1. Trang chủ
  2. » Luận Văn - Báo Cáo

Ảnh hưởng của CO2, nhiệt độ và nitrit lên sự cân bằng axít-bazơ và các chỉ tiêu sinh lý máu của lươn đồng (Monopterus albus Zuiew, 1793)

128 77 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 128
Dung lượng 5,37 MB

Nội dung

GIỚI THIỆU 1.1 Đặt vấn đề Trong những năm gần đây, biến đổi khí hậu (BĐKH) cũng như hiện tượng nóng lên toàn cầu đã và đang đe dọa đến các đồng bằng ven biển trên thế giới, ước tính mực nước biển sẽ dâng thêm từ 20 cm đến 45 cm vào năm 2030 và 2090 (Khang et al., 2008). Sự biến đổi này cũng làm gia tăng hàm lượng các chất độc vào môi trường như CO 2 , NO 2 , CH 4 và tăng nhiệt độ 1-4°C trong thế kỷ tiếp theo (IPCC, 2013). Việt Nam là nước xếp thứ 27 trong số 132 quốc gia trên thế giới bị ảnh hưởng của BĐKH. Theo IPCC (2007) thì đồng bằng sông Cửu Long được dự đoán là một trong mười đồng bằng trên thế giới chịu ảnh hưởng nặng nhất của BĐKH. Vì thế, BĐKH ảnh hưởng rất lớn đến sự phát triển bền vững của ngành thủy sản Việt Nam, nhất là nuôi trồng thủy sản do động vật thuỷ sản là loài biến nhiệt nên nhiệt độ là yếu tố quan trọng gây ảnh hưởng trực tiếp và gián tiếp đến đời sống. Điều hòa pH hay cân bằng axít - bazơ trong máu của động vật là một cơ chế quan trọng giúp sinh vật thích nghi với những thay đổi của môi trường sống cũng như những thay đổi ngay bên trong cơ thể sinh vật. Đặc biệt đối với động vật thủy sinh khi môi trường sống là nước thì cơ chế cân bằng axít - bazơ lại càng quan trọng và chịu tác động rất lớn từ những thay đổi của môi trường (Heisler, 1976). Đa số các loài động vật, bao gồm động vật sống dưới nước, pH ngoại bào của cơ thể sẽ giảm khi nhiệt độ cơ thể tăng lên (Truchot, 1987; Ultsch and Jackson, 1996; Stinner and Hartzler, 2000; Burton, 2002; Wang and Jackson, 2016). Ở các loài động vật thủy sinh có xương sống, giảm pH máu khi nhiệt độ tăng còn liên quan đến thay đổi nồng độ HCO 3 - trong huyết tương và áp suất riêng phần CO 2 trong máu (PaCO 2 ) (Randall and Cameron, 1973; Larry, 1979; Austin et al., 1927; Smatresk and Cameron 1982; Cameron and Kormanik 1982; Boutilier et al., 1987; và Amin-Naves et al., 2004). Bên cạnh sự thay đổi về nhiệt độ thì hàm lượng khí CO 2 trong ao nuôi thủy sản cũng tăng cao do tác động của BĐKH và hiệu ứng nhà kính. Theo Boyd (1998) hàm lượng CO 2 trong ao nuôi tăng cao gây ảnh hưởng đến đời sống động vật thủy sinh. Khi áp suất riêng phần của CO 2 trong nước (PwCO 2 ) lớn hơn PaCO 2 cá sẽ kiềm hãm quá trình thải CO 2 qua màng, làm tăng CO 2 trong máu từ đó làm giảm khả năng hô hấp của cá và dẫn đến sự thay đổi mạnh các phản ứng sinh lý của cơ thể cá (Truchot, 1987). Một số nghiên cứu về ảnh hưởng của các yếu tố môi trường đối với loài thủy sản có cơ quan hô hấp phụ như nghiên cứu của Damsgaard et al. (2015), Gam et al. (2018) trên cá tra (Pangasianodon hypophthalmus) và cá thát lát (Chitala ornata) về ảnh hưởng của CO 2 đối với việc điều chỉnh axít - bazơ đã cho thấy 2 loài này có khả năng điều chỉnh axít - bazơ cao hơn so với các loài hô hấp khí trời khác. Ngoài ra, khi nhiệt độ tăng cao thì cá cũng tăng cường trao đổi chất trong cơ thể và sự phân huỷ các hợp chất độc hại. Đặc biệt, nitrit là sản phẩm của chu trình nitơ, được hình thành từ ammonia trong điều kiện oxy hòa tan thấp là một chất độc được ghi nhận đối với động vật thủy sinh do làm giảm oxy trong máu qua hình thành methaemoglobin có màu nâu đỏ dẫn đến sự xáo trộn hô hấp, quá trình sinh lý và tăng trưởng. Tuy nhiên, những nghiên cứu về tác động của nitrit trong môi trường lên các đặc điểm sinh học cũng như khả năng điều hòa axít - bazơ của các loài cá hô hấp khí trời vùng nhiệt đới vẫn còn rất ít. Cho đến nay, chỉ có vài nghiên cứu trên các loài cá có cơ quan hô hấp phụ như cá tra (Pangasianodon hypophthalmus), cá lóc (Channa striata) của Lefevre et al. (2011 và 2012) và cá thát lát (Chitala ornata) của Gam et al. (2017) đã ghi nhận được các kết quả tiêu biểu về khả năng chịu đựng nitrit cao trong việc giảm hấp thụ nitrit thông qua mang và các cơ chế khử nitơ hiệu quả. Lươn đồng (Monopterus albus) là cá hô hấp khí trời bắt buộc được nuôi phổ biến ở vùng đồng bằng sông Cửu Long. Lươn đồng phân bố rộng rãi khu vực Đông Nam Á (Rosen and Greenwood, 1976). Môi trường sống của lươn thường ở những nơi nước tĩnh, thiếu oxy, nhiều các khí độc như CO 2 và H 2 S (Graham, 1997). Mang lươn bị tiêu biến đáng kể và không có hiệu quả cao trong quá trình trao đổi chất của lươn. Thay vào đó, sự hấp thụ oxy xảy ra chủ yếu trên các biểu mô mạch máu trong khoang miệng và thực quản (Shih, 1940; Rainboth, 1996; Iversen et al., 2013; Damsgaard et al., 2014). Bên cạnh đó, không giống các loài cá hô hấp khí trời khác, lươn không có bóng hơi, trao đổi khí với không khí bằng cách sử dụng các biểu mô có rất nhiều mạch máu trên bề mặt da khi môi trường nước thiếu oxy (Taylor, 1831). Trong điều kiện sống bình thường (nước tĩnh, ngập trong nước) nhưng khí máu động mạch của lươn vẫn ổn định không thay đổi chứng minh rằng lươn có sự kết hợp của da, bề mặt khoang miệng và mang để hỗ trợ bài tiết CO 2 và hấp thu oxy (Wu and Liu, 1940; Liêm, 1967; Iversen et al., 2013). Những nghiên cứu về phản ứng sinh lý của lươn với các điều kiện môi trường thay đổi vẫn còn rất ít, đặc biệt là nghiên cứu điều hòa axít - bazơ trong máu trước sự ảnh hưởng của nhiệt độ tăng, CO 2 hay nitrit trong nước cao đến các loài cá nhiệt đới vẫn rất hạn chế. Chính vì thế, nghiên cứu tác động của nhiệt độ, CO 2 và nitrit lên lươn đồng cũng như tìm hiểu cơ chế thích nghi của lươn khi môi trường thay đổi rất cần thiết góp phần cho sự phát triển bền vững của ngành thủy sản. 1.2 Mục tiêu nghiên cứu Mục tiêu chung Nghiên cứu được thực hiện nhằm cung cấp cơ sở khoa học về cơ chế điều hòa axít - bazơ trong máu lươn dưới tác động riêng lẻ và kết hợp của CO 2 , nhiệt độ và nitrit tăng cao. Ngoài ra, nghiên cứu cũng khảo sát sự thay đổi sinh lý của lươn đồng dưới những tác động của điều kiện sống như trên. Mục tiêu cụ thể a) Khảo sát một số yếu tố môi trường nước như CO 2 , nhiệt độ, pH nước, NO 2 - các bể nuôi lươn ngoài thực tế. Kết quả thực tế sẽ là cơ sở để lựa chọn nồng độ CO 2 , nhiệt độ. b) Từ kết quả khảo sát thực tế, thí nghiệm được thực hiện để đánh giá khả năng điều hòa axít - bazơ và sự biến động số lượng tế bào máu của lươn đồng trong điều kiện CO 2 môi trường nước, không khí tăng cao; và đánh giá thời gian và khả năng phục hồi của lươn đồng. c) Xác định sự ảnh hưởng cấp tính của các mức nhiệt độ lên pH ngoại bào, pH nội bào của lươn đồng và ảnh hưởng mãn tính của nhiệt độ lên sự điều hòa pH cũng như số lượng tế bào máu của lươn đồng nhỏ. d) Đánh giá tác động kết hợp của nhiệt độ và CO 2 cao lên sự điều hòa axít - bazơ lên lươn lớn cũng như sự thay đổi về số lượng tế bào máu của lươn đồng nhỏ. e) Đánh giá quá trình điều hòa axít-bazơ và độ phục hồi pH của lươn đồng khi tiếp xúc cùng lúc CO 2 và nitrit cao cũng như sự thay đổi số lượng tế bào máu của lươn đồng. f) Theo dõi sự phục hồi pH ngoại bào của lươn đồng khi bị nitrit xâm nhập với các mức nhiệt độ khác nhau và sự thay đổi sinh lý máu của lươn đồng. 1.3 Ý nghĩa của nghiên cứu Kết quả của nghiên cứu xác định được các giới hạn hàm lượng CO 2 , nitrit trong ao nuôi cũng như khả năng thích nghi của lươn khi CO 2 và nhiệt độ tăng cao. Ngoài ra, nghiên cứu cũng giúp đưa ra các giải pháp khắc phục ảnh hưởng của biến đổi khí hậu đang xảy ra đối với lươn đồng. Từ các kết quả của nghiên cứu cũng là cơ sở khoa học sinh lý động vật thủy sản, làm nền tảng cho các nghiên cứu tiếp theo.

TRƯỜNG ĐẠI HỌC CẦN THƠ KHOA THỦY SẢN PHAN VĨNH THỊNH ẢNH HƯỞNG CỦA CO2, NHIỆT ĐỘ VÀ NITRIT LÊN SỰ CÂN BẰNG AXÍT-BAZƠ VÀ CÁC CHỈ TIÊU SINH LÝ MÁU CỦA LƯƠN ĐỒNG (Monopterus albus Zuiew, 1793) LUẬN ÁN TIẾN SĨ NGÀNH NUÔI TRỒNG THỦY SẢN 2019 TRƯỜNG ĐẠI HỌC CẦN THƠ KHOA THỦY SẢN LUẬN ÁN TIẾN SĨ ẢNH HƯỞNG CỦA CO2, NHIỆT ĐỘ VÀ NITRIT LÊN SỰ CÂN BẰNG AXÍT-BAZƠ VÀ CÁC CHỈ TIÊU SINH LÝ MÁU CỦA LƯƠN ĐỒNG (Monopterus albus Zuiew, 1793) LUẬN ÁN TIẾN SĨ NGÀNH NUÔI TRỒNG THỦY SẢN MÃ SỐ NGÀNH: 62620301 CÁN BỘ HƯỚNG DẪN Gs.Ts NGUYỄN THANH PHƯƠNG Gs Ts TOBIAS WANG 2019 TÓM TẮT Lươn đồng (Monopterus albus) lồi cá hơ hấp khí trời có khả chịu đựng cao với mơi trường sống bất lợi Ngồi lươn đồng lồi có giá trị kinh tế nuôi phổ biến Việt Nam, đồng sông Cửu Long (ĐBSCL) Hiện nay, nghề ni trồng thủy sản nói chung ni lươn đồng nói riêng bị ảnh hưởng số yếu tố môi trường nhiệt độ, CO2, nitrit tăng tác động biến đổi khí hậu ni thâm canh Các nghiên cứu ảnh hưởng yếu tồ lên khả điều hòa axít - bazơ sinh lý máu lươn đồng (Monopterus albus) thực hai kích cỡ (nhỏ lớn) với nội dung gồm ảnh hưởng CO2, nhiệt độ, CO2 cao kết hợp với nhiệt độ, CO2 cao kết hợp với nitrit nhiệt độ kết hợp với nitrit lên khả điều hòa a-xít ba-zơ Luận án tìm lươn đồng lồi hơ hấp khí trời thứ hai có khả điều hòa axít - bazơ điều kiện CO2 mơi trường cao (30 mmHg) nước khơng khí Sau 72 tiếp xúc 30 mmHg CO2, giá trị pH ngoại bào lươn lớn phục hồi hoàn toàn (100%) nhờ vào tích lũy ion HCO3- huyết tương ngược với lồi cá hơ hấp khí trời khác với tiêu giảm diện tích bề mặt mang làm hạn chế trình trao đổi ion qua lớp biểu mơ, dẫn tới khả điều hòa axít - bazơ thấp Kết khác thí nghiệm cho thấy lươn có khả sống hồn tồn mơi trường khơng khí ẩm mà khơng cần sống nước lồi cá khác Đặc biệt, thận lươn đóng vai trò quan trọng q trình tiết H+ điều hòa axít - bazơ, khơng phải mang lồi cá Khi lươn sống mơi trường nhiệt độ cao (từ 20ºC đến 35ºC), giá trị pH ngoại bào lẫn pH nội bào giảm mạnh nhiệt độ tăng Sự giảm pH thể điểm cân pH mức nhiệt độ cụ thể trình cân axít bazơ Và pH lươn nhỏ phục hồi sau 21 ngày sống điều kiện nhiệt độ cao (36°C) Khác với lồi cá hơ hấp nước, lươn có phản ứng tương tự với loài lưỡng cư tiếp xúc với CO2 qua giảm pH tăng PaCO2 xuất phát từ hoạt động hơ hấp khí trời để thải khí CO2 Bên cạnh, tăng nồng độ ion HCO3- tiếp xúc kết hợp CO2 nhiệt độ thể hô hấp axit lươn thay đổi pH ngoại bào để thích nghi với điều kiện nhiệt độ khác Bên cạnh đó, lươn lớn nhỏ tiếp xúc với CO2 cao (14 30 mmHg CO2) nitrit cao (23,57 mM), q trình cân a-xít ba-zơ lươn chủ yếu xuất phát từ chế trao đổi ion Cl- gián tiếp (giảm ion Cl- qua trao đổi HCO3-/Cl-) Và lươn có khả điều hòa axít - bazơ máu hai kích cỡ nhỏ (30g/con) lớn (300g/con) Tuy nhiên, lươn nhỏ chết sau 24 tiếp iii xúc với 30 mmHg CO2 kết hợp 23,57 mM nitrit pH máu giảm thấp 7,0 ion K+ tăng cao mM Kết khác kết hợp nitrit cao (23,57 mM) mức nhiệt độ khác 27ºC, 33ºC, 36ºC ngày lươn nhỏ nâng nhiệt độ từ 20-25-30-35ºC lươn lớn cho thấy lươn có khả cân axít - bazơ pH phục hồi sau ngày tiếp xúc nitrit nhiệt độ 33ºC Sự tiếp xúc với nitrit nhiệt độ cao ảnh hưởng đến q trình điều hòa axít bazơ nhiều lươn tiếp xúc nitrit nhiệt độ thấp, cụ thể tăng P aCO2 giảm pH đáng kể sau ngày tiếp xúc nitrit nhiệt độ 36ºC Tóm lại, kết luận án cho thấy lươn đồng hồn tồn có khả điều hòa axít - bazơ sau 72 tiếp xúc với CO2 cao điều kiện sống khác Giá trị pH ngoại bào hoàn toàn hồi phục sau 14 ngày có giảm pH mạnh ngày đầu tiếp xúc nhiệt độ cao Ngoài ra, lươn có khả chịu đựng nitrit cao hàm lượng Hb, Hct myoglobin máu lươn cao lồi cá khác Từ khóa: lươn đồng, điều hòa axít - bazơ, CO2 cao, pH ngoại bào, pH nội bào, PaCO2, nhiệt độ, nitrit iv ABSTRACT Swamp eel (Monopterus albus) is an economical value species and is popularly farmed in Vietnam, especially in the Mekong River Delta Monopterus albus is an air-breathing species, high tolerance with extreme environmental conditions The aquaculture, M albus farming in particular, will highly be affected by some of the environmental factors (such as CO2, temperature and nitrite) caused by climate change and aquaculture intensification This dissertation was conducted to determine effects of some environmental parameters such as CO2, temperature and nitrite in isolation and combination on acid-base regulation and changes of the number of blood cells in M albus with different sizes The dissertation consist of main contents including the effects of hypercapnia, temperature, combinations of hypercapnia and temperature, hypercapnia and nitrite, temperature and nitrite in M albus at small and large sizes The results of the study indicated that M albus is the second air-breathing species with high capacity of acid-base regulation in hypercapnic condition (30 mmHg) in both water and air After 72 h exposed to 30 mmHg CO2, the extracellular pH completely recovered (100%) via accumulation of plasma HCO3- ion, while other air-breathers with reduced gill surface area normally have low capacity of acid-base regulation induced by limitation on transepithelial ion exchange Moreover, the results showed that M albus can completely survive in humid air environment behind water environment as other fish species Interestingly, kidney played an important role in acid-base balance (40%), whereas gills commonly are the main organ for pH regulation in fish On the other hand, in combined exposures (14 and 30 mmHg CO2) and nitrite (23.57 mM), the acid-base regulation was mainly resulted from indirect Clexchanger (reduction in Cl- via HCO3-/Cl- exchange), and M albus obtained acid-base regulation in both juvenile and large sizes However, mortality appeared in M albus juvenile after 24 h in the exposure of combined 30 mmHg CO2 and 23.57 mM nitrite with the decrease of pH to 7.0 and the increase of K+ to above mM In the study of combined exposure of nitrite (23.57 mM) with different temperatures of 27, 33 and 36ºC during days in juvenile-sized M albus and the elevation of temperature 20, 25, 30 and 35ºC in large-sized M albus indicated that extracellular pH recovered after days in nitrite exposure at 33ºC Nitrite exposure at high temperatures significantly affected to acid-base v regulation if compared to that of nitrite exposure at low temperatures, typically the increase of PaCO2 and the decrease of pH after day in nitrite exposure at 36ºC In conclusion, the results of the dissertation showed that M albus had complete acid-base regulation after 72 h in hypercapnia at different environments Extracellular pH fully recovered after 14 days although there was a dramatic pH reduction at the first days in exposures of high temperatures In addition, M albus had high tolerance capacity to extreme environmental conditions (23.57 mM NO2-) thanks to high concentrations of Hb, Hct, and myoglobin in the blood compared to other fish species Key words: Monopterus albus, acid-base regulation, hypercapnia, extracellular pH, intracellular pH, temperature, nitrite vi LỜI CAM ĐOAN Tôi xin cam kết luận án hoàn thành dựa tất kết nghiên cứu thực Tất số liệu kết trình bảy luận án hoàn toàn trung thực, chưa tác giả khác công bố trước chưa dùng cho luận án cấp khác Dự án iAQUA hồn tồn sử dụng tất số liệu kết luận án Cần Thơ, ngày tháng Tác giả Phan Vĩnh Thịnh vii năm 2019 MỤC LỤC Trang THÔNG TIN NGHIÊN CỨU SINH i LỜI CẢM TẠ ii TÓM TẮT iii ABSTRACT v MỤC LỤC viii DANH SÁCH HÌNH xi DANH SÁCH BẢNG xiv DANH MỤC TỪ VIẾT TẮT xv PHẦN I GIỚI THIỆU 1.1 Đặt vấn đề 1.2 Mục tiêu nghiên cứu 1.3 Ý nghĩa nghiên cứu 1.4 Nội dung nghiên cứu 1.5 Điểm luận án 1.6 Tính ứng dụng luận án PHẦN II TỔNG QUAN TÀI LIỆU 2.1 Đặc điểm sinh học sinh trưởng Lươn đồng 2.1.1 Hệ thống phân loại 2.1.2 Phân bố đời sống 2.1.3 Hình thái cấu tạo 2.1.4 Đặc điểm dinh dưỡng sinh trưởng 2.1.5 Hiện trạng nuôi lươn đồng 2.2 Sự điều hòa axít - bazơ động vật 2.3 Ảnh hưởng CO2 cao môi trường đến đời sống động vật thủy sinh 14 2.4 Ảnh hưởng nhiệt độ lên đời sống động vật thủy sinh 2.5 Ảnh hưởng nitrit nước lên đời sống động vật thủy sinh 16 PHẦN III VẬT LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU 20 3.1 Thời gian địa điểm nghiên cứu 20 3.2 Đối tượng nghiên cứu 20 3.3 Nội dung nghiên cứu 20 3.3.1 Khảo sát tiêu môi trường nước bể nuôi lươn đồng 21 3.3.2 Nội dung 1: Ảnh hưởng CO2 lên cân axít - bazơ tiêu sinh lý máu lươn đồng 21 3.3.3 Nội dung 2: Ảnh hưởng nhiệt độ lên cân axít - bazơ tiêu sinh lý máu lươn đồng 23 3.3.4 Nội dung 3: Ảnh hưởng kết hợp CO2 nhiệt độ lên cân axít - bazơ tiêu sinh lý máu lươn đồng 25 3.3.5 Nội dung 4: Ảnh hưởng kết hợp CO2 nitrit lên cân axít - bazơ tiêu sinh lý máu lươn đồng 26 viii 3.3.6 Nội dung 5: Ảnh hưởng kết hợp nhiệt độ nitrit lên cân axít-bazơ tiêu sinh lý máu lươn đồng 28 3.4 Phương pháp phân tích 29 3.4.1 Phương pháp đút ống trực tiếp vào động mạch lươn đồng 29 3.4.2 Các tiêu pH, pCO2 HCO3- máu 29 3.4.3 Các tiêu huyết học 29 3.4.4 Phương pháp phân tích ion 30 3.4.5 Phương pháp đo phân tích tiêu môi trường 30 3.4.6 Phương pháp đo phân tích tiêu nước tiểu 31 3.4.7 Phương pháp đo pH nội bào 31 3.5 Phương pháp xử lý số liệu 31 PHẦN IV KẾT QUẢ VÀ THẢO LUẬN 34 4.1 Kết khảo sát môi trường nước ni lươn đồng theo mơ hình ni giá thể nilon với kích cỡ lươn khác 34 4.2 Ảnh hưởng điều kiện CO2 mơi trường cao lên cân axít-bazơ lươn đồng 36 4.2.1 Khả đệm non-bicarbonate (βNB) máu lươn đồng 36 4.2.2 Ảnh hưởng CO2 cao lên điều hòa axít - bazơ máu lươn đồng 37 4.2.3 Ảnh hưởng CO2 môi trường cao lên tiết axít 41 4.2.4 Vai trò thận q trình điều hòa axít - bazơ máu lươn đồng 43 4.2.5 Ảnh hưởng điều kiện CO2 cao lên số tiêu sinh lý máu lươn đồng nhỏ 45 4.2.6 Thảo luận 47 4.3 Ảnh hưởng nhiệt độ lên điều hòa axít - bazơ lươn đồng 51 4.3.1 Ảnh hưởng cấp tính nhiệt độ lên q trình điều hòa axít bazơ lươn lớn 51 4.3.2 Ảnh hưởng cấp tính nhiệt độ lên điều hòa pH nội bào lươn đồng lớn 54 4.3.3 Ảnh hưởng mãn tính nhiệt độ lên điều hòa axít-bazơ tiêu huyết học lươn nhỏ 56 4.3.4 Thảo luận 59 4.4 Ảnh hưởng kết hợp nhiệt độ CO2 cao lên điều hòa axítbazơ lươn đồng 63 4.4.1 Ảnh hưởng kết hợp nhiệt độ CO2 cao lên điều hòa axít-bazơ lươn đồng lớn 63 4.4.2 Ảnh hưởng kết hợp nhiệt độ CO2 cao lên điều hòa axít-bazơ tiêu huyết học lươn đồng nhỏ 66 4.4.3 Thảo luận 69 4.5 Ảnh hưởng cấp tính kết hợp CO2 nitrit lên cân axít - bazơ lươn đồng Monopterus albus 70 ix 4.5.1 Ảnh hưởng kết hợp CO2 cao nitrit lên cân axít bazơ lươn đồng lớn 70 4.5.2 Ảnh hưởng kết hợp CO2 cao nitrit lên số tiêu sinh lý máu lươn nhỏ 73 4.5.3 Thảo luận 78 4.6 Ảnh hưởng kết hợp nhiệt độ nitrit lên trình cân axít-bazơ lươn đồng 82 4.6.1 Ảnh hưởng cấp tính nitrit nhiệt độ gia tăng từ 20 đến 35°C lên q trình điều hòa axít-bazơ lươn lớn 82 4.6.2 Ảnh hưởng mãn tính nitrit với mức nhiệt độ khác lên điều hòa axít - bazơ tiêu huyết học lươn nhỏ 85 4.6.3 Thảo luận 89 PHẦN V KẾT LUẬN VÀ ĐỀ XUẤT 92 TÀI LIỆU THAM KHẢO 94 x Farmer V.C., Fraser A.R., and Tait J.M., (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy Geochimicaet Cosmochimica Acta 43(9):14171420 Farrell, A.P., 1997 Effects of temperature on cardiovascular performance In: Wood, C.M., McDonald, D.G (Eds.), Global Warming: Implications for Freshwater and Marine Fish Cambridge University Press, Cambridge, pp 135–158 Fobian, D., Overgaard, J and Wang, T (2014) Oxygen transport is not compromised at high temperature in pythons Journal of Experimental Biology 217: 3958-3961 Gallaugher, P and Farrell, A.P., (1998) Hematocrit and blood oxygen-carrying capacity in fish respiration In: Perry, S and Tufts, B., (Eds), Fish Physiology, Vol 17 Academic Press, New York pp 185–227 Gam, L.T.H., Jensen, F B., Huong, D T T., Phuong, N T., Bayley, M., (2018a) The effects of elevated environmental CO2 on nitrite uptake in the air-breathing clown knifefish, Chitala ornata Aquatic Toxicology 196: 124-131 Gam, L.T.H., Jensen, F.B., Damsgaard, C., Huong, D.T.T., Phuong, N.T., Bayley, M., (2017) Extreme nitrite tolerance in the clown knifefish Chitala ornata is linked to up-regulation of methaemoglobin reductase activity Aquatic Toxicology 187: 9–17 Gam, L.T.H., Vu, N.T.T., Nhu, P.N., Huong, D.T.T., Phuong, N T., (2018b) Effects of nitrite exposure on haematological parameters and growth in clown knifefish (Chitala ornata, Gray, 1831) Can Tho University Journal of Scienece, Fisheries (In press) Garey, W F (1970) Cardiac output of the carp (Cyprinus carpio) Comparative Biochemistry and Physiology 33: 181-89 Gillen, R.G and Riggs, A., (1973) Structure and function of the isolated hemoglobins of the American eel, Anguilla rostrata Journal of Biological Chemistry 248:1961-1969 Gilmour, K M., Euverman, R M., Esbaugh, A J., Kenney, L., Chew, S F., Ip, Y K & Perry, S F (2007) Mechanisms of acid-base regulation in the African lungfish Protopterus annectens Journal of Experimental Biology 210: 1944–1959 Gonzalez, R J., Brauner, C J., Wang T., Richards Y X., Patrick J G., Xi, W., Matey, V and Val, A L., (2010) Impact of ontogenetic changes in 99 branchial morphology on gill function in Arapaima gigas Physiological and Biochemical Zoology 83: 322-332 Goss, G.G., Laurent, P., Perry, S.F., (1992) Evidence for a morphological component in acid-base regulation during environmental hypercapnia in the brown bullhead (Ictalurus nebulosus) Cell Tissue Respiaration 268: 539–552 Graham, J B (1997) Air-breathing fishes: evolution, diversity, and adaptation Acedemic press, San Diego, CA, USA Grosell M., Laliberte C N., Wood S., Jensen F B., Wood C M (2001) Intestinal HCO3- secretion in marine teleost fish: evidence for an apical rather than a basolateral Cl-/HCO3- exchanger Fish Physiology and Biochemistry 24:81–95 Grosell, M., Jensen, F.B., (2000) Uptake and effects of nitrite in the marine teleost fish Platichthys flesus Aquatic Toxicology 50: 97–107 Hargreaves, J.A., (1998) Nitrogen biogeochemistry of aquaculture ponds Aquaculture 166: 181–212 Harris, R.R and Coley, S (1991) The effects of nitrite on chloride regulation in the crayfish Pacifastacus leniusculus Dana (Crustacea: Decapoda) Comparative and Biochemical Physiology Part B 161: 199–206 Harter, T.S., Shartau, R.B., Brauner, C.J and Farrell, A.P., (2014) Validation of the i-STAT system for the analysis of blood parameters in fish Conservation Physiology 2: 1–12 Haskel, D C and Davies R O (1958) Carbondixoide as a limiting factor in Trout Transportation Ellis, M M 1937 Detection and measurement of stream pollution Bull U S Bureau Fish 48(22): 365-4730.Y Fish Game J 5:175-183 Heath, A.G., (1995) Water Pollution and Fish Physiology Second edition CRC Press, Inc 359 pages Heath, A.G., Hughes, G.M., (1973) Cardiovascular and respiratory changes during heat stress in rainbow trout (Salmo gairdneri) Journal of Experimental Biology 59: 323-338 Heisler N (1984) Acid-Base Regulation in Fishes Dedicated to my friend Ernst Meißner on the occasion of his seventy-fifth birthday Editor(s): W.S Hoar, D.J Randall, Fish Physiology, Academic Press, Volume 10, Part A, 1984, Pages 315-401 100 Heisler N (1986) Mechanisms and Limitations of Fish Acid-Base Regulation In: Nilsson S., Holmgren S (eds) Fish Physiology: Recent Advances Springer, Dordrecht Heisler N (1993) Acid-base regulation in response to changes of the environment characteristics and capacity In: Rankin J.C., Jensen F.B (eds) Fish Ecophysiology Chapman & Hall Fish and Fisheries Series, vol Springer, Dordrecht Heisler N 1993 Acid-base regulation In: The Physiology of Fishes (2nd ed.), edited by Evans DH Boca Raton, FL: CRC, p 343–378 Heisler, N., Weitz, H and Weitz, A M (1976) Extra and intracellular pH with changes of temperature in the dogfish Scryliorhinus stellaris Respiration Physiology 26: 249-264 Heisler, N (1978) Bicarbonate exchange between body compartments after changes of temperature in the larger spotted dogfish (Scyliorhinus stellaris) Respiration Physiology, 33 (1): 145–160 Heisler, N (1980) Regulation of the acid-base status in fishes In Environmental Physiology of Fishes (ed M A Ali), pp 123-162 New York: Plenum Heisler, N (1982) Intracellular and extracellular acid-base regulation in the tropical fresh-water teleost fish Synbranchus marmoratus in response to the transition from water breathing to air breathing Journal of Experimental Biology 99: 9-28 Heisler, N (1986) Comparative aspects of acid–base regulation In: Heisler, N (Ed.), Comparative aspects of acid–base regulation Acid–Base Regulation in Animals Elsevier, Amsterdam, pp.397–449 Henderson, L J (1909) Das Gleichgewicht zwischen Basen und Sdiuren im tierischen Organismus Ergeb Physiol 8:254-325 Hills, A G (1973) Acid-base balance: chemistry, pathophysiology Williams & Wilkins, Baltimore 381 pp physiology, Hitzig, B M and Jackson, D C (1978) Central chemical control of ventilation in the unanaesthetized turtle The American journal of physiology 235: 257-264 Howell, B J., Baumgardner D., Bondi K., and Rahn H (1970) Acid-base balance in cold-blooded vertebrates as a function of body temperature American Journal of Physiology 218: 600-606 Hrubec T C., Robertson J L and Smith S A (1997) Effects of temperature on hematologic and serum biochemical profiles of hybrid striped bass 101 (Morone chrysops x Morone saxatilis) American Journal of Veterinary Research 58(2):126-130 Hrubec, T C., J.L Cardinale and S A Smith, (2000) Hematology and plasma chemistry reference intervals for cultured Tilapia (Oreochromis hybrid) Veterinary Clinical Pathology 29: 7-12 Huey D.W., Beitinger T.L., Wooten M.C (1984): Nitrite induced methaemoglobin formation and recovery in channel catfish (Ictalurus punctatus) at three acclimation temperatures Bulletin of Environmental Contamination and Toxicology, 32: 674–681 Humason, G.L (1979) Animal tissue techniques W.H Freeman and Company San Francisco.34-37 Hvas, M., Damsgaard, C., Gam, L.T.H., Huong, D.T.T., Jensen, F.B., Bayley, M., (2016) The effect of environmental hypercapnia and size on nitrite toxicity in the striped catfish (Pangasianodon hypophthalmus) Aquatic Toxicology 176: 151–160 Hyded, M T W., and Perry, S F (1987) The physiological consequences of prolonged aerial exposure and subsequent return to water in the American eel, Anguilla rostrata I Blood respiratory, acid-base and ionic status Journal of Comparative Physiology 157(B): 635 - 642 Inger, R.F and Kong, C.P., (1962) The freshwater fishes of North Borneo Fieldiana Zoology Chicago Natural History Museum 45, 312pp IPCC, (2007) Climate Change 2007: Synthesis Report Contribution of Working Group I, II, and III to the Fourth Assessment Report of the Intergovermental Panel on Climate Change Geneva IPCC, (2013) Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5)(Cambridge Univ Press, New York), 1535 pp Iversen, N.K., Lauridsen, H., Huong, D.T.T., Van Cong, N., Gesser, H., Buchanan, R., Bayley,M., Pedersen, M., Wang, T., (2013) Cardiovascular anatomy and cardiac function in the air-breathing swamp eel (Monopterus albus) Comparative Biochemistry and Physiology - Part A 164A: 171– 180 Jackson, D C (1989) Control of breathing Effects of temperature In Comparative Pulmonary Physiology, Vol 39, (ed S C Wood), pp 621641 New York, Basel: Marcel Dekker 102 Jeberg, M.V and F.B Jensen, (1994) Extracellular and intracellular ionic changes in crayfish Astacus astacus exposed to nitrite at two acclimation temperatures Aquatic Toxicology 29(1–2) : 65-72 Jensen, F B (1993) Influence of nucleoside triphosphates, inorganic salts, NADH, catecholamine, and oxygen saturation on nitrite-induced oxidation of rainbow trout haemoglobin Fish Physiology and Biochemistry 12: 111-117 Jensen, F.B and Hansen, M.N., (2011) Differential uptake and metabolism of nitrite in normoxic and hypoxic goldfish Aquatic Toxicology 101: 318– 325 Jensen, F.B., (1995) Uptake and effects of nitrite and nitrate in animals In: Walsh, P.J., Wright, P (Eds.), Nitrogen Metabolism and Excretion CRC Press, Boca Raton, 289–303 Jensen, F.B., (1996) Uptake, elimination and effects of nitrite and nitrate in freshwater crayfish Astacus astacus Aquatic Toxicology 34: 95–104 Jensen, F.B., (2003) Nitrite disrupts multiple physiological functions in aquatic animals Comparative Biochemistry and Physiology Part A 135: 9–24 Jensen, F.B., (2007) Nitric oxide formation from nitrite in zebrafish Journal of Experimental Biology 210: 3387–3394 Jensen, F.B., (2009) The role of nitrite in nitric oxide homeostasis: A comparative perspective Biochimca at Biophysia Biophys Acta Bioenerg 1787: 841–848 Jensen, F.B., Andersen, N.A., Heisler, N., (1987) Effects of nitrite exposure on blood respiratory properties, acid-base and electrolyte regulation in the carp (Cyprinus carpio) Journal of Comparative Physiology Part B 157: 533-541 Jensen, F.B., Koldkjaer, P and Bach, A., (2000) Anion uptake and acid-base and ionic effects during isolated and combined exposure to hypercapnia and nitrite in the freshwater crayfish, Astacus astacus Journal of Comparative Physiology Part B 170: 489–495 Jensen, F.B., Rohde, S., (2010) Comparative analysis of nitrite uptake andhemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanismsand oxygenation dependencies American Journal of Physiology Regulatory, Intergrative and Comparative Physiology 298: 972–982 Johansen, K., (1968) Air-breathing fishes Scientific American 219: 102-111 103 Jonhson D.S, (1967) Distribution patterns of Malayan fresh water fish, Ecology 48(5): 722 – 730 Khang, N.K., Kotera, A., Sakamoto T., and M.Yokozawa (2008) Sensitivity of Salinity Intrusion to Sea Level Rise and River Flow Change in Vietnamese Mekong Delta-Impacts on Availability of Irrigation Water for Rice Cropping Journal of Agricultural Meteorology Vol 64 (2008) , No pp.167-176 Khanh, N.H., Ngan, H.T.B (2010) Current practices of rice fi eld eel Monopterus albus (Zuiew, 1793) culture in Viet Nam Aquaculture Asia Magazine Vol XV No 3, July-September 2010 Kosaka, H and Tyuma, I (1987) Mechanism of autocatalytic oxidation of oxyhemoglobin by nitrite Environ Health Perspect 73: 147-151 Kroupova, H., Machova, J., Svobodova, Z., (2005) Nitrite influence on fish A review Veterinary Medicine 50(11): 461-471 Larry, I C (1979) Responses to rapid temperature change in Vertebrate Ectotherms Integrative and Comparative Biology 19: 225-237 Larsen, B.K., Jensen, F.B., (1997) Influence of ionic composition on acid-base regulation in rainbow trout (Oncorhynchus mykiss) exposed to environmental hypercapnia Fish Physiology and Biochemistry 16: 157– 170 Larsen, H N and Snieszko, S F., (1961) Modification of the micro-hematocrit technique with trout blood Transaction of the American Fisheries Society 90 (2): 139-142 Lawrence, M.J., Wright, P.A and Wood, C.M (2015) Physiological and molecular responses of the goldfish (Carassius auratus) kidney to metabolic acidosis, and potential mechanisms of renal ammonia transport Journal of Experimental Biology 218: 2124-2135 Lê Thị Kiều Trang (2015) Ảnh hưởng nitrit nhiệt độ lên số tiêu sinh lý máu tăng trưởng cá tra (Pangasianodon hypophthalmus) giống Luận văn tốt nghiệp cao học ngành thủy sản Khoa Thủy sản Trường Đại học Cần Thơ 121 trang Lê Văn Cát, Đỗ Thị Hồng Nhung Ngô Ngọc Cát, (2006) Nước nuôi thủy sản- chất lượng giải pháp cải thiện chất lượng.Nhà xuất Khoa học Kỹ thuật Hà Nội.424 trang Lê Văn Khoa, 2008 Biến đổi khí hậu-mối đe dọa đến nông nghiệp nông thôn Việt Nam Báo cáo trình bày Hội thảo “Biến đổi khí hậu tồn cầu giải pháp thích ứng Việt Nam” (Hà Nội, 25/2/2008) 104 Lefevre S., Findorf I., Bayley, M., Huong, D.T and Wang, T (2016) Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance Journal of Fish Biology 88 (1): 418-432 Lefevre, S., Domenici, P., McKenzie, D.J., (2014) Swimming in air-breathing fishes Journal of Fish Biology 84: 661–681 Lefevre, S., Jensen, F.B., Huong, D.T.T., Wang, T., Phuong, N.T., Bayley, M., (2011) Effects of nitrite exposure on functional haemoglobin levels, bimodalrespiration, and swimming performance in the facultative airbreathing fish Pangasianodon hypophthalmus Aquatic Toxicology 104: 86–93 Lefevre, S., Jensen, F.B., Huong, D.T.T., Wang, T., Phuong, N.T., Bayley, M., (2012) Haematological and ion regulatory effects of nitrite in the airbreathing snakehead fish Channa striata Aquatic Toxicology 118-119: 48–53 Lewis, W.M and Morris, D.P., (1986) Toxicity of nitrite to fish: A review Transaction of American Fisheries Society 115(2): 183–195 Liebig, J (1844) Uber die Constitution des Harns der Menschen und der fleischfres- senden Thiere Ann Chem Pharm 50:161-196 Liem, K.F (1981) Larvae ò air-breathing fishes counter- current flow devices in hypoxic inviroment, Science 211: 1177-1178 Liem, K.F., (1967) Functional Morphology of the Integumentary, Respiratory, and Digestive Systems of the Synbranchoid Fish Monopterus albus Copeia 1967, 375–388 Liem K.F., (1987) Functional design of the air ventilation apparatus and overlandexcursions by teleosts, Fieldiana: Zoology 37:1 – 29 Lomholt, J P & Johansen, K (1976) Gas-Exchange in Amphibious Fish, Amphipnous cuchia Journal of Comparative Physiology 107: 141–157 Lương Quốc Bảo, (2015) Thí nghiệm nuôi Lươn đồng (Monopterus albus, Zuiew 1973) với loại giá thể thức ăn khác bể bạt huyện Vĩnh Thạnh, Thành phố Cần Thơ Luận văn tốt nghiệp cao học ngành Nuôi trồng thủy sản Đại học Cần Thơ Cần Thơ 93 trang Luskova, V., (1997) Annual cycles and normal values of hematological parameters in fishes Acta scientiarum naturalium Academiae Scientiarum Bohemicae, Brno 31(5): 70-78 105 Malan, A., Wilson, T L and Reeves, R B (1976) Intracellular pH in coldblooded vertebrates as a function of body temperature Respiration Physiology 17: 45-61 Malte, C L., Jakobsen, S L and Wang, T (2014) A critical evaluation of automated blood gas measurements in comparative respiratory physiology Comp Biochem Physiol A Mol Integr Physiol 178, 7-17 Margiocco, C., Arillo, A., Mensi, P., Schenone, G., (1983) Nitrite bioaccumulation in Salmo gairdneri rich and haematological consequences Aquatic Toxicology 3(3): 261–270 Marshall, W.S., Grosell M., (2006) Ion transport, osmoregulation and acid-base balance In: The Physiology of Fishes, edited by Evans DH, Claiborne JB Boca Raton, FL: CRC, 2006 177–230 McDonald, D G and Wood, C M (1981) Branchial and renal acid and ion fluxes in the rainbow trout, Salmo gairdneri, at low environmental pH Journal of Experimental Biology 93: 101-118 McKenzie, D J and Randall, D J (1990) Does Amia calvav estivate? Fish Physiol Biochem 8:147-158 Milsom, W K (2010) The phylogeny of central chemoreception Respiration Physiology 173: 195-200 Miranda, K.M., Espey, M.G., Wink, D.A., (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite Biolology and Chemistry 5: 62–71 Moalli, R., Meyers, R S., Ultsch, G R and Jackson, D C (1981) Acid-base balance and temperature in a predominantly skin-breathing salamander, Crytobranchus alleganiensis Respiration Physiology 43: 1-11 Natt, M.P and Herrick, C.A (1952) A new blood diluent for counting the erythrocytes and leucocytes of chicken Poultry of Science 31 (4): 754738 Ngô Trọng Lư Lê Đăng Khuyến, (2004) Kỹ thuật nuôi cá trê, lươn, giun đất NXB Nông nghiệp 97 trang Ngô Trọng Lư, 2008 Kỹ thuật nuôi lươn, ếch, ba ba, cá lóc Nhà xuất Nơng Nghiệp, 103 trang Ngô Trọng Lư (2002) Kỹ thuật nuôi cá quả, cá chình, chạch, cá bống bóp, lươn đồng Nhà xuất Hà Nội Số trang: 119 Nguyễn Chung, (2007) Kỹ thuật sinh sản, nuôi đánh bắt lươn đồng NXB Nông nghiệp, 83 trang 106 Nguyễn Hương Thùy, (2010) Ảnh hưởng độ mặn khác lên điều hòa áp suất thẩm thấu tăng trưởng lươn đông (Monopterus albus) giai đoạn giống Luận văn tốt nghiệp Thạc sĩ ngành Nuôi trồng thủy sản Trường Đại học Cần Thơ Thành phố Cần Thơ Nguyễn Hữu Khánh Hồ Thị Bích Ngân, (2009) Ảnh hưởng mật độ, loại thức ăn đến sinh trưởng tỉ lệ sống lươn đồng Monopterus albus (Zuiew, 1793) nuôi bể Tạp chí Nơng nghiệp Phát triển nơng thơn 9: 72-78 Nguyễn Thanh Long, (2015) Phân tích khía cạnh kĩ thuật tài mơ hình ni lươn An Giang Tạp chí Nơng nghiệp Phát triển nông thôn 262: 89-95 Nguyễn Thị Kim Hà, Nguyễn Trần Phương Thảo, Trần Thị Phương Hằng, Nguyễn Thanh Phương, Mark Bayley Đỗ Thị Thanh Hương, 2017 Ảnh hưởng nitrite lên số tiêu sinh lý tăng trưởng cá ba sa (Pangasius bocourti) Tạp chí Khoa học Trường Đại học Cần Thơ 52b: 93-102 Nguyen Trong Hong Phuc, (2015) PhD thesis Effects of temperature and salinity on growth performance in cultured tra catfish Pangasianodon hypophthalmus in Vietnam Queensland University of Technology, Brisbane, Australia Nguyễn Văn Kiểm, (2004) Giáo trình kỹ thuật sản xuất cá giống Khoa Thủy sản, Trường Đại học Cần Thơ Nichols, J T (1943) The Fresh-Water Fishes of China, New York: The American Museum of Natural History 275pp Patel, M., Iftikar, F.I., Smith, R.W., Ip, Y.K and Wood, C.M (2009) Water balance and renal function in two species of African lungfish Protopterus dolloi and Protopterus annectans Comparative Biochemistry and Physiology Part A 152: 149-157 Perry S F., Gilmour K M 2006 Acid-base balance and CO2 excretion in fish: unanswered questions and emerging models Respiratory Physiology & Neurobiology 154: 199–215 Perry S F., Kinkead R., (1989) The role of catecholamines in regulating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gairdneri) Respiration Physiology 77 (3): 365-377 Perry, S F., (1986) Carbon dioxide excretion in fishes Canadian Journal of Zoology 64: 565-572 107 Perry, S.F., Gilmour, K.M., (2006) Acid-base balance and CO2 excretion in fish: Unanswered questions and emerging models Respiratory Physiology and Neurobiology 154: 199–215 Perry, S.F., Shahsavarani, A., Georgalis, T., Bayaa, M., Furimsky, M., Thomas, S.L.Y., (2003) Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation Journal of Experimental Zoology, Part A 300: 53–62 Phạm Minh Đức, Huỳnh Văn Hiền Trần Thị Thanh Hiền, (2018) Hiện trạng kĩ thuật tài mơ hình ni lươn đồng (Monopterus albus) thương phẩm Tạp chí Khoa học Cơng nghệ Nơng nghiệp Việt Nam 87: 122-128 Phạm Thị Yến Nhi, (2015) Phân tích hiệu kinh tế mơ hình ni lươn địa bàn thành phố Cần Thơ Luận văn thạc sĩ ngành Kinh tế nông nghiệp Khoa Kinh tế Trường Đại học Cần Thơ Thành phố Cần Thơ, 82 trang Portner, H O., Boutilier, R G., Tang, Y and Toews, D P (1990) Determination of intracellular pH and PCO2 values after metabolic inhibition by fluoride and nitrilotriacetic acid Respiration Physiology 81: 255-274 Rahn, H (1966) Aquatic gas exchange: theory Respir Physiol 1, 1-12 Rahn, K B., Howell, B J., Gans, C., and Tenney S M., (1971) Air breathing of the garfish (Lepisosteus osseus) Respiration Physiology 11: 285–307 Rainboth, W J (1996) Fishes of the Cambodian Mekong FAO Species Identification Field Guide for Fishery Purposes Rome: FAO Randall, D J., Cameron, J N (1973) Respiratory control of arterial pH as temperature changes in rainbow trout Salmon gairdneri The American journal of physiology 225: 997–1002 Rankin, J.C and Jensen, F.B., (1993) Fish ecophysiology Edited from Chapman and Hall, 1993, New York Reeves, R B (1972) An imidazole alphastat hypothesis for vertebrate acidbase regulation: Tissue carbon dioxide content and body temperature in bullfrogs Respiration Physiology 14: 219-236 Reeves, R B (1977) The interaction of body temperature and acid-base balance in ectothermic vertebrates Annual Review of Physiology 39: 559-586 108 Romero M F and Boron W F (1999) Electrogenic Na+/HCO3cotransporters: cloning and physiology Annual Review of Physiology 61: 699-723 Rosen, D.E., Greenwood, P.H., (1976) A fourth Neotropical species of synbranchid eel and systematics of synbranchiform fishes Bulletin of the American museum of natural history 157:1-70 Saint-Paul, U., (1983) Diurnal routine O2 consumption at different O2 concentrations by Colossoma macroponum and Colossoma brachypomum (Teleostei: Serrasalmidae) Comparative Biochemistry and Physiology Part A 89: 675-682 Salama, A., Nikinmaa, M., (1990) Effect of oxygen tension on catecholamineinduced formation of cAMP and on swelling of carp red blood cells American Journal of Physiology 259: 723-726 Sanchez, A.P., Giusti, H., Bassi, M., Glass, M.L., (2005) Acid-base regulation in the South American lungfish Lepidosiren paradoxa: effects of prolonged hypercarbia on blood gases and pulmonary ventilation Physiological and Biochemical Zoology 78: 908–15 Schulte, P M., (2011) Effect of temperature: An Introduction Encyclopedia of fish physiology.2: 1688-1694 Shartau, R.B., Brauner, C.J., (2014) Acid-base and ion balance in fishes with bimodal respiration Journal of Fish Biology 84: 682–704 Shih, H J (1940) On the foods of Monopterus Sinensia 11, 573-576 Singh, S.P., Sharma, J.G., Ahmad T., and Chakrabarti R., (2013) Effect of water temperature on the physiological responses of Asian catfish Clarias batrachus (Linnaeus, 1758) Asian Fisheries Science 26: 26-38 Smatresk N J., and Cameron J N., (1982) Respiration and acid-base physiology of the spotted gar, a bimodal breather: II Responses to temperature change and hypercapnia Journal of Experimental Biology 96: 281–293 Smith, H M., (1945) The Freshwater Fish of Siam or Thailand United States Government Printing office, Smithsonion Institution Bull no 188., Washington: 622 pp Sterba, G., (1983) The Aquarium Fish Encyclopedia The MIT Press Combrige, Massachusetts, 605pp Stewart, P A (1978) Independent and dependent variables of acid-base control Respir Physiol 33: 9-26 109 Stinner, J N and Hartzler, L K (2000) Effect of temperature on pH and electrolyte concentration in air-breathing ectotherms Journal of Experimental Biology 203: 2065-2074 Stormer, J., Jensen, F.B., Rankin, J.C., (1996) Uptake of nitrite, nitrate, and bromide in rainbow trout, Oncorhynchus mykiss: effects on ionic balance Canadian Journal of Fisheries and Aquatic Science 53: 1943–1950 Swenson, E.R., (2000) Respiratory and renal roles of carbonic anhydrase in gas exchange and acid–base regulation Experientia Supplementum 90: 281– 341 Taki, Y., (1974) Fishes of the Lao Mekong Basin United States Agency for International Development Mission to Laos Agriculture Division: 232 pp Taylor, J., (1831) On the Respiratory Organs and Air Bladder of Certain Fishes of the Ganges the phylogeny and systematics of synbranchiform fishes Bull Am Mus Nat Hist 157, 1–70 Thinh, P.V., Phuong, N.T., Brauner, C.J., Huong, D.T.T., Wood, A., Kwan, G., Conner, J., Bayley, M and Wang, T., 2018 Acid-base regulation in the air-breathing swamp eel (Monopterus albus) at different temperatures Journal of Experimental Biology 221, jeb172551-jeb172557 doi:10.1242/jeb.172551 Toews D.P., Holeton O.F., Heisler N (1983) Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger Journal of Experimental Biology 107: 9-20 Trần Trọng Nhân (2017).Ảnh hưởng nhiệt độ nitrite lên số tiêu sinh lý máu tăng trưởng cá thát lát còm (Chitala ornata Gray, 1831) Luận văn tốt nghiệp cao học, ngành nuôi trồng thủy sản Khoa Thủy sản Trường Đại học Cần Thơ Truchot, J P (1987) Comparative Aspects of Extracellular Acid–Base Balance Berlin: Springer-Verlag 254 pages Truchot, J.P., (2012) Comparative aspects of extracellular acid-base balance Springer Science and Business Media Trương Thủ Khoa Trần Thị Thu Hương, (1993) Định loại cá nước vùng Đồng sông Cửu Long Khoa Thủy sản, Trường Đại học Cần Thơ 361 trang Tun, N., and Houston, H., (1986) Temperature, oxygen, photoperiod, and the hemoglobin system of the rainbow trout (Salmo gairdneri) Canadian Journal of Zoology 64 (9): 1883–1888 110 Tuong, D.D., Ngoc, T.B., Huynh, V.T.N., Huong, D.T.T., Phuong, N.T., Hai, T.N., Wang, T., Bayley, M 2018 Clown knifefish (Chitala ornata) oxygen and its partitioning in present and future temperature environments Comparative Biochemistry and Physiology, Part A 216: 52-59 Ultsch G R., (1996) Gas exchange, hypercarbia and acid-base balance, paleoecology, and the evolutionary transition from water-breathing to airbreathing among vertebrates, Palaeogeography, Palaeoclimatology, Palaeoecology 123(1–4): 1-27 Ultsch, G R (1987) The potential role of hypercarbia in the transition from water breathing to air-breathing in vertebrates Evolution 41: 442-445 Ultsch, G R and Jackson, D C (1996) pH and Temperature in Ectothermic Vertebrates Bulletin Alabama Museum of Natural History, Number 18, pp 1-42 Việt Chương Nguyễn Việt Thái, (2007) Phương pháp nuôi lươn NXB TPHCM 94 trang Võ Quốc Hào, (2014) Ảnh hưởng nhiệt độ lên số tiêu sinh lý máu tăng trưởng cá tai tượng (Osphronemus goramy) Luận văn cao học chuyên ngành Nuôi trồng thủy sản Khoa Thủy Sản, Đại học Cần Thơ 68 trang Walsh, P J and Moon, T W (1982) The influence of temperature on extracellular and intracellular pH in the Americal eel, Anguilla rostrata Respiration Physiology 50: 129-140 Wang, T and Jackson, D C (2016) How and why pH changes with body temperature: the α-stat hypothesis Journal of Experimental Biology 219: 1090–1092 Wang, T., Abe, A S and Glass, M L (1998) Effects of temperature on lung and blood gases in the South American rattlesnake Crotalus durissus terrificus Comparative Biochemistry and Physiology 121A: 7-11 Watenpaugh D E., Beitinger, T L and Huey T W (1985) Temperature Tolerance of Nitrite‐Exposed Channel Catfish Transactions of the American Fisheries Society 114 (2): 274-278 Weber, R.E., (1981) Cationic control of O2 affinity in lugworm erythrocruorin Nature 292: 386–387 Wheaton, B., Muthen, B., Alwin, D F., and Summers, G (1977) Assessing Reliability and Stability in Panel Models Sociological Methodology, 8: 84-136 111 Williams, E.M., Eddy, F.B., (1986) Chloride uptake in freshwater teleosts and its relationship to nitrite uptake and toxicity Journal of Comparative Physiology Part B 156: 867–872 Wilson R., Gilmour K M., Henry R.P., Wood C M (1996) Intestinal base excretion in the seawater-adapted rainbow trout: a role in acid–base balance? Journal of Experimental Biology 199:2331–2343 Wood C M., Milligan C L., Walsh P J (1999) Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis American Journal of Physiology 46: R482–R492 Wood, C M., Wheatly M G., Hobe H (1984) The mechanisms of acid-base and ionoregulation in the freshwater rainbow trout during environmental hyperoxia and subsequent normoxia III Branchial exchanges Respiration Physiology 55 (2): 175-192 Wood, C.M., (1991) Branchial Ion and Acid-Base Transfer in Freshwater Teleost Fish: Environmental Hyperoxia as a Probe Physiological Zoology 64: 68–102 Wood, C.M., Milligan, L.M and Walsh, P.J (1999) Renal responses of trout to chronic respiratory and metabolic acidosis and metabolic alkalosis American Journal of Physiology 277: R482-R492 Wood, S.C (1978) Ideology in Industrial Relations Theory Industrial Relations Journal, 9: 42-56 Wood, S.C., Weber, R.E & Davis, B.J (1979) Effects of air-breathing on acidbase balance in the catfish, Hypostomus sp Comparative Biochemistry and Physiology - Part A 62A: 185–187 Wright, P.A., Wood, C.M., Wilson, J.M (2014) Rh versus pH: the role of Rhesus glycoproteins in renal ammonia excretion during metabolic acidosis in a freshwater teleost fish Journal of Experimental Biology 217: 2855-2865 Wu, H.W., Lui, C.K., (1943) The bucco-pharyngeal epithelium as the principal respiratory organ in Monopterus javanensis Sinensia 221–239 Yang Z., Shen Z., Zhixin L., Lihong Z., Weimin Z (2013) Epigenetic modifications during sex change repress gonadotropin stimulation in a teleost ricefield eel (Monopterus albus) Endocrinology 154: 2881–2890 https://doi.org/10.1210/en.2012-2220 Yang, D., Chen, F and Ruan, G (2018) Aquaculture of the Paddy Eel, Monopterus albus In: Gui, Tang, Q., Li, Z, Liu, J and De Silva, S.S 112 (Eds) Aquaculture in China: Success Stories and Modern Trends Page: 283-296 Zeng, L.Q., Cao, Z.D., Fu, S.J., Peng, J.L., Wang, Y.X., (2009) Effect of temperature on swimming performance in juvenile southern catfish (Silurus meridionalis) Comparative biochemistry and physiology Part A 153: 125-130 113 ... KHOA THỦY SẢN LUẬN ÁN TIẾN SĨ ẢNH HƯỞNG CỦA CO2, NHIỆT ĐỘ VÀ NITRIT LÊN SỰ CÂN BẰNG AXÍT-BAZƠ VÀ CÁC CHỈ TIÊU SINH LÝ MÁU CỦA LƯƠN ĐỒNG (Monopterus albus Zuiew, 1793) LUẬN ÁN TIẾN SĨ NGÀNH NUÔI... bazơ tiêu sinh lý máu lươn đồng 23 3.3.4 Nội dung 3: Ảnh hưởng kết hợp CO2 nhiệt độ lên cân axít - bazơ tiêu sinh lý máu lươn đồng 25 3.3.5 Nội dung 4: Ảnh hưởng kết hợp CO2 nitrit lên cân. .. lên cân axít-bazơ tiêu sinh lý máu lươn (Monopterus albus) lớn nhỏ d) Nghiên cứu ảnh hưởng kết hợp CO2 nitrit lên cân axít - bazơ tiêu sinh lý máu lươn (Monopterus albus) lớn nhỏ e) Nghiên cứu ảnh

Ngày đăng: 11/07/2019, 16:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w