Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 103 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
103
Dung lượng
2,35 MB
Nội dung
CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 TOÁN 11 PHÉP TỊNH TIẾN 1H1-2 MỤC LỤC PHẦN A CÂU HỎI Dạng Các tốn liên quan lý thuyết định nghĩa, tính chất, ứng dụng phép tịnh tiến DẠNG xác định ảnh điểm hình qua phép tịnh tiến phương pháp tọa độ Dạng 2.1 Điểm Dạng 2.2 Đường thẳng Dạng 2.3 Đường cong 10 PHẦN B ĐÁP ÁN CHI TIẾT 11 Dạng Các tốn liên quan lý thuyết định nghĩa, tính chất, ứng dụng phép tịnh tiến 11 DẠNG xác định ảnh điểm hình qua phép tịnh tiến phương pháp tọa độ 17 Dạng 2.1 Điểm 17 Dạng 2.2 Đường thẳng 20 Dạng 2.3 Đường cong 23 PHẦN A CÂU HỎI Dạng Các toán liên quan lý thuyết định nghĩa, tính chất, ứng dụng phép tịnh tiến Câu Có phép tịnh tiến biến đường thẳng thành nó? A Câu B B C D Vô số C D Vô số Phép tịnh tiến không bảo toàn yếu tố sau đây? A Khoảng cách hai điểm C Tọa độ điểm D Diện tích Câu D Vơ số Có phép tịnh tiến biến hình vng thành nó? A Câu C Có phép tịnh tiến biến đường tròn thành nó? A Câu B B Thứ tự ba điểm thẳng hàng (THPT YÊN LẠC - LẦN - 2018) Cho hình chữ nhật MNPQ Phép tịnh tiến theo véc tơ MN biến điểm Q thành điểm nào? A Điểm Q B Điểm N C Điểm M Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong D Điểm P CÁC DẠNG TOÁN THƯỜNG GẶP Câu ĐT:0946798489 (THPT HẬU LỘC - TH - 2018) Chọn khẳng định sai khẳng định sau: A Phép quay bảo toàn khoảng cách hai điểm B Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng C Phép tịnh tiến biến đường tròn thành đường tròn có bán kính D Phép tịnh tiến biến đường thẳng thành đường thẳng song song với Câu (CTN - LẦN - 2018) Có phép tịnh tiến biến đường tròn thành nó? A Câu C D Kết luận sau sai? (A) B A Tu ( A) B AB u B T AB C T0 ( B ) B Câu B ( M ) N AB MN C T2 AB Giả sử Tv ( M ) M '; Tv ( N ) N ' Mệnh đề sau sai? A M ' N ' MN C MM ' NN ' B MM ' NN ' D MNM ' N ' hình bình hành Câu 10 Cho hai đường thẳng d1 d cắt Có phép tịnh tiến biến d1 thành d A Không Câu 11 B Một C Hai D Vô số (THPT LÝ THÁI TỔ - BẮC NINH - 2018) Trong mặt phẳng với hệ trục tọa độ Oxy cho A 2; 3 , B 1; Phép tịnh tiến theo u 4; 3 biến điểm A, B tương ứng thành A, B đó, độ dài đoạn thẳng AB bằng: A AB 10 B AB 10 C AB 13 D AB Câu 12 Trong mặt phẳng tọa độ Oxy , cho hai điểm M 0; , N 2;1 véctơ v 1; Ơ Phép tịnh tiến theo véctơ v biến M , N thành hai điểm M , N tương ứng Tính độ dài M N A M N B M N C M N D M N Câu 13 Với hai điểm A, B phân biệt Tv A A, Tv B B với v Mệnh đề sau đúng? A AB v B AB AB C AB v D AB AB Câu 14 Cho hai đường thẳng d1 d song song với Có phép tịnh tiến theo vectơ v biến d1 thành d ? A B C D Vô số biến điểm A thành điểm nào? Câu 15 Cho hình bình hành ABCD Phép tịnh tiến T AB AD A A đối xứng với A qua C C O giao điểm AC qua BD B A đối xứng với D qua C D C Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 Câu 16 Cho tam giác ABC có trọng tâm G , T G M Mệnh đề đúng? AG A B C D M trung điểm BC M trùng với A M đỉnh thứ tư hình bình hành BGCM M đỉnh thứ tư hình bình hành BCGM Câu 17 Cho lục giác ABCDEF tâm O Tìm ảnh AOF qua phép tịnh tiến theo vectơ AB A AOB B BOC C CDO D DEO Câu 18 Cho hình bình hành ABCD tâm I Kết luận sau sai? A B A T DC B A B TCD I B C T DI D TIA I C Câu 19 Cho hình vng ABCD tâm I Gọi M , N trung điểm AD , DC Phép tịnh tiến theo vectơ sau biến AMI thành MDN ? A AM B NI C AC D MN Câu 20 Cho hình bình hành ABCD Có phép tịnh tiến biến đường thẳng AB thành đường thẳng CD biến đường thẳng AD thành đường thẳng BC ? A B C D Vô số Câu 21 Cho hình vng ABCD tâm I Gọi M , N trung điểm AD , DC Phép tịnh tiến theo vectơ sau biến tam giác AMI thành INC A AM B IN C AC D MN Câu 22 Cho hình bình hành ABCD tâm I Kết luận sau sai? ( D) C A T AB ( B ) A B TCD C T (I ) C AI D T (I ) B ID Câu 23 Trong đối tượng: cá (hình A), bướm (hình B), mèo (hình C), ngựa (hình D), hình có phép tịnh tiến? Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP A B ĐT:0946798489 C D Câu 24 Cho đường tròn C có tâm O đường kính AB Gọi tiếp tuyến C điểm A Phép tịnh tiến theo vectơ AB biến thành: A Đường kính đường tròn C song song với B Tiếp tuyến C điểm B C Tiếp tuyến C song song với AB D Đường thẳng song song với qua O Câu 25 Cho hai điểm B, C cố định đường tròn O, R A thay đổi đường tròn đó, BD đường kính Khi quỹ tích trực tâm H ABC là: A Đoạn thẳng nối từ A tới chân đường cao thuộc BC ABC B Cung tròn đường tròn đường kính BC C Đường tròn tâm O bán kính R ảnh O, R qua T HA D Đường tròn tâm O ' , bán kính R ảnh O, R qua T DC Câu 26 Cho hình bình hành ABCD , hai điểm A, B cố định, tâm I di động đường tròn C Khi quỹ tích trung điểm M cạnh DC : , K trung điểm BC A đường tròn C ảnh C qua T KI , K trung điểm AB B đường tròn C ảnh C qua T KI C đường thẳng BD D đường tròn tâm I bán kính ID Câu 27 Cho đường tròn O hai điểm A, B Một điểm M thay đổi đường tròn O Tìm quỹ tích điểm M cho MM MA MB O A O T AB O B O T AM O C O T BA O D O T BM Câu 28 Cho tứ giác lồi ABCD có AB BC CD a , BAD 75 ADC 45 Tính độ dài AD A a B a C a D a 150, D 90 Tính độ dài BC Câu 29 Cho tứ giác ABCD có AB 3, CD 12 , A 60, B A B C Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong D CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 Câu 30 Trên đoạn AD cố định dựng hình bình hành ABCD cho AC BD Tìm quỹ tích đỉnh C AD AB A Đường tròn tâm A , bán kính AB B Đường tròn tâm A , bán kính AC C Đường tròn tâm A , bán kính AD D Đường tròn tâm A , bán kính AD Câu 31 Cho hai đường tròn có bán kính R cắt M , N Đường trung trực MN cắt đường tròn A B cho A, B nằm phía với MN Tính P MN AB A P R B P R C P R D P R Câu 32 Cho hai đường tròn có bán kính R tiếp xúc ngồi với K Trên đường tròn lấy điểm AKB 90 Độ dài AB bao nhiêu? A , đường tròn lấy điểm B cho A R B R C R D 2R Câu 33 Từ đỉnh B hình bình hành ABCD kẻ đường cao BK BH biết KH 3, BD Khoảng cách từ B đến trực tâm H1 tam giác BKH có giá trị bao nhiêu? A B C D 4, DẠNG xác định ảnh điểm hình qua phép tịnh tiến phương pháp tọa độ Dạng 2.1 Điểm Câu 34 (SGD&ĐT BẮC NINH - 2018) Trong mặt phẳng với hệ tọa độ Oxy , cho điểm M 2;5 Phép tịnh tiến theo vectơ v 1; biến điểm M thành điểm M Tọa độ điểm M là: A M 3;7 Câu 35 C M 3;1 D M 4;7 (THPT CHUYÊN LƯƠNG VĂN CHÁNH - PHÚ YÊN - 2018) Phép tịnh tiến biến gốc tọa độ O thành điểm A 1; biến điểm A thành điểm A có tọa độ là: A A 2; Câu 36 B M 1;3 B A 1; 2 C A 4; D A 3;3 (THPT XUÂN HÒA - VP - LẦN - 2018) Cho v 1;5 điểm M 4; Biết M ảnh M qua phép tịnh tiến Tv Tìm M A M 4;10 Câu 37 B M 3;5 C M 3; D M 5; 3 (THPT CHU VĂN AN - HKI - 2018) Trong mặt phẳng tọa độ Oxy, tìm tọa độ điểm A ảnh điểm A 1;3 qua phép tịnh tiến theo vectơ v 2;1 A A 1; B A 1; C A 1; Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong D A 1; CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 Câu 38 (CHUYÊN VĨNH PHÚC - LẦN - 2018)Trong mặt phẳng Oxy , cho v 1; , điểm M 2;5 Tìm tọa độ ảnh điểm M qua phép tịnh tiến v A 1;6 Câu 39 C 4;7 D 3;1 (TRẦN PHÚ - HÀ TĨNH - LẦN - 2018)Trong mặt phẳng Oxy , cho điểm A 3;0 vectơ v 1; 2 Phép tịnh tiến Tv biến A thành A Tọa độ điểm A A A 4; 2 Câu 40 B 3;7 B A 2; 2 C A 2; 2 D A 2; 1 (CỤM CHUYÊN MÔN - HẢI PHÒNG - LẦN - 2018) Trong mặt phẳng với hệ tọa độ Oxy , cho ABC có A 2; , B 5;1 , C 1; 2 Phép tịnh tiến T biến ABC thành A ' B ' C ' Tìm BC tọa độ điểm A ' A 2;1 Câu 41 C 2; 4 D 6; 5 (THPT CHUYÊN VĨNH PHÚC - LẦN - 2018) Trong mặt phẳng tọa độ Oxy , cho vectơ v 1; Tìm ảnh điểm A 2;3 qua phép tịnh tiến theo vectơ v A A 5; 1 Câu 42 B 2; 1 B A 1;5 C A 3; 1 D A 3;1 (THPT TỨ KỲ - HẢI DƯƠNG - LẦN - 2018) Trong mặt phẳng Oxy , cho điểm A(2;5) Phép tịnh tiến theo vectơ v 1;2 biến A thành điểm A P 3;7 B N 1;6 C M 3;1 D Q 4; Câu 43 Trong mặt phẳng tọa độ Oxy , cho điểm A 3; 3 Tìm tọa độ diểm A ảnh A qua phép tịnh tiến theo véctơ v 1;3 A A 2; 6 B A 2;0 C A 4;0 D A 2;0 Câu 44 Trong mặt phẳng tọa độ Oxy , tìm tọa độ điểm M ảnh điểm M 1; qua phép tịnh tiến theo vectơ v 3;1 A M 4; 2 B M 4; C M 2;1 D M 4; 1 Câu 45 Trong mặt phẳng tọa độ Oxy , cho vectơ v 2;1 điểm A 4;5 Hỏi A ảnh điểm sau qua phép tịnh tiến theo vectơ v A 1;6 B 2; C 4;7 D 6;6 Câu 46 Trong mặt phẳng tọa độ Oxy , cho điểm A 2; , B 4;6 Tv A B Tìm vectơ v A 1; B 2; C 4; Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong D 2; 4 CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 Câu 47 Trong mặt phẳng tọa độ Oxy , biết điểm M 3;0 ảnh điểm M 1; 2 qua Tu điểm M 2;3 ảnh M qua Tv Tìm tọa độ vectơ u v A 1;5 B 2; 2 C 1; 1 D 1;5 Câu 48 Trong mặt phẳng tọa độ Oxy , cho điểm A, B ảnh điểm A 2;3 , B 1;1 qua phép tịnh tiến theo vectơ v 3;1 Tính độ dài vectơ AB A B C D Câu 49 Trong mặt phẳng tọa độ Oxy , cho tam giác ABC có điểm A 3;0 , B 2; , C 4;5 G trọng tâm tam giác ABC phép tịnh tiến theo vectơ u biến điểm A thành G Tìm tọa độ G biết G Tu G A G 5;6 B G 5;6 C G 3;1 D G 1;3 Câu 50 Trong mặt phẳng tọa độ Oxy , cho điểm M 4;2 , biết M ảnh M qua phép tịnh tiến theo véctơ v 1; 5 Tìm tọa độ điểm M A M 3;5 B M 3;7 C M 5;7 D M 5; 3 Câu 51 Trong mặt phẳng tọa độ Oxy , cho điểm M 5; điểm M 3;2 ảnh cảu M qua phép tịnh tiến theo véctơ v Tìm tọa độ véctơ v A v 2;0 B v 0; C v 1;0 D v 2;0 Câu 52 Trong mặt phẳng tọa độ Oxy , cho phép biến hình F xác định sau: Với mỗi điểm M x; y ta có điểm M ' F M cho M ' x '; y ' thỏa mãn: x ' x 2; y ' y Mệnh đề nào sau đúng: A F là phép tịnh tiến theo v 2;3 C F là phép tịnh tiến theo v 2; 3 B F là phép tịnh tiến theo v 2;3 D F là phép tịnh tiến theo v 2; 3 Câu 53 Trong mặt phẳng tọa độ Oxy , cho hai điểm A 1;6 ; B 1; 4 Gọi C , D lần lượt là ảnh của A, B qua phép tịnh tiến theo v 1;5 Kết luận nào sau là đúng: A ABCD là hình vuông C ABDC là hình bình hành B ABCD là hình bình hành D A, B , C , D thẳng hàng Câu 54 Trong mặt phẳng tọa độ Oxy , cho ABC biết A 2; , B 5;1 , C 1; 2 Phép tịnh tiến theo véctơ BC biến ABC thành ABC tương ứng điểm Tọa độ trọng tâm G ABC là: A G 4; 2 B G 4; C G 4; 2 Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong D G 4;4 CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 Câu 55 Trong mặt phẳng tọa độ Oxy , cho hai điểm A 5; , C 1;0 Biết B Tu A , C Tv B Tìm tọa độ vectơ u v để thực phép tịnh tiến Tu v biến điểm A thành điểm C A 6; B 2; 4 C 4; 2 D 4; Câu 56 Trong mặt phẳng tọa độ Oxy , với , a, b là những số cho trước, xét phép biến hình F biến mỗi x ' x.cos y.sin a điểm M x; y thành điểm M ' x '; y ' đó: Cho hai điểm y ' x.sin y.cos b M x1 ; y1 , N x2 ; y2 , gọi M ', N ' lần lượt là ảnh của M , N qua phép biến hình F Khi đó khoảng cách d giữa M ' và N ' bằng: 2 2 A d x2 x1 y2 y1 C d x2 x1 y2 y1 2 2 B d x2 x1 y2 y1 D d x2 x1 y2 y1 Câu 57 Trong mặt phẳng tọa độ Oxy , cho đường thẳng có phương trình d : y , và hai điểm A 1;3 ; B 3; 4 Lấy M d , N trục hoành cho MN vuông góc với d và AM MN NB nhỏ nhất Tìm tọa độ M , N ? 6 6 7 7 A M ; , N ;0 B M ; , N ;0 5 5 5 5 8 8 9 9 C M ; , N ;0 D M ; , N ;0 5 5 5 5 Dạng 2.2 Đường thẳng Câu 58 (THPT CHUYÊN BẮC NINH - LẦN - 2018) Trong mặt phẳng với hệ tọa độ Oxy , cho hai đường thẳng d1 : x y d : x y Có phép tịnh tiến biến d1 thành d2 A Vô số Câu 59 C D (HỒNG QUANG - HẢI DƯƠNG - LẦN - 2018) Trong mặt phẳng Oxy cho đường thẳng d có phương trình x y Để phép tịnh tiến theo v biến đường thẳng d thành v phải vectơ vectơ sau đây? A v 2; Câu 60 B B v 2;1 C v 1; D v 2; 4 (XUÂN TRƯỜNG - NAM ĐỊNH - LẦN - 2018) Trong mặt phẳng tọa độ Oxy , tìm phương trình đường thẳng ảnh đường thẳng : x y qua phép tịnh tiến theo véctơ v 1; 1 A : x y B : x y C : x y Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong D : x y CÁC DẠNG TOÁN THƯỜNG GẶP Câu 61 ĐT:0946798489 (CHUYÊN BẮC NINH - LẦN - 2018) Trong mặt phẳng với hệ tọa độ Oxy , cho hai đường thẳng d1 : x y d : x y Có phép tịnh tiến biến d1 thành d A Vô số Câu 62 B C D (THPT HOÀNG MAI - NGHỆ AN - 2018) Trong mặt phẳng Oxy , cho đường thẳng d có phương trình x y Hỏi phép dời hình có cách thực liên tiếp phép đối xứng tâm O phép tịnh tiến theo véc tơ v 3; biến đường thẳng d thành đường thẳng sau đây? D x y Câu 63 Trong mặt phẳng tọa độ Oxy , cho đường thẳng : x y vectơ v 4; Khi ảnh đường thẳng qua phép tịnh tiến theo vectơ v A x y B x y C 3x y A x y 15 B x y 15 C x y D x y Câu 64 Trong mặt phẳng tọa độ Oxy , cho v 4; đường thẳng : x y Hỏi ảnh đường thẳng sau qua Tv A : x y B : x y C : x y 15 D : x y 11 x 2t Câu 65 Trong mặt phẳng tọa độ Oxy , cho đường thẳng : đường thẳng : x y y t Tìm tọa độ vectơ v biết Tv A v 0; 1 B v 0; C v 0;1 D v 1;1 Câu 66 Trong mặt phẳng tọa độ Oxy , tìm phương trình đườn thẳng ảnh đường thẳng : x y qua phép tịnh tiến theo véctơ v 1; 1 A : x y B : x y C : x y D : x y Câu 67 Trong mặt phẳng tọa độ Oxy , cho hình bình hành OABC với điểm A 2;1 , điểm B thuộc đường thẳng : x y Tìm quỹ tích đỉnh C ? A Là đường thẳng có phương trình x y 10 B Là đường thẳng có phương trình x y C Là đường thẳng có phương trình x y D Là đường tròn có phương trình x y x y Câu 68 Trong mặt phẳng tọa độ Oxy , cho đường thẳng d : x y Tìm phép tịnh tiến theo véc tơ v có giá song song với Oy biến d thành d ' qua A 1;1 A v 0;5 B v 1; 5 C v 2; 3 Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong D v 0; 5 CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 Câu 69 Trong mặt phẳng tọa độ Oxy , cho hai đường thẳng d : x y và d' : x y Tìm tọa độ v có phương vuông góc với d và Tv biến đường thẳng d thành d ' 6 A v ; 13 13 1 16 24 16 24 ; v ; B v ; C v D 13 13 13 13 13 13 Câu 70 Trong mặt phẳng tọa độ Oxy , cho v 2;1 đường thẳng d : x y , d1 : x y Tìm tọa độ w a; b có phương vuông góc với đường thẳng d để d1 là ảnh của d qua phép tịnh tiến Tw Khi đó a b bằng: 13 Dạng 2.3 Đường cong A Câu 71 B 16 13 C 8 13 D 13 (TOÁN HỌC VÀ TUỔI TRẺ SỐ - 2018) Trong mặt phẳng tọa độ Oxy , cho hai đường tròn 2 C : x m y C : x y m y x 12 m2 Vectơ v vectơ phép tịnh tiến biến C thành C ? A v 2;1 Câu 72 B v 2;1 C v 1; D v 2; 1 (THPT LƯƠNG ĐẮC BẰNG - THANH HÓA - LẦN - 2018) Trong mặt phẳng tọa độ Oxy , 2 cho hai đường tròn C ' : x y m x y 12 m C : x m y Vecto v vecto phép tịnh tiến biến C thành C ' ? A v 1; B v 2;1 C v 2;1 D v 2; 1 Câu 73 Trong mặt phẳng tọa độ Oxy , tìm phương trình đường tròn C : x2 y 2x y qua Tv với v 1; A x y C ảnh cảu đường tròn B x y C x y 2x D x y x Câu 74 Cho vectơ v a; b cho tịnh tiến đồ thị y f x x3 3x theo vectơ v ta nhận đồ thị hàm số y g x x3 3x x Tính P a b A P B P 1 D P 3 C P Câu 75 Trong mặt phẳng tọa độ Oxy , tìm phương trình đường tròn C : x2 y x y qua phép tịnh tiến theo v 1;3 C ảnh đường tròn A C : x 3 y 2 B C : x 3 y 2 D C : x 3 y C C : x 3 y Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 2 2 10 CÁC DẠNG TOÁN THƯỜNG GẶP Câu ĐT:0946798489 Phép vị tự tỷ số k 1 đối xứng tâm Chọn D +Phép vị tự phép dời hình mà phép đồng dạng, nên (1) sai + Phép đối xứng tâm phép dời hình, nên (2) + Phép tịnh tiến khơng làm thay đổi khoảng cách hai điểm bất kì, nên (3) + Phép quay tâm O góc quay biến M thành M O, M , M thẳng hàng phép quay tâm O có góc quay 0 180 , nên (4) sai Câu Đáp án D Với hai hình chữ nhật ta chọn cặp cạnh tương ứng tỉ lệ chúng chưa Vì khơng phải lúc tồn phép đồng dạng biến hình chữ nhật thành hình chữ nhật Câu Đáp án C Câu Đáp án B Câu Đáp án C CÂU Đáp án A Câu Đáp án C Câu 10 Đáp án A P B A H Q C D Câu 11 Đáp án A Khi k phép đồng dạng bảo toàn khoảng cách nên phép dời hình Câu 12 Đáp án D Theo tính chất phép đồng dạng A1M đường trung tuyến A1 B1C1 , theo giả thiết A1M lại đường cao nên A1 B1C1 tam giác cân A1 Vì ABC cân A Câu 13 Đáp án B V A;2 B B1 ; Q A; B1 C Qua V A;2 biến đường tròn tâm B bán kính BA thành đường tròn tâm B1 bán kính B1 A Qua Q A; biến đường tròn tâm B1 bán kính B1 A thành đường tròn tâm C bán kính CA D A I B C B1 CÂU 14 Đáp án A Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 d O I I1 I' Ta có: Đ d I I1 ;VO ;2 I1 I Vậy k Câu 15 Đáp án C A' A D' O D Ta có: Q O; 4 C' B B' C biến B, D thành B1 , D1 : B1 D1 BD B1 , D1 nằm đường thẳng qua AC V O; B1 B2 ;V O; D1 D2 OB2 2OB1 , OD2 2OD1 B2 D2 B1D1 BD AC CÂU 16 Đáp án C I A B G O D - Phép V 3 A; 2 C AGI AOB - Phép Q O;1800 AOB COD Câu 17 Đáp án B Qua phép đồng dạng tỉ số k ta cạnh tương ứng hình chữ nhật 12 15 Diện tích hình chữ nhật ảnh là: 12.15 = 180 Câu 18 Chọn A V( C ;2) biến hình thang JLKI thành hình thang IKBA Q I ;180 biến hình thang IKBA thành hình thang IHDC Câu 19 M L B C I Đáp án A A J H D Tứ giác IHDC hình thang vng Ta thấy IHDC đồng dạng với JLKI theo tỉ số Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 Câu 20 A φ B Ta có V H ,2 H C Đáp án C Q H ; với HB, HA biến B thành A A thành C , F phép đồng dạng hợp thành V H ,2 Q H ; biến HBA thành HAC Dạng Tìm ảnh điểm hình qua phép đồng dạng phương pháp tọa độ Câu 21 Chọn B Gọi ảnh d qua phép vị tự tâm O tỉ số Lấy M ( x ; y ) d , M1 V(O,2) M OM1 2OM với M1(x1; y1) x x1 x x 1 Vì Ta có M ( x; y ) d nên x1 y1 y1 y 2 y y1 Vậy phương trình x y Gọi d ảnh qua phép tịnh tiến theo vectơ v 1;2 Khi M Tv M M 1M v x x1 x1 x ' y y1 y1 y Vì M1(x1; y1) nên x ( y ) Vậy phương trình d x y 11 Câu 22 Lời giải Chọn A Chọn A0;3 B2;4 hai điểm thuộc đường thẳng d Gọi A F A B F B , ta có A 1; 3 B 3;5 Do A , B hai điểm thuộc đường thẳng d d F d nên A B thuộc d Hay đường thẳng d đường thẳng A B Ta có AB 4; 2 VTPT đường thẳng A B n 1;2 Đường thẳng A B qua điểm A 1; 3 có VTPT n 1;2 nên có phương trình x 1 2 y 3 x y Câu 23 Chọn B x y biến điểm M x; y thành M ; , phép quay tâm O góc quay 2 2 x y y x 90° biến điểm M ; thành M ; 2 2 2 Vậy điểm M a; b ảnh điểm M 2b; 2a , ảnh đường tròn C Phép vị tự tâm O tỉ số k Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TOÁN THƯỜNG GẶP 2b 2a Câu 24 ĐT:0946798489 2 a 1 b 1 Chọn C Ta có AB (2 3) (3 1) , tương tự AC 5, BC Áp dụng công thức Hê rông tính được diện tích tam giác ABC : 5 15 p( p a )( p b)( p c) 2 2 Tam giác ABC qua phép đồng dạng F đề cho biến thành tam giác A ' B ' C ' đồng dạng với tam giác tam giác ABC theo tỉ số đồng dạng k | 2 | nên diện tích tam giác A ' B ' C ' : 15 S A ' B 'C ' 4S ABC 30 Câu 25 Chọn B Dễ thấy phép biến đổi tọa độ khơng bảo tồn khoảng cách Vì ta loại bỏ phương án A, C, D Biểu thức tọa độ phép đồng dạng với tỷ số k Câu 26 Chọn D Gọi C1 ảnh C qua phép tịnh tiến theo vectơ v 1; 1 S Khi C1 có tâm A1 Tv A bán kính R1 R Ta có A1 3 1; 1 hay A1 2;3 Do C ảnh đường tròn C qua phép đồng dạng C ảnh đường tròn C1 C qua phép vị tự tâm I 0; tỉ số k 2 có tâm A V I ;2 A1 bán kính R 2 R1 2 x x 2 2 Gọi A x; y Ta có IA 2 IA1 A 4;6 y y 2 2 Vậy đường tròn C có phương trình x y Câu 27 Đáp án A Ta có V 1 O; 2 M M x; y OM OM M 2; 1 x y QO ;90 M M x; y M 2; 1 y x 1 Câu 28 Đáp án A Ta có: VO ;2 d d d d d có dạng: x y c Chọn N 1; d : VO ;2 N N 2; 4 d 4 c c + phương trình đường thẳng d : x y Qua phép đối xứng trục Oy : Đ oy d d Suy phương trình ảnh d cần tìm là: 2 x y Câu 29 Đáp án D Gọi V 1 O; 2 C C nên đường tròn C có tâm I 1;1 bán kính R Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong CÁC DẠNG TỐN THƯỜNG GẶP Ta lại có Q O;900 ĐT:0946798489 C C có bán kính R tâm I x; y xác định x y 1 I 1;1 y x 2 Vậy phương trình đường tròn C là: x 1 y 1 Câu 30 Đáp án B x Ta có: V I ;2 M M x; y IM IM M 3; 1 y 1 2 2 x 2 Q M M x; y M 2; O; 2 y 4 2 Câu 31 Đáp án C Ta có: V I ;3 d d d d d có dạng: x y c Chọn M 2; 1 d V I ;3 M M x; y M 4;1 d c c 6 d : x 2y Có Q d d O; 4 Gọi N x; y d Q O; 2 x y x y y x y x N N x; y Thế vào phương trình d : y x Vậy phương trình d : x y Câu 32 Đáp án C Ta có: V I ;3 M M x; y IM 3IM M 16;5 Đ d M M x; y d trung trực M M M M có dạng: x y c qua M c 37 M M : x y 37 Gọi H trung điểm M M 2 x y 37 tọa độ H nghiệm hệ H 14;9 M 12;13 x y Câu 33 Đáp án D Đường tròn C có tâm J 1; bán kính R VO ;2 J J1 x; y J1 2; 4 , bán kính R1 R 2 Phương trình C1 : x y 16 Q O ;1800 J1 J x; y J 2; , bán kính R2 R1 2 Vậy phương trình đường tròn cẩn tìm là: x y 16 Câu 34 Đáp án B Đường tròn C có tâm J 1; bán kính R V J J1 IJ1 IJ J1 1;0 , R1 R 3 I; 3 Tv J1 J J1 J v J 4; , bán kính R2 Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 10 CÁC DẠNG TOÁN THƯỜNG GẶP ĐT:0946798489 Vậy đường tròn ảnh qua hai phép V 1 I; 3 2 Tv là: x y Nguyễn Bảo Vương: https://www.facebook.com/phong.baovuong 11