẻ OH  CM � H hình chiếu điểm O mặt phẳng (ABC) say d  O;  ABC    OH Áp dụng hệ thức lượng tam giác vng ta có 1 1 1 1       2 2 2 2 2 OH OC OM OC OB OA c b a � OH  1   a b2 c Bài tốn 3: Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a , tâm O Cạnh bên SA vng góc với đáy, SA  a Tính khoảng cách a Từ A đến mặt phẳng  SBD  b Từ O đến mặt phẳng  SCD  S H J K A B D I O C Nhận xét: Từ hình vẽ giả thiết tốn, học sinh rát khó phát hình chiếu A lên  SBD  hình chiếu O lên  SCD  Nhưng thực theo bước tìm hình chiếu nêu giải khơng khó khăn Chẳng hạn: Bước 1: Theo giả thiết BD   SAC  � � ��  SAC    SBD  BD � SBD  � Bước 2:  SAC  � SBD   SO Bước 3: Trong mặt phẳng  SAC  kẻ AH  SO  H hình chiếu vng góc A lên  SBD  Vậy AH khoảng cách từ A đến  SBD  áp dụng hệ thức lượng tam giác vng SAO Ta có: 1 1  2  2  2 AH SA AO 2a a 2a � AH  a 10 b, Tính khoảng cách từ O đến  SCD  Chọn mặt phẳng chứa O vng góc với  SCD   OIJ  I , J trung điểm CD, SD Bước 1:  SCD    OIJ  Bước 2:  SCD  � OIJ   IJ Bước 3: Trong mặt phẳng  OIJ  kẻ OK  IJ  K hình chiếu O lên (SCD)  OK khoảng cách từ O đến (SCD) áp dụng hệ thức lượng tam giác vng OIJ ta có: 1 a    � OK  OK OI OJ a Bài toán 4: Cho hình lăng trụ ABCA' B 'C ' có AA' ng góc với mp  ABC  AA'  a , đáy ABC tam giác vuông A có BC  2a , AB  a ' Tính khoảng cách từ A đến  A BC  B A C O H B ’ A’ C’ Nhận xét : Ở có nhiều mặt phẳng chứa A để chọn mặt phẳng chứa A ' vuông góc với mp  A BC  ta phải ý tới giả thiết Từ giả thiết  ACC ' A' hình vng ' AC '  AC � � ' ' Ta có �� AC  ABC ' ' ' AB  AC AB  AA C C � � ' ' AC  ABC � � ' ' Bước 1: ' �� ABC  A BC ' AC � A BC � � ' ' Bước 2: ABC � A BC  BO                  Bước 3: Trong mặt phẳng  ABC  kẻ AH  BO  Độ dài AH khoảng cách từ A đến (A’BC) áp dụng hệ thức lượng tam giác vuông ABO ' Ta có: 1 a 21    � AH  2 AH AO AB 3a 2.3.3 Bài tập tương tự Bài tập 1: Cho hình chóp S ABCD có đáy ABCD hình vng tâm O , cạnh a; SA  a Tính khoảng cách từ O đến mặt phẳng ( SBC ) Bài tập 2: [2] Cho hình hộp chữ nhật ABCD A' B 'C ' D ' có AB  a ; BC  b ; ' ' CC '  c Tính khoảng cách từ B đến mặt phẳng  ACC A  Bài tập 3: [3] Cho hình chóp S ABC có SA   ABC  Tam giác ABC tam giác cạnh a Xác định tính khoảng cách từ A đến mặt phẳng  SBC  Bài tập 4: [5] Cho hình chóp S ABCD có đáy hình chữ nhật với AB  2a ; BC  a Các cạnh bên hình chóp a Tính khoảng cách từ S đến mặt phẳng ( ABCD) Bài tập 5: Cho lăng trụ đứng ABC A' B'C ' có đáy ABC tam giác vng B AB  a; AA '  2a; A'C  3a Gọi M trung điểm A'C ' I giao điểm AM A'C Tính khoảng cách từ A đến mặt phẳng ( IBC ) theo a 2.4 Hiệu sáng kiến kinh nghiệm Đối với thân, sáng kiến kinh nghiệm giúp đổi cách dạy nhằm đem lại hiệu trình dạy học Sau triển khai đề tài giảng dạy phần tập “khoảng cách từ điểm đến mặt phẳng không gian” Cho học sinh lớp 11A1, 11A5 trường trung học phổ thông Trân Ân Chiêm nhận thấy em hào hứng, tích cực làm tập dạng Đặc biệt hiệu việc học sinh học mơn hình học 11 tăng lên Cụ thể sau kết thúc phần cho hai lớp kiểm tra với độ nhận thức nhằm thống kê số điểm so sánh kết hai lớp Đề kiểm tra: Cho hình chóp S ABC có SA  3a; SA   ABC  ; AB  BC  2a ; Góc ABC 1200 Tính khoảng cách từ A đến mặt phẳng  SBC  Đáp số: d  A;  SBC    3a Kết kiểm tra thu thể bảng thông kê sau Bảng Điểm số (Thang điểm Lớp 11A1 Lớp 11A5 10) Tần số Tần suất (%) Tần số Tần suất (%) [1;5) 22,5 [5;7) [7;9) [9;10] Tổng 15 16 40 (HS) 37,5 40 17,5 100 19 10 40(HS) 47,5 25 100 Biểu đồ Nhìn vào biểu đồ 1, ta thấy: + Số điểm năm lớp 11A1 nhiều so với lớp 11A5 + Mức điểm từ năm trở lên 11A1 lại cao 11A5 Ngoài kiểm tra để so sánh nhận thức lớp tơi khảo sát mức độ hứng thú học sinh sau học phần lớp 11A1 so sánh với kết lớp trước áp dụng SKKN Kết sau: Bảng Mức độ hứng thú Rất thích Thích Trước áp dụng SKKN (2,5%) Sau áp dụng SKKN 8(20%) Bình thường Khơng thích 3(7,5%) 10(25%) 26(65%) 16(40%) 11(27,5%) 5(12,5%) Biểu đồ Nhận xét: Ta thấy sau áp dụng giải pháp vào dạy lớp 11A1 em cảm thấy hứng thú học tập Vì kết học tập tốt Điều chứng tỏ sáng kiến kinh nghiệm đem lại hiệu tốt 10 KẾT LUẬN, KIẾN NGHỊ 3.1 Kết luận Qua trình viết sáng kiến kinh nghiệm thu kết sau: + Đưa bước tập tìm khoảng cách từ điểm đến mặt phẳng khơng gian dựa vào xác định hình chiếu điểm mặt phẳng Tuy nhiên cách để giải dạng toán Từ định nghĩa khoảng cách kết hợp với giả thiết toán mà người học linh hoạt vận dụng phương pháp giải cho phù hợp + Đặt học sinh vào hoạt động học tập giúp củng cố lý thuyết nhiều kỹ năng, tăng hứng thú học tập cho học sinh + Bản thân thu nhiều kinh nghiệm, sử dụng công nghệ cách tốt 3.2 Kiến nghị + Kiến nghị thay đổi sách giáo khoa theo hướng phát triển lực người học gắn liền với thực tế + Hiện thi toán chuyển sang hình thức thi trắc nghiệm mà tài liệu trắc nghiệm phần thư viện nhà trường hạn chế Vì tơi kiến nghị nhà trường bổ sung thêm tài liệu tham khảo + Từ kinh nghiệm thân viết sáng kiến kinh nghiệm Tuy nhiên nhiều thiếu sót nên mong góp ý đồng nghiệp để đề tài hồn thiện Tơi xin chân thành cảm ơn! Xác nhận thủ trưởng đơn vị Thanh Hóa, ngày 10 tháng năm 2018 Tôi cam đoan SKKN mình, khơng chép nội dung người khác Người viết sáng kiến Triệu Thị Tuyến 11 PHỤ LỤC MỘT SỐ CÂU HỎI TRẮC NGHIỆM Câu 1.[4] Hình chóp tam giác S ABC có cạnh đáy 3a ; Cạnh bên 2a Khoảng cách từ S đến mặt phẳng đáy ( ABC ) là: A 1.5a B a C a D a Câu Hình chóp S ABC có cạnh đáy a ; góc mặt bên với mặt đáy 600 Khoảng cách từ S đến mặt phẳng ( ABC ) bằng: a a a D 3 Câu Cho hình chóp S ABCD có đáy hình vng cạnh a; SA  a; SA   ABCD  Khoảng cách từ A đến mặt phẳng ( SBC ) bằng: A A 2a B a B a C C a D a 2 Câu Cho hình chóp S ABCD có đáy hình vng cạnh a; Mặt bên SAB tam giác nằm mặt phẳng vng góc với đáy Goi H trung điểm AB Khoảng cách từ D đến mặt phẳng ( SHC ) bằng: 2a 5a D ' ' ' ' Câu Cho hình lập phương ABCD.A B C D có cạch a Khoảng cách ' ' từ B đến mặt phẳng ACC A là: A a B a   a a a C D 3 S ABCD Câu 6: Cho hình chóp có đáy nửa lục giác ABCD nội tiếp đường tròn đường kính AD  2a SA   ABCD  SA  a Khoảng cách A a 2 C B từ A đến mặt phẳng (SCD) là: A 2.a B 2.a C 4.a D 3.a Câu Hình chóp S ABC có đáy tam giác ABC vng cân B, AC  a Tam giác SAC vuông cân S nằm mặt phẳng vuông góc với mặt phẳng (ABC) Khoảng cách từ A đến mặt phẳng (SBC) bằng: A a B a C a 6 D a Câu Cho hình chóp S.ABCD có đáy ABCD hình thoi cạnh a có góc BAD 600 O giao AC BD SO   ABCD  SO  3.a Gọi E trung điểm BC; F trung điểm BE Khoảng cách từ O đến mặt phẳng (SBC) bằng: A 12 3a B 3.a C 3.a D 3a Câu Cho hình chóp S.ABCD có đáy ABCD hình thoi cạnh a có góc BAD 600 SA  SB  SD  a Khoảng cách từ S đến mặt phẳng (ABCD) là: A a 15 B a 15 C 15.a 6.a 15 D Câu 10.[6] Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a ; SA   ABCD  ; SA  a ; M trung điểm CD Khoảng cách từ M đến mặt phẳng (SAB) là: A a 2 B a a B C a D 2.a Câu 11 Cho hình chóp tứ giác S.ABCD có cạnh đáy a cạnh bên a Khoảng cách từ S đến mặt phẳng (ABCD) là: A a C a D a Câu 12 Cho hình chóp S.ABCD có đáy hình thoi tâm O tam giác SBD vng cân S Tam giác ABC đều; SO  a Biết thể tích khối chóp a3 S.ABCD Khoảng cách từ điểm C đến mặt phẳng (SBD) là: a a 3.a a A B C D 4 Câu 13 Cho hình chóp tam giác S.ABC có cạnh đáy a Mặt bên tạo với đáy góc 600 Khoảng cách từ A đến mặt phẳng (SBC) là: A a B 3.a C a D a Câu 14 Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật Biết SA   ABCD  SC tạo với mặt đáy góc  với tan   AB  3a ; BC  4a Khoảng cách từ điểm D đến mặt phẳng (SBC) là: A 12.a B 5.a 12 C 5.a 12 D 12.a Câu 15 Cho hình chóp S.ABC có ba cạnh SA,SB,SC, có độ dài a ; a ; 2a đơi vng góc với Khoảng cách từ S đến mặt phẳng (ABC) là: A Câu Đáp án Câu Đáp án 13 2.a 13 B A B A 10 B 2.a C D 11 B a ĐÁP ÁN C 12 B D A 13 B 2.a B 14 A A 15 D C TÀI LIỆU THAM KHẢO [1] Nghị hội nghị TW8 khóa [2] Trần Văn Hạo, Nguyễn Mộng Hy, Khu Quốc Anh,Nguyễn Hà Thanh, Phan Văn Viện Hình học 11(Cơ bản) NXB Giáo Dục [3] Nguyễn Hải Châu, Nguyễn Thạch, Phạm Đức Quang Giới thiệu giáo án toán 11 NXB Hà Nội [4] Nguyễn Mộng Hy, Khu Quốc Anh, Nguyễn Hà Thanh Bài tập hình học 11(Cơ bản) NXB Giáo Dục [5] Đoàn Quỳnh, Văn Như Cương, Phạm Khắc Ban, Tạ Mân Hình học 11 (nâng cao) NXB Giáo Dục [6] Văn Như Cương, Phạm Khắc Ban, Tạ Mân Bài tập Hình học 11 (nâng cao) NXB Giáo Dục 14 ... kiến Trong dạy học phần tập “ Tính khoảng cách từ điểm đến mặt phẳng không gian” thấy học sinh nắm khái niện khoảng cách từ điểm đến mặt phẳng không gian chưa hướng dẫn cụ thể em lúng túng dựng khoảng. .. hình chiếu điểm mặt phẳng Tốn học mơn khoa học rèn luyện tư lơgic, tính sáng tạo tính chích xác cho học sinh hình học khơng gian nói chung dạng tập Tính khoảng cách từ điểm đến mặt phẳng nói... tìm khoảng cách từ điểm đến mặt phẳng không gian dựa vào xác định hình chiếu điểm mặt phẳng Tuy nhiên cách để giải dạng toán Từ định nghĩa khoảng cách kết hợp với giả thiết toán mà người học

Ngày đăng: 31/10/2019, 14:12

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w