ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG LẦN I MônTOÁN Khối A, B ,D và khối A1 Trường THPT Lê Hữu Trác1
Trường THPT Lê Hữu Trác1 ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG LẦN I Môn: TOÁN; Khối A, B ,D và khối A1 Thời gian làm bài: 180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2đ): Cho hàm số 3 2 2 3 3 3( 1) 1y x mx m x m= − + − − + (1) 1, Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m=1. 2, Tìm m để hàm số (1) có cực đại, cực tiểu đồng thời các điểm cực đại,cực tiểu A,B của đồ thị hàm số cùng với điểm M(-2;2) tạo thành góc 0 90AMB∠ = Câu II (2đ): 1, Giải phương trình: 2 ( 3 sinx cos )(sinx cos ) 4 2 sin ( ) os( ) 4 4 x x x c x π π + + = + + 2, Giải phương trình: 2 2 6 10 5( 2) 1 0x x x x− + − − + = Câu III (1đ): Tìm nguyên hàm 2 2 3 (sin 2 1 4 )x x x dx+ + ∫ Câu IV (1đ): Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc 0 60BAD∠ = . O là giao điểm của AC và BD, H là trung điểm của BO, ( )SH ABCD⊥ 3 2 a SH = . Tìm thể tích của S.AHCD và tìm khoảng cách giữa AB và SC. Câu V (1đ): Cho , , 0a b c > thỏa mãn 2 5 6 6ab bc ca abc + + = . Tìm giá trị nhỏ nhất của 4 9 2 4 4 ab bc ca P b a c b a c = + + + + + II. PHẦN RIÊNG ( 3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình chuẩn Câu VIa (2đ): 1, Cho M(1;3) và I(-2;2). Viết phương trình đường thẳng d đi qua M cắt các trục Ox,Oy tại A,B sao cho ∆ IAB cân tại I. 2, Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC vuông tại A, có hai đỉnh ,A B thuộc đường tròn tâm I(-2,-1), bán kính bằng 5. Biết đường thẳng đi qua hai đỉnh A, B có hệ số góc dương và đi qua điểm M(0, 5), cạnh AC có độ dài bằng 5 , diện tích của tam giác ABC bằng 5 và tung độ của A dương. Tìm toạ độ các đỉnh A,B. Câu VIIa (1đ) Rút gọn biểu thức 0 1013 1 1014 1013 1000 2013 2013 2013 2013 2013 2013 2013 2013 2013 . . ( 1) . . . k k k A C C C C C C C C + = − + + − + + B. Theo chương trình nâng cao Câu VIb (2đ): 1, Trong hệ tọa độ Oxy, cho hình bình hành ABCD có diện tích bằng 12, hai đỉnh A(-1;3) B(-2;4). Tìm tọa độ hai đỉnh còn lại, biết giao điểm hai đường chéo nằm trên trục hoành. 2, Cho tam giác nhọn ABC. Đường thẳng chứa đường trung tuyến kẻ từ đỉnh A và đường thẳng BC lần lượt có phương trình là 3 5 8 0, 4 0x y x y+ − = − − = . Đường thẳng qua A vuông góc với đường thẳng BC cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là ( ) 4; 2D − . Viết phương trình các đường thẳng AB, AC; biết rằng hoành độ của điểm B không lớn hơn 3. Câu VIIb (1đ) Giải bất phương trình: 3 3 1 1 3 3 1 log ( 4) log (2 1) log 2 x x x+ + + + ≥ ------------------- Hết ------------------ . Câu VIIa (1đ) Rút gọn biểu thức 0 1013 1 1014 1013 1000 2013 2013 2013 2013 2013 2013 2013 2013 2013 . . ( 1) . . . k k k A C C C C C C C C + =. Trường THPT Lê Hữu Trác1 ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG LẦN I Môn: TOÁN; Khối A, B ,D và khối