Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 46 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
46
Dung lượng
1,56 MB
Nội dung
TRƯỜNG ĐẠI HỌC VINH VIỆN KỸ THUẬT VÀ CÔNG NGHỆ ĐINH THỊ NHUNG NGHIÊN CỨU PHƯƠNG PHÁP PHÂN LỚP NHỊ PHÂN TRONG NHẬN DẠNG GIỚI TÍNH QUA ẢNH ĐỒ ÁN TỐT NGHIỆP ĐẠI HỌC NGÀNH CÔNG NGHỆ THÔNG TIN Nghệ An, 05 năm 2019 TRƯỜNG ĐẠI HỌC VINH VIỆN KỸ THUẬT VÀ CÔNG NGHỆ NGHIÊN CỨU PHƯƠNG PHÁP PHÂN LỚP NHỊ PHÂN TRONG NHẬN DẠNG GIỚI TÍNH QUA ẢNH ĐỒ ÁN TỐT NGHIỆP ĐẠI HỌC NGÀNH CÔNG NGHỆ THÔNG TIN Sinh viên thực hiện: Đinh Thị Nhung Mã sinh viên: 145D4802010033 Lớp: 55k1-CNTT Giảng viên hướng dẫn: Võ Đức Quang Nghệ An, 05/ 2019 LỜI CAM ĐOAN Đồ án công trình nghiên cứu cá nhân em, thực hướng dẫn Ths Võ Đức Quang Các số liệu, kết luận nghiên cứu trình bày đồ án hoàn toàn trung thực Em xin hoàn toàn chịu trách nhiệm lời cam đoan Nghệ An, ngày… tháng… năm 2019 Sinh viên thực Đinh Thị Nhung MỤC LỤC DANH MỤC TỪ VIẾT TẮT DANH MỤC BẢNG BIỂU LỜI CẢM ƠN MỞ ĐẦU Lý chọn đề tài Mục đích nghiên cứu .7 Phạm vi thực Cấu trúc đồ án CHƯƠNG I: CƠ SỞ LÝ THUYẾT Học máy (Machine Learning) 1.1 Giới thiệu 1.2 Bài toán phân cụm 10 1.3 Bài toán phân lớp 10 Bài toán nhận dạng xử lý ảnh 15 Bài toán nhận dạng giới tính qua ảnh khn mặt 17 3.1 Giới thiệu 17 3.2 Mơ hình tốn nhận dạng giới tính 17 CHƯƠNG II: THUẬT TOÁN PHÂN LỚP NHỊ PHÂN LOGISTIC REGRESSION 19 1.Giới thiệu 19 Ví dụ mơ hình LogisticRegreession 19 Mơ hình Logistic Regression 22 CHƯƠNG III: THỬ NGHIỆM NHẬN DẠNG GIỚI TÍNH QUA ẢNH SỬ DỤNG BỘ DỮ LIỆU AR FACE DATABASE .27 Môi trường thử nghiệm 27 1.1 Cài đặt python 27 1.2 Cài đặt Pycharm .29 1.3 Cài đặt thư viện 33 Thử Nghiệm 33 2.3 Bộ liệu 33 2.2 Cách thử nghiệm .34 2.3 Các thủ tục 35 Đánh giá 40 CHƯƠNG IV: KẾT LUẬN 42 TÀI LIỆU THAM KHẢO .43 DANH MỤC TỪ VIẾT TẮT TT Từ viết tắt Ý nghĩa AI Trí tuệ nhân tạo PLA Perceptron Learning Algorithm SVM Support Vector Machine DANH MỤC BẢNG BIỂU Hình 1: Ví dụ tốn phân lớp Hình 2: Mơ hình tốn phân lớp Hình 3: Bài tốn Perceptron Hình 4: Bài tốn SVM Hình 5: Sơ đồ tổng quan hệ thồng nhận dạng ảnh Hình 6: Mơ hình nhận dạng giới tính qua ảnh Hình 7: Ví dụ logistic regression Hình 8: Bảng liệu hoạt động chim cánh cụt Hình 9: Đồ thị sigmoid function Hình 10: Các ví dụ mẫu AR face database Hình 11: Ví dụ kết tìm Logistic Regression LỜI CẢM ƠN Để hoàn thành đồ án tốt nghiệp, lời em xin chân thành cảm ơn đến toàn thể thầy cô trường Đại Học Vinh thầy cô Viện Kỹ Thuật Công Nghệ, đặc biệt thầy cô ngành công nghệ thơng tin, mơn hệ thống thơng tin nói riêng, người tận tình hướng dẫn dạy dỗ trang bị cho em ki ến th ức bổ ích năm năm vừa qua Đặc biệt em xin chân thành gửi lời cảm ơn sâu sắc đến th ầy giáo Ths Võ Đức Quang, người tận tình hướng dẫn, trực tiếp bảo tạo điều kiện giúp đỡ em suốt trình làm đồ án tốt nghiệp Sau em xin gửi lời cảm ơn chân thành tới gia đình, bạn bè, anh ch ị khóa động viên, cổ vũ đóng góp ý kiến q trình h ọc tập, nghiên cứu trình làm đồ án tốt nghiệp Em xin chân thành cảm ơn! Nghệ An, tháng 05 năm 2019 Sinh viên thực Đinh Thị Nhung M Ở ĐẦ U Lý chọn đề tài Ngày nay, trí tuệ nhân tạo phát triển mạnh mẽ xâm nhập vào nhiều lĩnh vực sống tự động dịch thuật, nhận dạng giọng nói, điều khiển tự động, nhận dạng khn mặt, nhận dạng chữ viết tay v.v Nó coi xu hướng công nghệ giới nhiều người cho cách mạng cơng nghiệp lần thứ Trong lĩnh vực AI, học máy (machine learning) lĩnh vực liên quan đến việc nghiên cứu kỹ thuật xây dựng hệ thống “h ọc”tự động từ liệu, từ giải vấn đề tốn cụ th ể Hay nói cách khác học máy phần giúp cho máy tính xử lý liệu đưa định người Ví dụ đưa ảnh vào máy tính xử lý ảnh xem ảnh nam nữ Trong tốn Machine learning có hai loại tốn đặc trưng tốn phân lớp phân cụm Mỗi tốn có đặc trưng riêng phạm vi áp dụng vào loại toán thực tế khác Bên c ạnh đó, tốn nhận dạng xử lý ảnh toán hấp dẫn có tính ứng dụng cao Trong khn khổ đồ này, em sâu vào nghiên cứu toán phân lớp cụ thuật toán Logistic Regession để áp dụng vào nhận dạng giới tính qua liệu ảnh đầu vào, xem ảnh nam nữ Hơn nữa, đồ án thử nghiệm đánh giá hiệu phân lớp thuật toán liệu cụ thể AR face database Mục đích nghiên cứu Mục đích đề tài nghiên cứu toán phân lớp nhị phân để ta đưa ảnh vào ta dùng thuật tốn tốn phân lớp nhị phân để đưa giới tính ảnh nam hay nữ Phạm vi thực Thực đánh giá liệu AR face database Nội dung thực Để nghiên cứu phương pháp phân lớp nhị phân nhận dạng giới tính qua ảnh ta cần thực bước sau đây: Tìm hiểu tốn phân lớp nhị phân, toán nhận dạng xử lý ảnh, tốn nhận dạng giới tính qua ảnh Tìm hiểu thuật tốn Logistic Regression để nhận dạng giới tính ảnh Cuối đưa liệu vào thử nghiệm đánh giá Cấu trúc đồ án - Mở đầu - Chương 1: Cơ sở lý thuyết - Chương 2: Nghiên cứu thuật toán Logistic Regression - Chương 3: Thử nghiệm nhận dạng giới tính qua ảnh sử dụng sở liệu AR face data base - Chương 4: Kết luận 1.2.2 Cài đăt Pycharm Khi q trình cài đặt hồn tất, chạy tập tin exe để cài đặt PyCharm Chương trình cài đặt khởi động Click vào “Next”: Trên hình tiếp theo, thay đổi đường dẫn cài đặt cần thiết Sau click vào “Next”: 30 Trên hình tiếp theo, bạn lựa chọn tạo biểu tượng hình desktop bạn muốn sau click “Next”: Lựa chọn thư mục Start Menu Tiếp tục lựa chọn JetBrains sau click vào “Install”: 31 Chờ đợi trình cài đặt kết thúc Khi trình cài đặt kết thúc, bạn nhận thơng báo hình rang PyCharm cài đặt Nếu bạn muốn tiếp tục chạy thử nó, click vào “Run PyCharm Community Edition”, sau click “Finish” 32 Sau bạn click vào “Finish”, hình sau ra: 1.3 Cài đặt thư viện - numpy scipy matplotlib sklearn pillow 33 Thử Nghiệm 2.1 Bộ liệu Vì lý em khơng thể có liệu AR face database Nên em sử dụng sở liệu em tự tạo bao gồm 25 ảnh màu tương ứng với khuôn mặt 10 người (5 nam, nữ) Với người, ảnh với sắc thái biểu cảm khn mặt khác Hình ảnh nam lưu trữ dạng: M-xxx-yy.png Nữ giới như: W-xxx-yy.png ‘xxx’ xxx id người “yy” định tính hình ảnh; ý nghĩa mơ tả bảng sau: Biểu trung bình Cười Tức giận Há miệng -Bộ sơ liệu bao gồm 25 ảnh từ nam nữ Hơn nữa, khn mặt xác định xác cropped với kích thước 11292(pixel) phương pháp mô tả báo PCA veus LDA Tôi xin bỏ qua phần xử lý trực tiếp sử dụng ảnh cropped số ví dụ đây: Hình 10: Các ví dụ mẫu AR face database Mỗi ảnh AR Face thu gọn đặt tên dạng G-xxx-yy.png Trong đó: G nhận hai giá trị M (man) W (woman); xxx id người, nhận gía trị từ 001 đến 005; yy điều kiện chụp, nhận giá 34 trị từ 01 đến 06, điều kiện có số thứ tự từ 01 đến 06 khn mặt khơng bị che bơi kính khăn điều kiện view 2.2 Cách thử nghiệm Để làm ví dụ cho thuật tốn Logistic Regression, em lấy ảnh nam nữ làm tập training set; nam nữ lại làm test set Với người, em lấy khn mặt khơng bị che kính khăn Feature Extraction: ảnh có kích thước 3x112x92 (số channels 3, chiều cao 112, chiều rộng 92) Chuyển ảnh màu ảnh xám theo công thức Y' = 0.299 R + 0.587 G + 0.114 B Kéo dài ảnh xám thu thành vector hàng có số chiều 112x92, sau sử dụng random projection matrix để giảm số chiều 500 Và ta làm việc với python: Em sử dụng hàm sklearn.linear_model.LogisticRegression thư vi ện sklearn cho thử nghiệm 2.3 Các thủ tục Khai báo thư viện Phân chia training set test set, lựa chọn views Tạo random projection matrix 35 Xây dựng danh sách tên files Feature Extraction: Xây dựng liệu cho training set test set 36 thực thuật toán Logistic Regression, dự đoán output test data đánh giá kết Một ý nhỏ, hàm Logistic Regression thư viện sklearn có nhiều biến thể khác Để sử dụng thuật toán Logistic Regression mà giới thiệu Logistic Regression, cần đặt giá trị cho C số lớn để nghịch đảo gần với 37 38 39 Đánh giá Sau thử nghiệm với sơ liệu kết phân lớp đạt 65% Đối với ảnh thị xác suất ảnh thu ộc gi ới tính nam hay nữ phần % 40 Hình 11: Ví dụ kết tìm Logistic Regression 41 CHƯƠNG IV: KẾT LUẬN Những kết đạt đề tài: - Đã tìm hiểu kiến thức Machine Learning - Các toán phân lớp đặc biệt toán phân lớp nhị phân, số thuật toán phân lớp phổ biến - Đã tìm hiểu kỹ thuật tốn Logistic Regression - Đã áp dụng thuật toán Logistic Regression để nhận dạng giới tính qua ảnh với tỷ lệ cao 65 % Hạn chế: Trong qua trình làm đồ án em mắc phải nhiều vấn đề: Như tìm hiểu thuật tốn gặp nhiều khó khăn, kiến thức mẻ, thời gian hạn chế Hướng phát triền: em tiếp tục nghiên cứu thuật toán Machine Leaning áp dụng thuật toán Logicstic Regression toán khác Trong thực đồ án tốt nghiệp, em cố gắng để tìm hiểu, học hỏi khả giới hạn, khơng tránh khỏi sai sót, nên chưa giải tất vấn đề đặt Em mong nhận thông cảm quý thầy cô bạn Em xin chân thành cảm ơn 42 TÀI LIỆU THAM KHẢO [1] Sebastia Raschka, Python Machine Learning, 2015 [2] Vũ Hữu Tiệp, Machine Learning bản, NXB Khoa Học Và Kỹ Thuật, 2018 [3] https://machinelearningcoban.com/2017/02/11/binaryclassifiers/ [4] https://machinelearningcoban.com/2017/01/27/logisticregression/ [5] https://en.wikipedia.org/wiki/Grayscale#Luma_coding_in_video_systems [6] https://machinelearningcoban.com/general/2017/02/06/featureengineering/ 43 ... tốn tốn phân lớp nhị phân để đưa giới tính ảnh nam hay nữ Phạm vi thực Thực đánh giá liệu AR face database Nội dung thực Để nghiên cứu phương pháp phân lớp nhị phân nhận dạng giới tính qua ảnh ta... Trích chọn đặc trưng Dữ liệu nhận dạng Nhận dạng Kết nhận dạng Hình 6: Mơ hình nhận dạng giới tính qua ảnh 17 Phần em trình bày mơ hình nhận dạng giới tính qua ảnh xem ảnh nam hay nữ Thì ta đưa... đề nhận dạng Ảnh gốc Tiền xử lý ảnh Trích chọn đặc Đánh giá trưng Phân lớp Hình Sơ đồ tổng quan hệ thống nhận dạng ảnh Các toán nhận dạng ảnh: Nhận dạng chữ viết Nhận dạng khuôn mặt Nhận