1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập trắc nghiệm chuyên đề số phức đặng việt đông file word

53 254 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 7,1 MB

Nội dung

Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 MỤC LỤC I – LÝ THUYẾT CHUNG II – CÁC DẠNG BÀI TẬP DẠNG 1: SỐ PHỨC VÀ CÁC PHÉP TOÁN TRÊN SỐ PHỨC A – CÁC VÍ DỤ B – BÀI TẬP TRẮC NGHIỆM C - ĐÁP ÁN 13 DẠNG 2: SỐ PHỨC VÀ CÁC TÍNH CHẤT 14 A – CÁC VÍ DỤ 14 B – BÀI TẬP TRẮC NGHIỆM 15 C - ĐÁP ÁN 21 DẠNG 3: TÌM SỐ PHỨC THỎA MÃN ĐIỀU KIỆN 23 A – CÁC VÍ DỤ 23 B – BÀI TẬP 23 C - ĐÁP ÁN 27 DẠNG 4: SỐ PHỨC CĨ MƠĐUN NHỎ NHẤT, LỚN NHẤT 28 A – CÁC VÍ DỤ 28 B - BÀI TẬP TRẮC NGHIỆM .30 C - ĐÁP ÁN 30 DẠNG 5: GIẢI PHƯƠNG TRÌNH TRÊN TẬP SỐ PHỨC 31 A – CÁC VÍ DỤ 31 B – BÀI TẬP TRẮC NGHIỆM 34 C - ĐÁP ÁN 38 DẠNG 6: BIỂU DIỄN HÌNH HỌC, TẬP HỢP ĐIỂM 39 A – CÁC VÍ DỤ 39 B – BÀI TẬP TRẮC NGHIỆM 41 C - ĐÁP ÁN 48 DẠNG 7: DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC 49 A – CÁC VÍ DỤ 49 B – BÀI TẬP TRẮC NGHIỆM 51 C – ĐÁP ÁN 51 http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 I – LÝ THUYẾT CHUNG Khái niệm số phức  Tập hợp số phức: C  Số phức (dạng đại số) : z  a  bi (a, b �R , a phần thực, b phần ảo, i đơn vị ảo, i2 = –1)  z số thực  phần ảo z (b = 0) z ảo  phần thực z (a = 0) Số vừa số thực vừa số ảo a  a' � a  bi  a’  b’i � � (a, b, a ', b ' �R)  Hai số phức nhau: b  b' � Chú ý: i 4k  1; i 4k 1  i; i 4k   -1; i 4k 3  -i Biểu diễn hình học: Số phức z = a + bi (a, b �R) biểu diễn điểm M(a; b) hay r u  (a; b) mp(Oxy) (mp phức) y M(a;b) b O x a Cộng trừ số phức:   a  bi    a’  b’i    a  a’   b  b’ i   a  bi    a’  b’i    a  a’   b  b’ i  Số đối z = a + bi –z = –a – bi r r r r r r  u biểu diễn z, u ' biểu diễn z' u  u ' biểu diễn z + z’ u  u ' biểu diễn z – z’ Nhân hai số phức :   a  bi   a ' b 'i     aa’ – bb’   ab’  ba’ i  k(a  bi)  ka  kbi (k �R) Số phức liên hợp số phức z = a + bi z  a  bi �z � z  z  z ; z �z '  z �z ' ; z.z '  z.z '; � � ; z.z  a  b z z �2 �  z số thực  z  z ; z số ảo  z   z Môđun số phức : z = a + bi uuuu r  z  a  b2  zz  OM  z �0, z �C , z 0�z0 z z   z' z'  z.z '  z z ' Chia hai số phức:  Chia hai số phức: 1 z  z (z  0)  z  z ' �z �z ' �z  z ' a+bi aa'-bb' ab ' a 'b   i a'+b'i a '  b '2 a '2  b '2 z Căn bậc hai số phức:  z' z '.z z '.z  z 'z 1   z z.z z  z'  w � z '  wz z http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 �x  y  a z  x  yi  bậc hai số phức w  a  bi  z  w  � � 2xy  b  w = có bậc hai z =  w �0 có hai bậc hai đối  Hai bậc hai a > � a  Hai bậc hai a < � a.i Phương trình bậc hai Az2 + Bz + C = (*) (A, B, C số phức cho trước, A �0 )   B2  4AC B �   �0 : (*) có hai nghiệm phân biệt z1,2  , (  bậc hai ) 2A B    : (*) có nghiệm kép: z1  z   2A Chú ý: Nếu z0  C nghiệm (*) z0 nghiệm (*) 10 Dạng lượng giác số phức (dành cho chương trình nâng cao) a) Acgumen số phức z ≠ 0: Cho số phức z ≠ Gọi M điểm biểu diễn số z Số đo (radian) góc lượng giác tia đầu Ox, tia cuối OM gọi acgumen z Nếu  acgumen z acgumen z có dạng  + k2 (kZ) b) Dạng lượng giác số phức : Dạng z = r(cos + isin) (r > 0) dạng lượng giác z = a + bi (a, bR) (z ≠ 0) � � r a  b2 � a � cos  � ( acgumen z,  = (Ox, OM) r � b � sin   � � r c) Nhân, chia số phức dạng lượng giác : Nếu z = r(cos + isin), z’ = r’(cos’ + isin’) thì: z.z’ = rr’[cos( + ’) + isin( +’)] z r   cos(   ')  i sin(   ')  z' r ' d) Công thức Moa-vrơ : n Với n số nguyên, n  :  r(cos  i sin )   r n (cos n  i sin n) Khi r = 1, ta : (cos  i sin ) n  (cos n  i sin n) e) Căn bậc hai số phức dạng lượng giác : Các bậc hai số phức z = r(cos + isin) (r > 0) : � �  r� cos  i sin �và 2� � � � � � �  � � �  r� cos  i sin � r � cos �   � i sin �   � � 2� � � �2 � � �2 � http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 II – CÁC DẠNG BÀI TẬP DẠNG 1: SỐ PHỨC VÀ CÁC PHÉP TOÁN TRÊN SỐ PHỨC A – CÁC VÍ DỤ Ví dụ 1: Cho số phức z =  i Tính số phức sau: z ; z2; ( z )3; + z + z2 2 Giải: 3  i z =  i 2 2 a) Vì z = �3 � 3 b) Ta có z = � �2  i � �=  i  i =  i � � 2 �3 � 3  (z) = � �2  i � �  i  i   i � � �1 �3 � 3 � ( z )3 =( z )2 z = � � �2  i � � �2  i � �  i  i   i � � � � 1 3  1  i  i  i 2 2 2 Ví dụ 2: Tìm số thực x, y thoả mãn: 3x + y + 5xi = 2y – +(x – y)i Giải: Theo giả thiết: 3x + y + 5xi = 2y – +(x – y)i  (3x + y) + (5x)i = (2y – 1) +(x – y)i � x � 3x  y  2y  � � � Giải hệ ta được: � 5x  x  y � �y  � Ví dụ 3: Tính: i105 + i23 + i20 – i34 Giải: Để tính tốn này, ta ý đến định nghĩa đơn vị ảo để từ suy luỹ thừa đơn vị ảo sau: Ta có: i2 = -1; i3 = -i; i4 = i3.i = 1; i5 = i; i6 = -1… Bằng quy nạp dễ dàng chứng minh được: i4n = 1; i4n+1 = i; i4n+2 = -1; i4n+3 = -i;  n  N* Vậy in  {-1;1;-i;i},  n  N Ta có: + z + z2 =  n n �� Nếu n nguyên âm, in = (i-1)-n = ��   i  i �� Như theo kết trên, ta dễ dàng tính được: i105 + i23 + i20 – i34 = i4.26+1 + i4.5+3 + i4.5 – i4.8+2 = i – i + + = 16 1 i � � 1 i � � Ví dụ 4: Tính số phức sau: z = � �  � � 1 i � � 1 i � �  i (1  i)(1  i) 2i   i Giải: Ta có: 1 i 2 http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 16 1 i 1 i � � 1 i �  i Vậy �   � �=i16 +(-i)8 = � � 1 i 1 i � � 1 i � � Ví dụ 5: Tìm phần ảo z biết: z  3z    i    i  (1) Giải: Giả sử z=a+bi (1) � a  bi  3a  3bi    12i  6i  i    i     11i    i  � 4a  2bi   2i  22i  11i  20i  15 � a  15 ; b  10 Vậy phần ảo z -10 Ví dụ 6: Cho z1   i, z   i Tính z1  z1z Giải: z1  z1z   i    i    i   10  10  0i � z1  z1z  10   10 Ví dụ 7: Cho z1   3i, z   i Tính z1  3z ; z1  z ; z1  3z z2 Giải: +) z1  3z   3i   3i   6i � z1  3z  52  62  61 +) z1  z  4i   4i    i   i z z 49    �    z2 4 z2 1 i 1 i 3 +) z1  3z   36i  54i  27i   3i  49  6i � z1  3z  2437 Ví dụ 8: Tìm bậc hai số phức z   12i Giải: Giả sử m+ni (m; n �R) bậc hai z Ta có: (m  ni)   12i � m  2mni  n 2i   12i � m  2mni  n   12i � m  n  5(1) � m2  n  � �� �� 2mn  12 m  (2) � � � n �6 � Thay (2) vào (1) ta có: � � n  � 36  n  5n �n � � n  5n  36  � n  4; n  9(loai) n 2�m3 � � n  2 � m  3 � Vậy z có hai bậc hai 3+2i -3-2i Ví dụ 9: Tính số phức sau: z = (1+i)15 Giải: Ta có: (1 + i)2 = + 2i – = 2i  (1 + i)14 = (2i)7 = 128.i7 = -128.i z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i B – BÀI TẬP TRẮC NGHIỆM Câu 1: Biết số phức z  x  iy thỏa z  8  6i Mệnh đề sau sai? �x  8x   �x  y  8 � A � B � �xy  �y  � x http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 �x  �x  1 hay � C � D x  y  2xy  8  6i �y  �y  3 Câu 2: Cho số phức z   m  1   m   i,  m �R  Giá trị m để z � A 2 �m �6 B 6 �m �2   i m �6 � D � �m �2 C �m �3    2i  Câu 3: Viết số phức dạng đại số: 3i 11 13 11 11  i A   i B   i C D   i 5 5 5 5 Câu 4: Tìm mệnh đề sai mệnh đề sau: a0 � A Số phức z  a  bi  � b0 � B Số phức z  a  bi biểu diễn điểm M(a; b) mặt phẳng phức Oxy C Số phức z  a  bi có mơđun a  b D Số phức z  a  bi có số phức đối z '  a  bi z  z là: Câu 5: Cho số phức z  a  bi, a, b �R mệnh đề Khi số 1) Điểm biểu diễn số phức z M  a; b  z  z a; 2) Phần thực số phức 3) Môdul số phức 2z  z 9a  b 2     4) z  z A Số mệnh đề C Số mệnh đề sai Câu 6: Mệnh đề sau sai A z1  z � z1  z B Số mệnh đề D Cả B z  � z  C Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện z  đường tròn tâm O, bán kính R = D Hai số phức phần thực phần ảo tương ứng Câu 7: Cho hai số phức z1   3i, z    3i, z  z1.z Lựa chọn phương án đúng: B z3  z1 C z1  z  z1  z D z1  z 3i 3i , z'  Câu 8: Cho số phức z  Trong kết luận sau:  7i  7i (I) z  z ' số thực, (II) z  z ' số ảo, (III) z  z ' số thực, Kết luận đúng? A Cả I, II, III B Chỉ II III C Chỉ III, I D Chỉ I, II 2009 2 i i z z Câu 9: Cho số phức z �1 Xét số phức    z  z    z  z Khi z 1 z 1 A ,  �R B ,  số ảo C  �R,  số ảo D  �R,  số ảo A z  25 http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 Câu 10: Cho số phức z =   i Số phức + z + z2 bằng: 2 A   B - 3i C i 2 Câu 11: Giá trị biểu thức  i  i  i3   i 2017 là: A  i B i C i Câu 12: Đẳng thức đẳng thức sau: A (1  i) 2018  21009 i B (1  i) 2018  21009 i C (1  i) 2018  21009 Câu 13: Cho z1 , z �� đẳng thức: z1 z  ; z1  z  z1  z ; z1  z  z1  z z2 z2 Số đẳng thức đẳng thức là: A B C Câu 14: Đẳng thức sau đẳng thức đúng? A (1  i)8  16 B (1  i)8  16 C (1  i)8  16i Câu 15: Đẳng thức sau đẳng thức đúng? A i 2006  i B i 2345  i C i1997  1 Câu 16: Số số phức sau số ảo ? A   2i  B  3i   3i D D  i D (1  i) 2018  21009 z1 z  z1.z ; C    3i  3i   D  2i  3i   D D (1  i)8  16i D i 2005   Câu 17: Giá trị  i  i   i 4k với k �N* A 2ki B 2k C D Câu 18: Các số x; y �R thỏa mãn đẳng thức (1  i)(x  yi)  (2y  x)i   2i Khi tổng x  3y là: A - B - C 13 D - 13 Câu 19: Cho số phức z = x + yi ; x, y �� thỏa mãn z3 = 18 + 26i Giá trị T  (z  2) 2012  (4  z) 2012 là: A 21007 B 31007 C 21007 D 21006 n � 13  9i � Câu 20: Các số nguyên dương n để số phức � �12  i � � số thực ? số ảo ? là: � � A n = + 6k, k �� B n = + 4k, k �� C n = 2k, k �� D n = 3k, k �� z Câu 21: Cho số phức z  2i  bằng: z  12i  6i  12i  6i A B C D 13 11 13 11 � 1 i � Câu 22: Tính số phức z  � �1 i � �: � � A + i B + 2i C – 2i D – i C D C + i D – i 1 i � � Câu 23: Cho z  � �, tính z  z  z  z8 1 i � � A B Câu 24: Tính giá trị P  i  i  i3   i11 A −1 B http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 Câu 25: Tính P  �   5i     3i  � � � kết 2007 A 22007 i B 2007i C 22007 D 22007 i Câu 26: Giá trị biểu thức A  i105  i 23  i 20 – i34 là: A 2i B C 2i D 2 z 1 Câu 27: Nếu z  z A Là số ảo B Bằng C Lấy giá trị phức D Lấy giá trị thực 16 1 i � � 1 i � � Câu 28: Số phức z  � �  � �bằng: 1 i � � 1 i � � A i B C i D 2 a b iz    3i  z Câu 29: Biết số phức z    i ( với a, b, c số tự nhiên) thỏa mãn  z Khi c c 1 i giá trị a là: A - 45 B 45 C - D x 1 y 1  Câu 30: Cho x, y số thực thỏa điều kiện: là: x 1 1 i A x  1; y  B x  1; y  C x  1; y  3 D x  1; y  Câu 31: Cho z1   3i; z   i Tính : z13  z (z1  z ) 61 85 C 85 D 25 Câu 32: Cho hai số phức z1  ax  b, z  cx  d mệnh đề sau: z  (I) ; (II) z1  z  z1  z ; (III) z1  z  z1  z z1 a  b Mệnh đề là: A Chỉ (I) (III) B Cả (I), (II) (III) C Chỉ (I) (II) D Chỉ (II) (III) Câu 33: Tìm bậc hai số phức z   24i A z  4  3i z   3i B z  4  3i z  4  3i C z   3i z   3i D z   3i z  4  3i z  z ta kết là: Câu 34: Cho z   3i Tính 2i A 3i B C 3 D 6i Câu 35: Cho số phức z  a  bi,  a, b �� Nhận xét sau đúng? A 85 B   B z �a  b C z �  a  b   9i  5i Câu 36: Tìm bậc số phức z  1 i A �4i B �2i C �2 Câu 37: Tính   i  ta kết là: A 4  4i B  4i C 8i A z �a  b D z �  a  b  D �4 D  4i 2024 �i � Câu 38: Giá trị � � 1 i � � 1 A  2024 B 1012 2 C 2024 D  1012 http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 �3 i � Câu 39: Tính z  � �2  � � ta kết viết dạng đại số là: � � i 3 i A B  i C  D   i   2 2 2 2 Câu 40: Tìm bậc hai - A - B C 3i D �3i Câu 41: Cho z    i Tính  z  z 2 A B - C D Câu 42: Tìm số phức   z1  2z , biết rằng: z1   2i, z1   3i A   3  4i B   3  8i C    i D    8i Câu 43: Tích số phức z1   2i z i   i A B - 2i C - 5i D  5i Câu 44: Tổng hai số phức  i;5  7i A  8i B  8i C  6i D  6i Câu 45: Các số thực x y thỏa (2x + 3y + 1) + ( - x + 2y)i = (3x - 2y + 2) + (4x - y - 3)i � � � x x x � � � � � 11 � 11 11 A Kết khác B � C � D � �y  �y   �y  � 11 � � 11 11 25i Câu 46: Biết số phức z   4i Số phức là: z A 4  3i B 4  3i C  3i D  3i Câu 47: Cho biết:  1 i3  i  2 i4  i  3  i  1  2  i Trong ba kết trên, kết sai A Chỉ (3) sai B Chỉ (2) sai C Chỉ (1) (2) sai Câu 48: Tổng số phức  i  i A  B 2i C   i Câu 49: Cho số phức z1   i, z   i Hiệu z1  z A + i B C 2i Câu 50: Tính   4i   (2  3i) ta kết quả: A  i B  7i C  7i Câu 51: Đẳng thức A (1  i)  B (1  i)  4i C (1  i)8  16 z Câu 52: Cho số phức z = 2i + bằng: z  12i  12i  6i A z  B z  C z  13 13 11 Câu 53: Số 12  5i bằng: A - 12.5 B Câu 54: Giá trị biểu thức (1 - i ) bằng: A 64 B 25 C 24 C 13 D Cả (1), (2), (3) sai D   2i D + 2i D  i D (1  i)8  16 D z   6i 11 D ` 119 D Kết khác http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 10 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 DẠNG 6: BIỂU DIỄN HÌNH HỌC, TẬP HỢP ĐIỂM A – CÁC VÍ DỤ Ví dụ 1: Cho số phức z = 1+ 3i số phức z’ = + i Hãy: a) Biểu diễn số phức z z’ mp phức b) Biểu diễn số phức z + z’ z’ – z mp phức Giải: uuuu r uuuur a) Vecto OM biểu diễn số phức z = + 3i, vecto OM ' biểu diễn số phức z’ = + i b) uuu rz + z’ = (2 + 1) + (1 + 3)I = + 4i, biểu diễn mp phức vecto OP z’ uuu–r z = (2 – 1) + (1 – 3)i = – 2i, biểu diễn mp phức vecto OQ Ví dụ 2: Xác định số phức biểu diễn đỉnh lục giác có tâm gốc tọa độ O mặt phẳng phức, biết đỉnh biểu diễn số i Giải: Gọi D điểm biểu diễn số i A biểu diễn số −i � �3 1� �  cos ;sin � � ; � Dễ thấy điểm E có tọa độ � �nên E biểu diễn số 6� � � �2 �  i ; C đối xứng với E qua Oy nên C biểu diễn số phức 2 3   i ; F biểu diễn số phức  i ; B biểu diễn số phức 2 2   i 2 Ví dụ 3: Xác định tập hợp điểm mp phức biểu diễn số phức z thỏa mãn điều kiện sau: zi 1 a) z – i = b) c) z  z   4i zi Giải: Gọi z = a + bi a)  z - i = a + bi - i =  a + (b – 1)i =  a2 + (b – 1)2 = 1, Vậy tập hợp điểm biểu diễn số phức z đường tròn có tâm I(0 ; 1) bán kính z  i a  (b  1)i   � a  (b  1)i  a  (b  1)i � a  (b  1)  a  (b  1) � b  b) z  i a  (b  1)i Vậy z số thực c) Ta có : z  z   4i  a + bi = a – bi – + 4i a + bi = (a – 3) + (4 – b)i phức  a2 + b2 = (a – 3)2 + (4 – b)2  6a + 8b – 25 = Vậy tập hợp điểm biểu diễn số phức z đường thẳng Ví dụ 4: Xác định tập hợp điểm mp phức biểu diễn số phức z thỏa mãn điều kiện sau: a) z2 số thực âm b) z2 số ảo http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 39 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 c) z2 = ( z )2 d) số ảo zi Giải: a) z2 số thực âm  z số ảo Vậy tập hợp điểm biểu diễn số phức z nằm trục ảo (Oy), trừ điểm O b) Gọi z = a + bi  z2 = a2 – b2 + 2abi số ảo  a2 – b2 =  b = a Vậy tập hợp điểm biểu diễn số phức z nằm hai đường phân giác gốc tọa độ c) z2 = ( z )2  (z + z )(z − z ) = � z+z =0 (trục thực)  � Vậy tập hợp điểm trục tọa độ z-z =0 (trục ảo) � d) số ảo  z – i số ảo  x + (y – 1)i số ảo  x = y ≠ Vậy tập hợp điểm biểu zi diễn nằm trục Oy (trừ điểm có tung độ 1) z   3i Ví dụ 5: Tìm tập hợp điểm biểu diễn số phức z cho u  số ảo zi a   bi  3i (a   (b  3)i)(a  (b  1)i)  Giải: Giả sử z  a  ib ( a, b �R) , u  a  (b  1)i a  (b  1) Tử số a  b  2a  2b   2(2a  b  1)i � � a  b  2a  2b   (a  1)  (b  1)  � u số ảo khi: � � 2a  b  �0 (a; b) �(0;1), ( 2; 3) � � Vậy tập hợp điểm biểu diễn số phức z đường tròn tâm I( 1; 1) , bán kính , khuyết điểm (0;1) (-2;-3) z   3i  1(*) Ví dụ Tìm tập hợp điểm biểu diễn số phức z, biết z thỏa mãn: z4i Giải: Giả sử z  a  bi � (a  2)  (b  3)  (a  4)  (b  1) � 3a  b   Vậy tập hợp điểm M biểu diễn số phức z đường thẳng có phương trình 3x-y-1=0 Ví dụ 7: Tìm quĩ tích điểm M biểu diễn số phức   (1  i 3)z  biết số phức z thỏa mãn: z  �2 (1) Giải: Giả sử   a  bi Ta có a  bi  (1  i 3)z  � z  (1) ۣ a   (b  3)i 1 i ۣ a   bi a   (b  3i) � z 1  1 i 1 i a   (b  3)i 1 i (a  3)  (b  3) 2 � (a  3)  (b  3) �16 Vậy quĩ tích điểm M biểu diễn số phức hình tròn (x  3)  (y  3) �16 (kể điểm nằm biên) Ví dụ 8: Cho z1 = + i; z2 = -1 - i Tìm z3  C cho điểm biểu diễn z1, z2, z3 tạo thành tam giác Giải: Giả sử z3 = x+yi Để điểm biểu diễn z1, z2 , z3 tạo thành tam giác http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 40 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 �    x  1   y  1 2 � � x  1   y  1  � �  �z1  z  z1  z �� � � �z1  z  z  z �    x  1   y  1 �x  y  �  2y2 =  y = �  x = m Vậy có hai số phức thoả mãn là: z3 = (1+i) z3 = - (1-i) Ví dụ 9: Tìm điểm M mặt phẳng phức biểu diễn số phức z thoả mãn điều kiện sau: z   z Giải: Giả sử z = x + yi  z   � z   z z � x  y   2y  (x2 – y2 +1)2 +4x2y2 = 4(x2 + y2)  (x2 + y2 -1)2 = 4y2  �2 x  y   2y �  Tập hợp điểm M(x;y) biểu thị số phức z hợp hai đường tròn: x2 + y2-2y – = x2 + y2 +2y – = B – BÀI TẬP TRẮC NGHIỆM Câu 1: Tìm tập hợp điểm biểu diễn số phức z mặt phẳng phức cho (z  1)(z  i) số thực A Đường thẳng x  y   B Đường tròn x  y  x  y  C Đường tròn x  y  x  y  D Đường thẳng  x  y   Câu 2: Trong mặt phẳng phức, gọi A, B, C điểm biểu diễn số phức z1  (1  i)(2  i), z   3i, z3  1  3i Tam giác ABC là: A Một tam giác B Một tam giác vuông (không cân) C Một tam giác vuông cân D Một tam giác cân (không đều) Câu 3: Gọi M, N, P điểm biểu diễn số phức – i, + 4i , + i Tìm số phức z biểu diễn điểm Q cho MNPQ hình bình hành A 6i – B + 6i C – 7i D + 7i Câu 4: Xác định tập hợp điểm biểu diễn số phức z mặt phẳng phức cho số zi ảo A Trục hoành, bỏ điểm (-1; 0) B Đường thẳng x = -1, bỏ điểm (-1; 0) C Đường thẳng y = 1, bỏ điểm (0; 1) D Trục tung, bỏ điểm (0; 1) Câu 5: Trong mặt phẳng phức Oxy , cho ba điểm A, B, C biểu diễn cho số phức z1   i, z  2  3i, z3  1  2i Xác định độ lớn số phức biểu diễn trọng tâm G tam giác ABC A B C D Câu 6: Gọi M, N, P điểm biểu diễn số phức + i , + 3i , – 2i Số phức z uuuu r uuuu r r biểu diễn điểm Q cho MN  3MQ  là: 2 2 A  i B  i C   i D   i 3 3 3 3 z z   i � Câu 7: Tập hợp điểm biểu diễn số phức thỏa mãn A Đường tròn tâm I  1,1 , bán kính R  B Đường tròn tâm I  1, 1 , bán kính R  C Hình tròn tâm I  1,1 , bán kính R  D Hình tròn tâm I  1, 1 , bán kính R  Câu 8: Trong mặt phẳng phức cho tam giác ABC vuông C; Biết A, B biểu diễn số phức: z1  -2  4i, z  -2i Khi đó, C biểu diễn số phức: http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 41 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 A z   4i B z    7i C z    2i D z   4i z   3i; z   +2i; z    i Câu 9: Cho số phức: biểu diễn điểm A, B, uuuu r uuur uuur C mặt phẳng Gọi M điểm thỏa mãn: AM  AB  AC Khi điểm M biểu diễn số phức: A z  6i B z   6i C z  D z   uuur uuur uuur Câu 10: Tromg mặt phẳng phức cho hai điểm A(4; 0), B(0; - 3) Điểm C thỏa mãn: OC  OA  OB Khi điểm C biểu diễn số phức: A z    4i B z   3i C z    4i D z   3i Câu 11: Trong mặt phẳng Oxy cho điểm A biểu diễn số phức z1   2i , B điểm thuộc đường thẳng y = cho tam giác OAB cân O B biểu diễn số phức sau đây: A z    2i B z   2i C z   i D z   2i Câu 12: Cho số phức i, – 3i, 3  i có điểm biểu diễn mặt phẳng phức A, B, C; Tìm số phức biểu diễn trọng tâm G tam giác ABC 2 2 A  i B   i C  i D   i 3 3 3 3 Câu 13: Cho số phức z   7i Số phức liên hợp z có điểm biểu diễn là: A (6;7) B (6; 7) C (6; 7) D (6; 7) Câu 14: Cho A, B, M điểm biểu diễn số phức - 4, 4i, x + 3i Với giá trị thực A, B, M thẳng hàng? A x = - B x = C x = - D x = Câu 15: Tập hợp điểm biểu diễn số phức z mặt phẳng Oxy biết (1  i)z số thực là: A Trục Ox B Trục Oy y  x C Đường thẳng D Đường thẳng y   x Câu 16: Tập hợp điểm M biểu diễn số phức z thỏa mãn z  A Đường tròn B Đường thẳng C Phần bên đường tròn có tâm O có bán kính R = D Đường hypebol Câu 17: Tập hợp điểm biểu diễn hình học số phức z đường thẳng  hình vẽ Giá trị z nhỏ là: A B C D Câu 18: Gọi A, B, C điểm biểu diễn số phức z1 = + 2i, z2 = – 3i, z3 = + 4i Chu vi tam giác ABC là: A 26  2  58 B 26   58 C 22  2  56 D 22   58 4i  6i , z    i    2i  , z  Câu 19: Gọi A, B, C điểm biểu diển số phức z1  1  i 3i Khi đó, mệnh đề A A, B, C thẳng hàng B Tam giác ABC tam giác tù C Tam giác ABC tam giác D Tam giác ABC tam giác vuông cân Câu 20: Trong mặt phẳng phức, tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện z   z   có dạng là: http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 42 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 x y2  1 A 25 9 B x  y  x y2  1 C 25 D x  y  16 Câu 21: Cho số phức   iz  với | z   2i | Khi tập hợp điểm M biểu diễn cho số phức  mặt phẳng Oxy là: 2 2 A (x  1)  (y  2)  B (x  1)  (y  3)  2 2 C (x  3)  (y  1)  D (x  3)  (y  1)  Câu 22: Tập hợp điểm biểu diễn số phức z thỏa mãn: z   z   10 là: A Parabol B Hình tròn C Đường thẳng D Elip Câu 23: Cho biết có hai số phức z thỏa mãn | z | có phần thực hai lần phần ảo Hai điểm biểu diễn hai số phức đó: A Đối xứng qua trục thực B Cùng với gốc tọa độ tạo thành tam giác vuông C Đối xứng qua trục ảo D Đối xứng qua gốc tọa độ Câu 24: Tập hợp số phức w    i  z  với z số phức thỏa mãn | z  1|�1 hình tròn có diện tích A  B 3 C 4 D 2 Câu 25: Cho số phức z = a + a i với a  R Khi điểm biểu diễn số phức liên hợp z nằm trên: A Đường thẳng y = - x + B Parabol y = - x2 C Đường thẳng y = 2x D Parabol y = x2 Câu 26: Tìm tập hợp điểm biểu diễn số phức z thoả mãn z   i  z A 4x  2y   B 4x  2y   C 4x  2y   D 4x  2y   Câu 27: Tập hợp điểm biểu diễn số phức z thỏa mãn z   i  A Đường tròn tâm (1; 2), bán kính R = B Đường tròn tâm ( - 1; 1), bán kính R = C Đường tròn tâm (1; - 1), bán kính R = D Đường thẳng x  y  Câu 28: Trong mặt phẳng Oxy, tập hợp tất điểm biểu diễn số phức z thỏa điều kiện: z    4i   có dạng A  x  3   y    B 2x  3y   C  x     y  3  D 2x  3y   2 2 Câu 29: Tập hợp điểm biểu diễn cho số phức z thỏa mãn | z  i ||   i  z | đường tròn có phương trình A x  y  2x   B x  y  2y   C x  y  2x   D x  y  2y   Câu 30: Số phức z thỏa mãn z    i  z   5i có điểm biểu diễn M, A M nằm góc phần tư thứ B M nằm góc phần tư thứ hai C M nằm góc phần tư thứ ba D M nằm góc phần tư thứ tư 4i Câu 31: Xét điểm A, B, C mặt phẳng phức theo thứ tự biểu diễn số phức , (1 – i)(2i i 1  6i + 1), Chọn khẳng định khẳng định sau: 3i A Tam giác ABC có diện tích B Tam giác ABC C Tam giác ABC vuông cân D Tam giác ABC có chu vi http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 43 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 Câu 32: Trong mặt phẳng Oxy, tập hợp điểm M biểu diễn số phức z thỏa mãn điều kiện z   2i  là: A Đường tròn tâm I( - 3;2) bán kính B Đường tròn tâm I(3; - 2) bán kính C Đường tròn tâm I( - 3; - 2) bán kính D Đường tròn tâm I(3;2) bán kính z , z Câu 33: Giả sử hai nghiệm phương trình z  2z   A, B điểm biểu diễn z1 , z Tọa độ trung điểm đoạn thẳng AB là: A  0,1 B  0, 1 C  1,1 D  1,  Câu 34: Cho số phức z thỏa mãn z   4i �2 Tập hợp điểm biểu diễn số phức z là: A Đường tròn tâm I(3; 4) bán kính R = B Đường tròn tâm I(3; - 4) bán kính R = C Hình tròn tâm I(3; - 4) bán kính R = D Hình tròn tâm I(3; 4) bán kính R = Câu 35: Cho A, B, M điểm biểu diễn số phức 4; 4i; x  3i Với giá trị thực x A, B, M thẳng hàng: A x  B x  1 C x  2 D x  Câu 36: Cho số phức z thỏa mãn z số ảo Tập hợp điểm biểu diễn số phức z là: A Đường thẳng B Parabơn C Elip D Đường tròn Câu 37: Trong mặt phẳng tọa độ Oxy Giả sử điểm M biểu diễn số phức z , điểm N biểu diễn số phức z Khi đó: A Hai điểm M, N đối xứng qua trục Oy B Hai điểm M, N đối xứng qua trục Ox C Hai điểm M, N đối xứng qua gốc tọa độ O D Tất sai Câu 38: Trong mặt phẳng phức, cho điểm A, B, C biểu diễn số phức z   4i , z   i , z   i Tâm đường tròn ngoại tiếp tam giác A, B, C biểu diễn số phức nào? A z   3i B z   3i C z   3i D z   i Câu 39: Cho số phức z thỏa mãn z   z   3i Tập hợp điểm biểu diễn số phức z là: A Đường tròn tâm I(1; 2) bán kính R = B Đường thẳng có phương trình x - 5y - = C Đường thẳng có phương trình 2x - 6y + 12 = D Đường thẳng có phương trình x - 3y - = z   3i  là: Câu 40: Tập hợp điểm biểu diễn số phức z biết z thỏa mãn: z 4i A Đường tròn tâm I( - 2;3) bán kính r = B Đường thẳng: 3x - y - = C Đường thẳng: 3x + y - = D Đường tròn tâm I( - 4;1) bán kính R = Câu 41: Trong mặt phẳng Oxy, tập hợp điểm M biểu diễn số phức z thỏa mãn điều kiện z   2i  z   3i là: A Một Hyperbol B Một đường tròn C Một parabol D Một đường thẳng Câu 42: Trong mặt phẳng phức tập hợp điểm biểu diễn số phức z  x  yi thỏa mãn z  i  z  3i  A Đường tròn  C  tâm I  0;1 , bán kinh R  B Đường thẳng D: x  2y   C Đường tròn  C  tâm I  2; 3 , bán kinh R  D Đường thẳng D: y  Câu 43: Cho điểm A, B, C mặt phẳng phức theo thứ tự biểu diễn số:  i,  4i,  5i Tìm số phức biểu diễn điểm D cho tứ giác ABDC hình bình hành: A 3 B  8i C 3  8i D  2i http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 44 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 z  là: z i B bán kính I 1; bán kính Câu 44: Tìm tập hợp điểm biểu diễn số phức z thỏa mãn 4� A bán kính I � 0; �bán kính r  � � 3�   r 4� C Đường tròn I  0;1 bán kính r  D bán kính I � 0; �bán kính r  � 3 � 3� Câu 45: Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện sau đây, tập hợp hình tròn: A  i  z �z  B z   i  z C z  2i �3  i D z   i  Câu 46: Điểm M(1;3) điểm biểu diễn số phức: A z  1  3i B z  1  3i C z  2i D z  Câu 47: Xét điểm A, B, C mặt phẳng phức theo thứ tự biểu diễn số phức 4i  6i z1  , z    i    2i  , z  i 1 3i Nhận xét sau A Ba điểm A, B, C thẳng hàng B Tam giác ABC tam giác vuông C Tam giác ABC tam giác cân D Tam giác ABC tam giác vuông cân Câu 48: Cho số phức z = + bi , b thay đổi tập hợp điểm biểu diễn số phức z mặt phẳng tọa độ A Đường thẳng y - b = B Đường thẳng x - = C Đường thẳng bx + y - = D Đường thẳng x - y - b = Câu 49: Cho điểm A, B, C, D, M, N, P nằm mặt phẳng phức biểu diễn số phức  3i, 2  2i, 4  2i,1  7i, 3  4i,1  3i, 3  2i Nhận xét sau sai A Tứ giác ABCD tứ giác nội tiếp B Hai tam giác ABC MNP hai tam giác đồng dạng C Hai tam giác ABC MNP có trọng tâm D A N hai điểm đối xứng qua trục Ox Câu 50: Cho A, B, C ba điểm biểu diễn số phức z1 , z2 , z3 thỏa z1  z  z Mệnh đề sau A O trọng tâm tam giác ABC B O tâm đường tròn ngoại tiếp tam giác ABC C Tam giác ABC tam giác D Trọng tâm tam giác ABC điểm biểu diễn số phức z1 + z2 + z3 Câu 51: Gọi M điểm biểu diễn số phức z = a + bi mặt phẳng phức Khi khoảng cách OM bằng: 2 A Mơđun a + bi B a  b C a  b D a  b Câu 52: Cho số phức z   7i Số phức liên hợp z có điểm biểu diễn là: A (6; 7) B (6; –7) C (–6; 7) D (–6; –7) Câu 53: Cho số phức z = – 4i Số phức đối z có điểm biểu diễn là: A ( - 5; - 4) B (5; - 4) C (5;4) D ( - 5;4) Câu 54: Số phức z = – 3i có điểm biểu diễn là: A ( - 2;3) B (2;3) C ( - 2; - 3) D (2; - 3) Câu 55: Tọa độ điểm M biểu diễn cho số phức z   i A M( 3;i) B M( 3; 0) C M(0; 3) D M( 3;1) Câu 56: Điểm biểu diễn số phức z  là:  3i http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 45 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 �2 � B � ; � C (2; –3) D (4; –1) 13 13 � � Câu 57: Gọi A điểm biểu diễn số phức z = + 2i B điểm biểu diễn số phức z’ = + 3i Tìm mệnh đề mệnh đề sau: A Hai điểm A B đối xứng với qua gốc tọa độ O B Hai điểm A B đối xứng với qua trục tung C Hai điểm A B đối xứng qua trục hoành D Hai điểm A B đối xứng với qua đường thẳng y = x Câu 58: Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện zi    i   là: A (3; –2) A  x  1   y    2 B x  2y   C 3x  4y   D  x  1   y    Câu 59: Trong mặt phẳng tọa độ Oxy, tập hợp điểm M biểu diễn số phức z thỏa mãn điều kiện z  i  z  i  một: A Đường tròn B Đường Hypebol C Đường elip D Hình tròn Câu 60: Gọi A điểm biểu diễn số phức z = + 5i B điểm biểu diễn số phức z’ = - + 5i Tìm mệnh đề mệnh đề sau: A Hai điểm A B đối xứng với qua đường thẳng y = x B Hai điểm A B đối xứng với qua trục hoành C Hai điểm A B đối xứng với qua gốc tọa độ O D Hai điểm A B đối xứng với qua trục tung Câu 61: Tập hợp điểm mặt phẳng phức biểu diễn số phức z thõa mãn điều kiện z2 số ảo là: A Trục ảo B đường phân giác y = x y = - x trục tọa độ C Đường phân giác góc phần tư thứ D Trục hồnh Câu 62: Phương trình z  2z  b  có nghiệm phức biểu diễn mặt phẳng phức hai điểm A B Tam giác OAB (với O gốc tọa độ) số thực b bằng: A B, C, D sai B C D Câu 63: Cho số phức z thỏa mãn z   4i  w  2z  1- i Trong mặt phẳng phức, tập hợp điểm biểu diễn số phức w đường tròn tâm I , bán kính R A I(3; 4), R  B I(4; 5), R  C I(5; 7), R  D I(7; 9), R  Câu 64: Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện phần thực lần phần ảo A Parabol B Đường tròn C Đường thẳng D Elip Câu 65: Tập hợp điểm biểu diễn số phức z thỏa mãn z  (4  3i)  đường tròn tâm I , bán kính 2 R A I(4;3), R  B I(4; 3), R  C I(4;3), R  D I(4; 3), R  Câu 66: Trong mặt phẳng Oxy, gọi A, B, C, D bốn điểm biểu diễn số phức z1   i, z  5i, z   2i, z  1  2i Trong mệnh đề sau đây, mệnh đề đúng? A Tam giác ABC vuông A B Điểm M(1; 2) trung điểm đoạn thẳng CD C Tam giác ABC cân B D Bốn điểm A, B, C, D nội tiếp đường tròn http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 46 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 Câu 67: Gọi A, B, C, D điểm biểu diễn cho số phức z1   3i, z   4i, z3   5i, z  2i Chọn kết luận nhất: A ABCD hình bình hành B ABCD hình vng C ABCD hình chữ nhật D ABCD hình thoi Câu 68: Gọi M, N, P điểm biểu diễn cho số phức z1   5i, z   i, z  M, N, P đỉnh tam giác có tính chất: A Vuông B Vuông cân C Cân D Đều Câu 69: Giả sử M(z) điểm mặt phẳng phức biểu diễn số phức z Tìm tập hợp điểm M(z) thỏa mãn điều kiện: z   i = A Đáp án khác B (x + 1)2 + (y + 1)2 = 2 C (x - 1) + (y - 1) = D (x - 1)2 + (y + 1)2 = Câu 70: Tập hợp điểm M biểu diễn cho số phức z thoả mãn z  5i  z  5i  10 là: A Đường tròn B Đường elip C Đường thẳng D Đường parabol Câu 71: Trong mặt phẳng phức, cho điểm A, B, C biểu diễn cho số phức z1   i, z  (1  i) , z  a  i, a �R Để tam giác ABC vng B a  A - B - C D - Câu 72: Tập hợp điểm biễu diễn số phức z thoả z  2i  đường tròn tâm I Tất giá trị m thoả khoảng cách từ I đến d: 3x + 4y – m = là? A m  10; m  14 B m  10; m  12 C m  10; m  11 D m  7; m  Câu 73: Trong mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa z   2i  A Đường tròn tâm I( - 3;2), bán kính R = B Đường tròn tâm I(3; - 2), bán kính R = 16 C Đường tròn tâm I(3; - 2), bán kính R = D Đường tròn tâm I( - 3;2), bán kính R = 16 Câu 74: Tập hợp điểm biểu diễn số phức z thỏa mãn z  (3  4i)  mặt phẳng Oxy là: A Đường thẳng 2x  y   B Đường tròn (x  3)  (y  4)  D Đường tròn x  y  6x  8y  21  C B C Câu 75: Tập hợp điểm M biểu diễn số phức z thoả điều kiện: z   i  z   2i là: A Đường thẳng B Elip C Đoạn thẳng D Đường tròn Câu 76: Cho phương trình x – 2x + = Gọi A B điểm biểu diễn nghiệm pt Khi diện tích tam giác OAB là: A 1đvdt B 2đvdt C đvdt D đvdt Câu 77: Trong mặt phức cho tam giác ABC vuông C; Biết A, B biểu diễn số phức: z1 = - – 4i; z2 = – 2i Khi có điểm C biểu diễn số phức: A z = – 4i B z = - + 2i C z = + 2i D z = -2 – 2i, z = -4i Câu 78: Trong mặt phẳng phức cho ba điểm A, B, C lầnuu lượt ur biểu uuur diễn uuur cácuusố uu r phức r z1 = 2; z2 = + i ; z3 = - 4i M điểm cho: OA  OB  OC  3OM  Khi M biểu diễn số phức: A z = 18 –i B z = - + 18i C z = – i D z = - + 2i Câu 79: Trong mặt phẳng Oxy cho điểm A biểu diễn số phức z = + 2i B điểm thuộc đường thẳng y = cho tam giác OAB cân O B biểu diễn số phức sau đây: A z = - + 2i B z = – 2i C z = - – 2i D z = + 2i Câu 80: Gọi M M’ theo thứ tự điểm mặt phẳng phức biểu diễn số phức z z  i  z(z  1) Tam giác OMM’ tam giác gì? http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 47 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 A Tam giác vng B Tam giác cân C Tam giác vuông cân D Tam giác Câu 81: Điểm biểu diễn số phức z = a + với a  R, nằm đường thẳng có phương trình là: A y = x B y = 2x C y = 3x D y = 4x Câu 82: Cho số phức z = a - với a  R, điểm biểu diễn số phức đối z nằm đường thẳng có phương trình là: A y = 2x B y = - 2x C y = x D y = - x Câu 83: Cho số phức z = a + a i với a  R Khi điểm biểu diễn số phức liên hợp z nằm trên: y y y 3i x x O (Hình 1) O 3i (Hình 2) x O (Hình 3) A Đường thẳng y = 2x B Đường thẳng y = - x + C Parabol y = x D Parabol y = - x2 uuur Câu 84: Giả sử A, B theo thứ tự điểm biểu diễn số phức z1, z2 Khi đọ dài véctơ AB bằng: A z1  z2 B z1  z2 C z2  z1 D z2  z1 Câu 85: Tập hợp điểm mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z  i  là: A Một đường thẳng B Một đường tròn C Một đoạn thẳng D Một hình vng Câu 86: Tập hợp điểm mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z số thực âm là: A Trục hoành (trừ gốc toạ độ O) B Trục tung (trừ gốc toạ độ O) C Đường thẳng y = x (trừ gốc toạ độ O) D Đường thẳng y = - x (trừ gốc toạ độ O) Câu 87: Tập hợp điểm mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z số ảo là: A Trục hoành (trừ gốc toạ độ O) B Trục tung (trừ gốc toạ độ O) C Hai đường thẳng y = ±x (trừ gốc toạ độ O) D Đường tròn x2 + y2 = Câu 88: Tập hợp điểm mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z2 = ( z )2 là: A Trục hoành B Trục tung C Gồm trục hoành trục tung D Đường thẳng y = x z i Câu 89: Cho số phức z = x + yi (x, y  R) Tập hợp điểm biểu diễn z cho số z i thực âm là: A Các điểm trục hoành với - < x < B Các điểm trục tung với - < y < x �1 y �1 � � C Các điểm trục hoành với � D Các điểm trục tung với � x �1 y �1 � � C - ĐÁP ÁN http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 48 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 1D, 2C, 3B, 4D, 5C, 6B, 7C, 8A, 9A, 10B, 11A, 12B, 13B, 14C, 15C, 16C, 17D, 18A, 19D, 20A, 21A, 22B, 23D, 24C, 25B, 26C, 27B, 28A, 29D, 30D, 31C, 32D, 33D, 34D, 35B, 36A, 37, 38B, 39C, 40B, 41D, 42D, 43D, 44A, 45C, 46D, 47B, 48D, 49B, 50B, 51A, 52B, 53C, 54D, 55D, 56B, 57D, 58A, 59C, 60D, 61B, 62A, 63D, 64C, 65D, 66D, 67B, 68A, 69D, 70B, 71A, 72D, 73A, 74B, 75A, 76A, 77D, 78C, 79A, 80B, 81A, 82C, 83D, 84C, 85D, 86A, 87C, 88C, 89B http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 49 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 DẠNG 7: DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC A – CÁC VÍ DỤ Ví dụ 1: Viết số phức sau dạng lương giác: z   i �3 i � �   � �   �   cos  sin i  cos  i sin Giải: z  � � � � � � �2 � � 6 � � 6 � � � � �  sin  icos � Ví dụ 2: Tìm acgumen số phức: z  � 5� �   � � 3 3 � � 3 3 � �   cos(  )  i sin(  ) � � cos  i sin � � cos( )  i sin( )� Giải: z  � � � 10 10 � � 10 10 � � 3 � acgumen z  k2 10 Ví dụ 3: Viết số phức sau có dạng lượng giác: z = 2-2i � �  � �1 �  �  i � 2 � cos  i sin � 2 � cos( )  i sin( ) � Giải: z  2 �  4� 4 � � � � �2 Ví dụ 4: Tìm acgumen z   2i �3 � �  �  i  cos  i sin Giải: z   2i  � � � � �2 � � 6 � � �   k2 Vậy acgumen z Ví dụ 5: Biết z   i Tìm dạng đại số z 2012  � �  4� cos( )  i sin( ) � 6 � � �1 3� �   � �   �  i  2� cos  i sin � � cos( )  i sin( ) � Giải: z   i = � � �2 � � � 3� � 3 � � 2012 2012 z 2012  (2 2) 2012 (cos  i sin )  (2 2) 2012 ( 1  i.0)  (2 2) 2012 4 Ví dụ 6: Cho z1   i ; z   2i Tìm dạng đại số z 20 z15 � �  � �1 �  �  i � � cos  i sin � � cos( )  i sin( ) � Giải: z1   i  �  4� 4 � � � � �2 20 � 10 � 20 z120  ( 2) 20 � cos( )  i sin( ) � ( 1  i.0)  210 4 � � �3 � �  � cos  i sin � z   2i  � �2  i � � � 6� � � � 15 15 � 15 15 � 15 z15 cos  i sin  � � (0  i1)  i � � 20 15 Suy z z  240 i Ví dụ 7: Gọi z1 ; z nghiệm phức phương trình: z  3iz   , viết dạng lượng giác z1 ; z Giải: z  3i.z   ,   3i     http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 50 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 z1  3i  1; z  3i  �1 � � 2 2 � z1  �  i�  2� cos  isin � �2 � � � 3 � � �1 � �  � z2  � cos  isin � �2  i � � � 3� � � � Ví dụ 8: Tính : a) (1 + i)5 b) (1 + i)9 Giải: � � �  � � 5 � 2� � 5 cos  i sin �  ( 2)5 � cos  i sin � �   i a) (1 + i) = � � � � � � 4(1  i) 4� � � � � � � � b) Ta tìm dạng lượng giác  3i � �r    � � cos  Ta có : � suy r =  = /3 � � sin   � � Dạng lượng giác  3i : 2(cos/3 + isin /3) Ví dụ 9: Cho số phức w =  (1  i 3) Tìm số nguyên dương n để w n số thực Hỏi có m số nguyên dương m để w số ảo ? 4 4 4n 4n  i sin  i sin Giải: Ta có : w =  (1  i 3)  cos  wn = cos (n guyên dương) Số 3 3 4n   4n/3 phải số nguyên, tức n phải bội nguyên dương số thực sin 4m  , tức có số nguyên k để Số wm (m nguyên dương) số ảo cos 4m   k  8m – 6k = 3, ta thấy VT chia hết cho 2, VP không chia hết cho Vậy khơng có số ngun dương m để wm số ảo 2010 2012 Ví dụ 10:Tính tổng S  C2012  C2012  C2012  C 2012   C2012  C 2012 2012 2011 2012  C02012  C12012i  C22012i  C32012i3   C2011  C2012 Giải: Ta có (1  i) 2012i 2012 i 2011 2012 (1  i) 2012  C02012  C12012i  C 2012 i  C32012i   C 2011  C 2012 2012i 2012i 2012 2012 2012  2(C02012  C 22012  C62012   C 2010 Suy (1  i)  (1  i) 2012  C 2012  2S   2012  [ 2(cos  i sin )]2012  21006 (cos 503  i sin 503)  21006 Mặt khác (1  i) 4   (1  i) 2012  [ 2(cos  i sin )]2012  21006 (cos  503  i sin  503)  21006 4 1006 Từ S  2 Ví dụ 11: Dùng công thức triển nhị thức Niu-tơn (1 + i)19 cơng thức Moa-vro để tính : http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 51 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 16 18 C19  C19  C19   C19  C19 Giải: 2 4 16 16 18 18 3 19 19 Ta có : (1 + i)19 = (C19  C19i  C19i   C19i  C19i )  (C19i  C19i   C19i ) 18 17 19 = C190  C192  C194   C16 19  C19  (C19  C19  C19   C19  C19 ).i 16 18  phần thực C19  C19  C19   C19  C19 19 � �  � � 19 � � 19  ( 2)19 � cos  i sin Theo Moa-vro, ta có : (1 + i) = � �cos  i sin � � � 4� 4 � � � � � � 2� 9 19   i = ( 2) � � 2  i � 2 � � � 16 18  phần thực : −29 Vậy : C19  C19  C19   C19  C19 = −29 = −512 19 Cách khác: (1 + i)2 = 2i  (1 + i)19 = (2i)9(1 + i) = 29.i(1 + i) = 29(−1 + i), từ suy số cần tìm B – BÀI TẬP TRẮC NGHIỆM Câu 1: Số phức z = 8i viết dạng lượng giác là: 3 � � � 3 �  cos  i sin � cos  i sin � A z = � B z = � � 2� � � C z =  cos  i sin  D z =  cos   i sin   � �  cos  i sin �là: Câu 2: Dạng lượng giác số phức z = � 6� � 11 � 7 � � 11 � 7 cos  i sin cos  i sin A z = � B z = � � � � � � � 5 � 13 � � 5 � 13 cos  i sin � cos  i sin C z = � D � � � � � � 3 Câu 3: Số phức viết dạng lượng giác số phức z    i 2 � 2 � �  � 2 s in  i cos � cos  i sin A � B � � 5� � � �  � 1�  � �  cos  i sin cos  i sin � C 2 � D � � � 2� 7� � Câu 4: Cho số phức z = - - i Argumen z (sai khác k2) bằng:  3 5 7 A B C D 4 4 Câu 5: Cho số phức z = cos + isin kết luận sau đúng:   A z n  z n  n cos     i sin 20  , z B z n  z n  2cos n Câu 6: Cho z1   cos 20 A 6(1 - 2i) B 4i   C z n  z n  2n cos     cos1100  i sin110  Tích z1 z2 bằng: C 6i 0 0 Câu 7: Cho z1   cos100  i sin100  , z   cos 40  i sin 40  A + i  B  i    D z n  z n  cos  C - i D 6(1 - i) z1 Thương bằng: z2 D 2(1 + i) http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 52 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Số Phức - Giải tích 12 C – ĐÁP ÁN 1B, 2A, 3B, 4B, 5B, 6C, 7A http://dethithpt.com – Website chuyên đề thi – tài liệu file Word Trang 53 ... đun số phức z số thực B Mô đun số phức z số thực dương C Mô đun số phức z số phức D Mô đun số phức z số thực không âm Câu 71: Mô đun số phức z   2i    i  là: A B C D Câu 72: Cho số phức. .. biểu sau đúng: A Mọi số phức z số phức liên hợp z có bình phương B Mọi số phức z số phức liên hợp z có bậc hai C Mọi số phức z số phức liên hợp z có phần ảo D Mọi số phức z số phức liên hợp z có... mệnh đề sau, mệnh đề sau không A Tập hợp số thực tập số phức B Nếu tổng hai số phức số thực hai số số thực C Hai số phức đối có hình biểu diễn hai điểm đối xứng qua gốc tọa độ O D Hai số phức

Ngày đăng: 25/07/2019, 11:38

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w