Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
1,54 MB
Nội dung
Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh PHẦN I MỞ ĐẦU I Đặt vấn đề Lí lí luận Albert Einstein nói: “Tốn học túy, theo cách riêng nó, thi ca tư logic” Do vậy, có nhiều thắc mắc xoay quanh việc học nhiều toán liệu có phi thực tế đời sống khơng cần suy nghĩ nhiều đến số? Tuy nhiên, thực tế chứng minh rằng, kiến thức liên quan đến tốn học, có tác dụng chung làm cho não người tư logic hơn, khoa học sáng tạo hơn, giúp cho người học có khả suy nghĩ trừu tượng chừng mực định làm cho mạnh mẽ định Chính điều này, thân tơi giáo viên vốn tâm đắc việc định hướng em học tốt mơn Tốn, ln tìm tòi đổi để giúp em ngày hoàn thiện kiến thức tốn học Mặc dù chương trình sách giáo khoa hành chọn lọc kiến thức bản, phù hợp cho đối tượng Tuy nhiên, khơng phải dạng tốn em nắm bắt được, số có dạng tốn phương trình vơ tỉ, dạng tốn phổ biến đề thi học sinh giỏi văn hóa cấp, đề thi vào lớp 10 thi giải tốn máy tính cầm tay Casio Lí thực tiễn Để làm tốt việc bồi dưỡng học sinh học Tốn, tơi nhận thấy cung cấp cho em số kiến thức thông qua việc làm tập làm nhiều tập khó mà giáo viên phân loại cấp độ từ dễ đến khó chưa đủ, mà phải biết phân chia theo kiểu loại tập định hướng phương pháp giải cho dạng, đồng thời rèn luyện cho học sinh có thói quen suy nghĩ tìm tòi lời giải toán sở kiến thức học Qua nhiều năm thực tế giảng dạy bồi dưỡng học sinh giỏi khối 9, nhận thấy học sinh lúng túng nhiều gặp dạng phương trình vơ tỉ thường có sai sót giải dạng tập này, học sinh vướng mắc phương pháp giải, trình giải thiếu logic chưa chặt chẽ, chưa đủ điều kiện, chưa xét hết trường hợp xảy Lí học sinh chưa nắm vững kiến thức phương trình có chứa biến dấu hay gọi phương trình vơ tỉ Nên gặp tốn giải phương trình vơ tỉ, đa số học sinh chưa phân biệt chưa nắm phương pháp giải dạng tập, có nhiều tốn đòi hỏi học sinh phải biết vận dụng kết hợp nhiều kiến thức kĩ phân tích biến đổi để đưa phương trình từ dạng phức tạp dạng đơn giản Do người giáo viên cần phải biết xếp dạng tốn từ dễ đến khó, phân loại dạng tập định hướng phương pháp giải cho dạng để em vận dụng linh hoạt tình cụ thể, giúp học sinh hiểu sâu sắc chất dạng toán giải dạng toán cách thành thạo Từ rèn luyện cho học sinh kĩ giải toán tư sáng tạo Với lý trên, chọn đề tài: “Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh” với mong muốn chia sẻ vài kinh nghiệm cơng tác giảng dạy bồi dưỡng học sinh giỏi để đồng nghiệp tham khảo, mong nhận góp ý chân thành đồng chí để đề tài phát huy hiệu quả, hoàn thiện Trang Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh II Mục đích nghiên cứu Đề tài: “Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh” giúp học sinh hiểu sâu sắc chất dạng toán nắm vững phương pháp giải dạng, giúp cho học sinh biết phân loại vận dụng phương pháp giải cách linh hoạt có hiệu Qua giúp học sinh phát huy tính tích cực tinh thần sáng tạo học tập, phát triển lực tư toán học cho học sinh, tạo động lực thúc đẩy giúp em học sinh có tự tin học tập, hình thành phẩm chất sáng tạo giải toán niềm đam mê, u thích mơn Thơng qua đề tài nhằm cung cấp kiến thức cần thiết phương pháp giải toán, kinh nghiệm cụ thể trình tìm tòi lời giải giúp học sinh rèn luyện thao tác tư lô-gic, phương pháp suy luận khả sáng tạo cho học sinh Trong đề tài lời giải chọn lọc với cách giải hợp lí, chặt chẽ, dễ hiểu đảm bảo tính xác, tính sư phạm Học sinh tự đọc giải nhiều dạng Tốn, giúp học sinh có kiến thức tốn học phong phú để học tốt mơn Tốn qua hỗ trợ học sinh học tốt môn học khác PHẦN II GIẢI QUYẾT VẤN ĐỀ I Cơ sở lí luận vấn đề Dạng tốn phương trình vơ tỉ dạng tốn quan trọng chương đại số 9, tốn khó, thường xuất đề thi học sinh giỏi, thi vào lớp 10 Các toán phong phú thể loại cách giải, đòi hỏi học sinh phải vận dụng nhiều kiến thức, linh hoạt biến đổi, sắc sảo lập luận phát huy tối đa khả phán đoán Với mục đích nhằm nâng cao chất lượng dạy học Tốn, thiết nghĩ cần phải trang bị cho học sinh phương pháp giải cho kiểu loại tập Để thực tốt điều này, đòi hỏi giáo viên cần xây dựng cho học sinh kĩ quan sát, phân tích, nhận dạng tốn, lựa chọn phương pháp giải phù hợp Từ đó, hình thành cho học sinh tư tích cực, độc lập, kích thích tò mò ham tìm hiểu đem lại niềm vui cho em, đồng thời khơi dậy cho em tự tin học tập niềm đam mê môn II Thực trạng vấn đề: Trong năm qua, trực tiếp tham gia giảng dạy bồi dưỡng đội tuyển học sinh giỏi trường THCS Lê Đình Chinh trải nghiệm nhiều chuyên đề bồi dưỡng học sinh giỏi, có chun đề “Một số giải pháp giải phương trình vơ tỉ” tơi đạt thành tích công tác giảng dạy bồi dưỡng học sinh giỏi Tuy nhiên, áp dụng chuyên đề nặng phương pháp liệt kê toán, chưa phát huy hiệu học tập kết thống kê lại sau: Năm học Lớp Tổng số Số lượng học sinh làm Số lượng học sinh làm chưa chặt chẽ Số lượng học sinh không làm SL Tỷ lệ SL Tỷ lệ SL Tỷ lệ 2015 9A1 30 16% 11 37% 14 47% - 2016 9A2 31 12% 13 42% 15 46% Trang Một số giải pháp giải phương trình vô tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Qua bảng thống kê tơi suy nghĩ tìm cách để học sinh nắm vững giải thành thạo tốn phương trình vơ tỉ giáo viên nên phân loại theo dạng tập từ dễ đến khó, loại tập phân theo dạng khác nhau, qua dạng cần có ví dụ minh chứng xây dựng phương pháp giải chung cho dạng Với ý tưởng tơi thể đề tài nghiên cứu “Một số giải pháp giải phương trình vơ tỉ giành cho học sinh giỏi lớp trường THCS Lê Đình Chinh” Sau đưa tập thể tổ chuyên môn thảo luận áp dụng vào thực tiễn nhận thấy học sinh hứng thú, chủ động học tập gặp dạng tốn phương trình vơ tỉ học sinh khơng chán nản mà đam mê phân tích nhận dạng tìm cách giải tốn, từ ngày rèn luyện cho học sinh kĩ giải tốn có khoa học, lập luận logic chặt chẽ III Các giải pháp tiến hành để giải vấn đề Giải pháp 1: Phân tích cho học sinh hiểu kiến thức cần nắm vững Giải pháp 2: Hướng dẫn cho học sinh hiểu dạng tập sử dụng cách giải phương trình vơ tỉ phương pháp nâng lên lũy thừa Giải pháp 3: Hướng dẫn cho học sinh hiểu dạng tập giải phương trình vơ tỉ phương pháp đặt ẩn phụ Vận dụng giải pháp trên, tiến hành cụ thể bước sau: Giải pháp Phân tích cho học sinh hiểu kiến thức cần nắm vững Các kiến thức tổng hợp thành bảng sau, yêu cầu học sinh cần nắm vững, cụ thể: A (A �0) A A B (B 0) B B A2 A A A (A � ; B 0) B B A B A B(A �0; B �0) A (A �R) A A B A B(A 0; B �0) A AB (AB �0; B �0) B B C Am B C (A �0; B �0; A �B) AB A� B A B A B (B �0) C A mB C (A �0; A �B2 ) AB A �B AB A B(A �0; B �0) A AB A B A 3A (B �0) B 3B Các kiến thức giá trị tuyệt đối, đẳng thức, phân tích đa thức thành nhân tử, chia đa thức cho đa thức, giải phương trình, bất trương bậc ẩn, bất đẳng thức Cauchy Trang Một số giải pháp giải phương trình vô tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Bên cạnh yêu cầu trên, học sinh cần nhận biết dạng phương trình vơ tỉ, đồng thời nắm vững phương pháp giải cụ thể cho dạng tập, cụ thể sau: Giải pháp Giải phương trình vô tỉ phương pháp nâng lên lũy thừa 2.1 Dạng 1: Phương trình vơ tỉ có dạng: f (x) m (1) Trong f(x) biểu thức chứa x m �R a) Phân tích: Ở dạng yêu cầu học sinh cần nắm rõ vế trái biểu thức không âm Nếu m < đẳng thức khơng xảy nên phương trình vơ nghiệm Nếu m �0 phương trình tồn m �0 phương trình khơng cần tìm điều kiện ta tìm cách bỏ dấu bậc hai giải phương trình vừa tìm Vậy phương trình (1) mà m < kết luận phương trình vơ nghiệm ta khơng giải, m �0 bình phương hai vế giải phương trình vừa tìm b) Phương pháp giải (1) � f (x) m Tiếp tục giải phương trình f(x) = m suy x kết luận nghiệm phương trình c) Các ví dụ minh họa Ví dụ Giải phương trình: x 5 Phân tích: Phương trình cho có tồn khơng? Vì sao? (Phương trình cho có tồn vế trái x �0 vế phải > 0) Vậy dạng khơng cần tìm điều kiện Để giải phương trình cho ta làm nào? (Làm dấu bậc hai cách bình phương hai vế giải phương trình vừa tìm được) Giải Ta có: x 5 � x 5 32 � x � x � x 14 Vậy nghiệm phương trình cho x = 14 Ví dụ Giải phương trình: x 3 9 Phân tích: Phương trình cho phải phương trình dạng chưa? Nêu cách giải Giải Ta có: x 3 9 � x 3 92 � x 3 81 � x 6x 81 � x 6x - 72 = � x 12x 6x 72 � x 12x 6x 72 � x(x 12) 6(x 12) Trang Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh x 12 x 12 � � � (x 12)(x 6) � � �� x6 0 x 6 � � Vậy tập nghiệm phương trình cho là: S = 6;12 Giáo viên? Ngồi cách giải cách giải khác không? (Bỏ dấu bậc hai theo kiến thức A A giải phương trình chứa dấu giá trị tuyệt đối đa học) Cách Ta có: x 3 �x �x 12 �� � x 3 � � �x 9 �x 6 Vậy tập nghiệm phương trình cho là: S = 6;12 Nhận xét: Giáo viên cho học sinh nhận xét hai cách giải trên? Khi phương trình dạng f (x) m giải theo cách 2? Từ chọn cách giải phù hợp cho toán (Cách giải đơn giản cách 1, để toán giải theo cách biểu thức dấu viết dạng bình phương biểu thức khơng giải theo cách 1) Ví dụ 3: Giải phương trình 4x 4x Phân tích: Phương trình cho đưa dạng phương trình ví dụ trang không? (Học sinh nêu cách biến đổi phương trình cho dạng 2x 1 6) Giải Ta có: 4x 4x � 2x 1 � 2x � x � 2x 2x � � � �� �� �� 2x 6 2x 5 � � �x 5 � �5 � �2 Vậy tập nghiệm phương trình cho là: S = � ; � Ví dụ 4: x 4x 11 10 Phân tích: Đặt câu hỏi gợi mở ví dụ (Học sinh biến đổi phương trình cho dạng x 2 7) Giải Ta có: x 4x 11 10 � x 21 � x 2 7 �x �x � x2 7 � � �� �x 7 �x 9 Vậy tập nghiệm phương trình cho là: S = {-9; 5} d) Nhận xét: Khi học xong dạng tất dạng học sinh giải được, dạng để học sinh làm cho dạng Trang Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh e) Các tập tương tự: Câu 2x Câu 9x 12x Câu x 5 Câu 25 x 12x 36 19 4 2.2 Dạng Phương trình vơ tỉ có dạng: f (x) g(x) (2) Trong f(x), g(x) biểu thức chứa x a) Phân tích: Ở dạng yêu cầu học sinh nhận thấy vế trái biểu thức khơng âm Nếu g(x) < đẳng thức khơng xảy nên phương trình (2) vơ nghiệm Nếu g(x) �0 phương trình tồn Vậy g(x) � điều kiện cần đủ phương trình, khơng cần tìm điều kiện để f(x) � ta tìm cách bỏ dấu bậc hai giải phương trình b) Phương pháp giải g(x) �0 � f (x) g(x) � � f (x) g(x) � Tiếp tục giải bất phương trình g(x) �0 suy điều kiện x giải phương trình f(x) = g(x)2 suy x xong đối chiếu điều kiện x kết luận nghiệm phương trình c) Các ví dụ minh họa x 3 Ví dụ Giải phương trình: 3 x Phân tích: Phương trình cho tồn nào? ( x �� x �3 ) Để giải phương trình cho ta làm nào? (Làm dấu bậc hai cách bình phương hai vế giải phương trình vừa tìm được) Giải Điều kiện: - x �0 � x �3 Ta có: x 3 x � x 3 x � x 3 x 2 x 3 3 x 2x x 3 � � � �� �� �� x (3 x) x 0x x �R � � � Kết luận: So với điều kiện, tập nghiệm phương trình: S = {x �R/x �3} Giáo viên? Ngồi cách giải cách giải khác không? (Bỏ dấu theo kiến thức A A ) Cách Điều kiện: - x �0 � x �3 Ta có: x 3 2x x 3 �x x � � �� �� 3 x � x 3 3 x � � 0x x �R �x (3 x) � � Kết luận: So với điều kiện, tập nghiệm phương trình: S = {x �R/x �3} Trang Một số giải pháp giải phương trình vô tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Nhận xét: Giáo viên cho học sinh nhận xét hai cách giải trên? Khi giải theo cách 2? Từ chọn cách giải phù hợp cho toán (Cách giải đơn giản cách 1, để toán giải theo cách biểu thức dấu viếc dạng bình phương biểu thức khơng giải theo cách 1) Ví dụ Giải phương trình sau: 4x 20x 25 3x Phân tích: Phân tích cách giải ví dụ Giải Điều kiện: - 3x �0 � -3x �-3 � x �1 Ta có: 4x 20x 25 3x � 2x 5 3x � 2x 3x � 2x 3x � 5x � �x �� �� �� 2x 3x x � � � �x 2 Kết luận: So với điều kiện, tập nghiệm phương trình là: S = {-2} Ví dụ Giải phương trình: x 6x 29 2x + Phân tích: Phương trình cho có đưa phương trình giá trị tuyệt đối khơng? Vì (Phương trình cho khơng đưa phương trình giá trị tuyệt đối biểu thức dấu khơng đưa dạng bình phương biểu thức) Nên giải theo cách bình phương hai vế Giải Điều kiện: 2x + �0 � 2x �- � x �- Ta có: x 6x 29 2x + � x 6x 29 2x + � x 6x 29 4x 32x 64 � 3x +38x 35 � 3x +3x + 35x 35 � 3x +3x + 35x 35 � 3x x 1 + 35 x 1 � x 1 3x 35 �x 1 �x � �� �� 35 3x 35 x � � � Kết luận: So với điều kiện, nghiệm phương trình là: x 1 Ví dụ Giải phương trình sau: 10x 20x 10 x 5x - Phân tích: Phương trình cho biến đổi đưa dạng ví dụ khơng? (Phương trình cho biến đổi đưa dạng ví dụ cách chuyển x + sang vế phải thu gọn xong tìm điều kiện Nên cách giải sau: Giải Ta có: 10x 20x 10 x 5x - � 10x 20x 10 4x - (*) Trang Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Điều kiện: 4x - �0 � 4x �4 � x �1 (*) � 10x 20x 10 4x - � 10x 20x 10 16x 32x 16 2 � 6x 12x � x 2x 1 � x 1 � x 1 � x � x 2 Kết luận: So với điều kiện, nghiệm phương trình x = d) Nhận xét: Khi học xong dạng đa số học sinh làm dạng này, dạng thứ để học sinh làm cho dạng e) Các tập tương tự Câu Câu 2x 5 Câu x 8x 16 2x +7 2x 2x 8x 2x - Câu 3x + 5x +1 2x 3x - 2.3 Dạng Phương trình vơ tỉ dạng: f (x) g(x) (3) Trong f(x), g(x) biểu thức chứa x a) Phân tích: Cả hai phương trình chưa bậc hai để bậc ta bình phương hai vế b) Cách giải: Phương trình dạng sau f (x) �0 � � (3) � �g(x) �0 � f (x) g(x) � Giải bất phương trình f(x) �0 g(x) �0 suy điều kiện chung bai toán Giải phương trình f(x) = g(x) suy x đối chiếu điều kiện kết luận c) Các ví dụ minh họa Ví dụ Giải phương trình sau: 2x x Giải Điều kiện: * 2x - �0 � 2x �1 � x � * x - � x �1 Vậy điều kiện: x �1 Ta có: � 2x x 2x x 1 � 2x x � x Kết luận: So sánh với điều kiện, tập nghiệm phương trình S = � Trang Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Ví dụ Giải phương trình sau: x2 - x x Giải Điều kiện: * x x �0 � x 3x 2x �0 � x 3x 2x �0 � x x 3 x 3 �0 � x 3 x �0 � � �x �0 �x � � � � x �3 � �x �0 �x �2 � � � � �� � � x �2 �x �0 �x �3 � � � � � � �x �0 �x �2 � * x �۳ x Vậy điều kiện tốn x �3 Ta có: x - x 6 x 3 � x2 - x x 3 � x2 x x � x 2x � x 3x x � x 3x x 3 x 1 x 1 � � � x x 3 x 3 � x 1 x 3 � � �� x 3 x 3 � � Kết luận: So sánh với điều kiên tốn, nghiệm phương trình x = Ví dụ Giải phương trình sau: x 4x 4x 12x Giải Điều kiện: * x 4x x �0(x �R) * 4x 12x 2x �0(x �R) Vậy điều kiện tốn x �R Cách 1: Giải ví dụ Giáo viên? ví dụ ngồi cách giải có cánh giải khác khơng? Cách Ta có: x 4x 4x 12x � x 2 2x-3 x 1 � x 2x � x 1 � � x 2x � � �� �� � x 2x 3x x � � � Kết luận: So với điều kiện, tập nghiệm phương trình là: S = {1; } d) Nhận xét: Giáo viên cho học sinh nhận xét hai cách giải trên? Khi phương trình giải theo cách 2? Từ chọn cách giải phù hợp cho toán Trang Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh (Cách giải đơn giản cách 1, để tốn giải theo cách biểu thức dấu viếc dạng bình phương biểu thức khơng giải theo cách 1) e) Các tập tương tự Câu x x = Câu 3 x = x3 2x 1 Câu x 3x = Câu 2x x 7x Câu x x x = 2x x 2.4 Dạng Phương trình vơ tỉ dạng: f (x) g(x) h(x) Trong f(x), g(x), h(x) đa thức chứa biến x a) Cách giải Ta có: f (x) g(x) h(x) � f (x) �0 � � ۳ � g(x) � f (x) g(x) � � h(x) � f (x) �0 � ۳ � g(x) � f (x) g(x) f (x)g(x) h(x) � � � � f (x) �0 f (x) �0 � � ۳ � g(x) ۳ � g(x) � � h(x) f (x) g(x) f (x)g(x) h(x) f (x) g(x) � � f (x)g(x) � Giải phương trình * dạng phần 2.2 (chú ý điều kiện bổ sung cho phương trình * h(x) - f(x) - g(x) ) �0) Khi suy nghiệm * ta đối chiếu điều kiện ban đâu điều kiện bổ sung kết luận Nên cách giải sau b) Các ví dụ minh họa Ví dụ Giải phương trình sau: x x 2x Phân tích: Ta thấy vế phải số khơng âm, vế trái chưa xác định dương hay âm Khi giải bình phương để phương trình khơng tương đương với phương trình phương trình có nghiệm ngoại lai Vì thường sai lầm kết luận lấy nghiệm ngoại lai, Vậy giáo viên nên hướng dẫn cho học sinh cách khắc phục sai sót theo hai cách sau Cách Khi giải xong thay nghiệm vào thử lại nghiệm khơng thõa mãn loại, nghiệm thỏa mãn nhận Như cách thời gian nhiều Cách Biến đổi chuyển vế để hai vế dương � x 2x x Nên ta có cách giải sau x x 2x Giải Điều kiện: Trang 10 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh � t n f (x) thay vào (1) suy (1) � at n bt c � t đối chiếu điều kiện � x đối chiếu điều kiện Bước 3: Kết luận nghiệm phương trình c) Các ví dụ minh họa: Ví dụ Giải phương trình sau: 3x +9x+24 12 x 3x (2) Phân tích: Nhận thấy t = x 3x �0, biểu thức bên ngoại dấu thức 3x +9x+24 = 3( x 3x ) + = 3t2 + có mối liên hệ với nên cách giải sau: Giải Điều kiện: x �R �0 Đặt t = x 3x (t �0) (*) � t x 3x � 3x +9x+24 3t �t (nhận) (nhận) �t Thay vào (2) � 3t 12t � t 1 t � � Với t = thay vào (*) ta có: 12 x 3x � x 3x (vơ lý x 3x � ) �x �x 4 Với t = thay vào (*) ta có: 32 x 3x � x 3x - � x 1 x � � Kết luận: So sánh điều kiện, tập nghiệp phương trình là: S = {- 4; 1} Ví dụ Giải phương trình sau: x x 2x (3) 2x x � � Phân tích: Đối với tốn có dạng thuận nghịch loại f �x � ; x � � ta x2 � 1 � 1� giải cách đặt ẩn số phụ: t = x � � t �x � � x �2 nên x x � x� cách giải toán sau: Giải Điều kiện: x > � (3) � � x � Đặt t x � t2 x � � � x � (*) � � x � � 4x � x Cauchy �2 x x 1 + � t 1 x 4x 4x Trang 15 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh (*) 3t = 2(t2 - 1) - � 2t 3t � t 3 2t 3 t 3(nhận) � � � 3 (loại) � t � Với t = 3, suy ra: x x � 2x x � x �3 Kết luận: So sánh với điều kiện, phương trình có nghiệm là: x �3 Ví dụ Giải phương trình sau: x x 4x x (4) Phân tích: Ta nhận thấy biểu thức x + 1, biểu thức thức có chứa x2 + ta thấy hai biểu thức không liên hệ với Nhưng chia hai vế cho x Đặt t x x 1 , x từ ta thấy hai biểu thức có liên hệ với x x � t phương trình biểu diễn hết theo biến t cách x giải sau: Giải Điều kiện: x �0 Trường hợp Với x = ta thấy khơng nghiệm (vì thay vào phương trình khơng thỏa mãn) Trường hợp Nếu x > 0, chia hai vế cho (4) � x 1 x (5) x x Đặt: t x � t2 x x 0 Cauchy �2 x x 2 x 2 x � t2 x 1 � t x (thay vào phương trình 5) x x (5) � t t � t t (Giải tương tự dạng phần 2.2 nâng lên lũy thừa Chú ý điều kiện phụ t �3) � t 6t t � t (nhận) Trang 16 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Suy ra: x4 � � x � 2x x � � x x � 4 Kết luận: So với điều kiện, phương trình có nghiệm là: x ; x = Ví dụ Giải phương trình sau: 2x 8x 2x 4x x (4) Phân tích: Nếu giải phương trình theo phương pháp nâng lên lũy thừa ta thấy lũy thừa bậc cao không triệt tiêu gây khó khăn cho việc giải Nhưng phần biến có liên hệ với khau không? Để ý phần hệ số a, c biểu thức ax + bx + c hai thức vế trái (a = 2, c = 5), nên chia hai vế cho x hai biểu thức dấu thức vế trái có liên hệ với Khi đặt ẩn phụ để đưa toán dạng sau Giải Điều kiện: x �0 Ta thấy x = khơng nghiệm phương trình nên chia hai vế phương trình (4) cho � 2x x , ta được: (4) � 2x 5 2x - x x 5 2x (*) x x Đặt t 2x Cauchy � 2x 10 x x (*) � t t (Đây dạng phần 2.4) � 2t t t 36 � t 8 t 16 t (Điều kiện bổ sung t �16) � t t 16 t � 36t 288 � t (TMĐK) Với t = 8, suy ra: 2x 4� � 2x 8x � x x Kết luận: So với điều kiện, phương trình cho có nghiệm x 4� d) Nhận xét: Đơi tốn ban đầu chưa xuất mối liên hệ biểu thức ta nhân chia hai vế cho biểu thức khác khơng xuất liên hệ biểu thức Nên làm tốn cần tìm hiểu phân tích thật kỹ để tìm cách giải phù hợp đơn giản Trang 17 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh e) Bài tập tương tự: Câu x x 1 x 5x Câu x 2x x Câu 6x 2x 3x x 10 3x x Câu 10 x 3x 13 x x 3 3.2 Dạng Phương trình vơ tỉ dạng: a f (x) b g(x) 2ab f (x)g(x) h(x) Trong f(x), g(x), h(x) đa thức chứa biến x a) Nhận dạng: Phương trình có dạng tổng - tích hiệu - tích b) Cách giải Điều kiện: f(x) �0, g(x) �0, h(x) �0 Bước Đặt t = tổng hiệu f (x) , g(x) , suy t2 = Bước Giải phương trình với biến theo t, suy x c) Các ví dụ minh họa Ví dụ Giải phương trình sau: x x x x (1) Phân tích: Phương trình có dạng tổng - tích, ta đặt t = 0, suy t 3 x 6 x 3 x 6 x � x x biểu diễn biết hết theo t nên 92 cách giải sau: Giải * + x �0 ۳ x 3 Điều kiện: x * 6� x Suy điều kiện: 3 �x �6 Đặt t x x �0 , suy ra: t � x x (1) � t 3 x 6 x 92 3 x x t2 Khi đó: t 1(loại) � t2 � t 2t � � (nhận) t 3 � Với t = 3, suy ra: x x (giải tương tự dạng phần 2.4) � 92 3 x x � 3 x x x 3 � 0 � � x6 � Kết luận: So với điều kiện, phương trình cho có nghiệm x = - 3; x = Ví dụ Giải phương trình sau: Phân tích: Sau phân tích dạng tổng - tích, 2x x 3x 2x 5x 16 (2) 2x 5x đặt 2x 1 x 1 phương trình có t 2x x �0, suy Trang 18 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh t2 2x x 3x 2x 5x phần biến lại biểu diễn hết theo t có lời giải sau: Giải Điều kiện: x �-1 Đặt t 2x x �0, suy t 2x x 3x 2x 5x t 4 (loại) � t (nhận) � Khi đó: (2) � t t 20 � t t 20 � � Với t = 5, suy ra: �2 2x 3 x 1 2x x � 3x 2x 3 x 1 25 21 3x (điều kiện bổ sung x �7) x 3 (nhận) � � x 146x 429 � � x 143 (loại) � Kết luận: Phương trình cho có nghiệm x = d) Nhận xét: Đơi phương trình chưa có dạng tổng tích hiệu tích ví dụ ta cần phân tích biểu thức dấu thành tích để xuất dạng tổng tích hiệu tích ví dụ e) Các tập tương tự Câu x x x x Câu 2x x 3x 5x 2x 12 23 Câu x x x 2x Câu 3x x 4x - + 3x 5x 3.3 Dạng Phương trình vơ tỉ dạng: n a f (x) .m b f (x) c a) Cách giải: Điều kiện: a - f(x) �0, b + f(x) �0( m,n số chẳn) � u n a f (x) � u n a f (x) � u n vm a b � � u, v � x � � Đặt � �m � m b f (x) u v c v b f (x) � v � � b) Các ví dụ minh họa Ví dụ Giải phương trình sau: x 7x (1) Phân tích: Bài tốn có hai thức dạng 3, nên ta giải cách đặt hai ẩn � � u x 1 u x 1(1) � � � �3 phụ thức, tức đặt � Khi đó, ta cần cân hệ số �v 7x 6(2) �v 7x trước x, tức phương trình (1) nhân vế với sau trừ (một số cộng) nhằm triệt tiêu x thu phương trình với ẩn u v 7u -v3 = Còn phương trình thứ thay u, v vào đề phương trình là: 5u - 2v = Khi giải hệ tìm u, v Suy x Giải Trang 19 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh 0 Điều kiện: x �۳ x � u x �0 u2 x 1 7u 7x � � � � �3 � �3 Đặt � � 7u v3 (2) �v 7x �v 7x �v 7x Từ phương trình (1) � 5u - 2v = (3) � �4 2v � � � v � 7u v3 �� � � �� Từ (2), (3) suy hệ: � � 5u 2v 4 2v � � u � � � � 25v3 28v 112v 87 (v 3)(25v 47v 29) �v � � � � 2v � � 2v � � (nhận) u2 u u � � � 5 � � �v , suy ra: u2 � Với � � � �x � x 1 �� � x (nhận) �3 �x � 7x Vậy phương trình có nghiệm x = Ví dụ Giải phương trình sau: x x 18 (2) Phân tích tương tự ví dụ Giải Điều kiện: x �R � � u x2 1 u3 x2 1 � � �3 Đặt: � 2 �v x 18 v x 18 � � �v3 u 19 �� uv5 � u 5v � �� 2v 15v 75v 144 � �u �� , suy ra: �v 3 2 � � � x 1 �x � �2 � x � x �3 �3 �x 18 � � x 18 Kết luận: So với điều kiện, phương trình cho có nghiệm x = - 3, x = Ví dụ Giải phương trình sau: 3 x x x 1(3) Phân tích: Đối với ví dụ khơng dạng Ta cần biến đổi khéo léo đẳng thức để đưa dạng: n a f (x) .m b f (x) c Nên cách giải sau Giải Điều kiện: x + �0 � x �-2, suy ra: x Khi đó: Trang 20 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh 3 x x 1 x 1 (3) � x 1 x 1 hai vế cho số x ) x 12 x 1 x 1 x 1 x 1 x (chia � 3 x x (phương trình có dạng phần 3.3) �u 3 x u v 1 u3 x u 1 � � � � � � �3 �� Đặt: � (nhận) �2 u v 5 �v x � �v �v x �0 �3 x 3 x 1 � � � �� � x (nhận) Suy ra: � �x �x2 2 Kết luận: Phương trình cho có nghiệm x = c) Nhận xét: Ta thấy hình thức ví dụ thực củng dạng mang tích chất giấu mặt Khi ta cần biến đổi khéo léo đẳng thức củng kết hợp tinh tế để đưa dạng: n a f (x) .m b f (x) c d) Các dạng tập tương tự Câu 3x+7 x Câu Câu 5x 10 9x Câu 3 2x 3x 4x 3 Câu x 1 47 2x 35 2x 4 Câu 3 3x x 10 x 4x 26 2x 3.4 Dạng Phương trình vơ tỉ dạng: a n A b n AB c n B2 a) Phương pháp giải: Có cách giải sau: - Cách Đặt ẩn phụ u n A , v n B , đưa phương trình dạng phương trình đẳng cấp bậc hai dạng: a.u2 + b.uv + c.v2 = Giải phương trình đẳng cấp kết hợp với đề suy u, v Suy x - Cách Nếu n A � n B � Chia trực tiếp vế phương trình cho lượng khác 0, n A �0 n B �0, để phương trình bậc hai dạng: �A� A n n a � b c Giải phương trình bậc hai kết hợp với phương � �B� B � � trình cho suy A, B Suy x b) Các ví dụ minh họa: Ví dụ Giải phương trình sau: x x 3 x (1) Phân tích: Nhận thấy x2 x x nên phương trình (1) có dạng x x x 3 x dạng Nên cách giải sau: 2 Trang 21 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Giải Điều kiện: x �R - Cách Đặt ẩn phụ đư phương trình đẳng cấp bậc hai Đặt u x , v x Khi (1) � 4u 7uv 3v (2) Ta thấy x = không nghiệm phương trình (1) nên xét x �2, suy ra: v x � chia hai vế phương trình (2) cho v2 �0, ta được: �u � �� u (2) � � � v v u � �v uv � �� �� u 4u 3v � � � �v Với u = v, suy ra: x 2 2x � x2 2x � x Với 4u = 3v, suy ra: x 3 x � 64 x 27 x x 74 91 74 91 Kết luận: So với điều kiên, phương trình cho có hai nghiệm x = 0, - Cách Chia đưa phương trình dạng bậc hai Ta thấy x = không nghiệm phương trình (1) suy ra: vế phương trình (1) cho x x �0 chia hai �0, ta được: �x2 x2 � 1 x0 1 � � � � x2 � x x 2 x � � 3 � �� � (1) � � 74 � 2x � � x � �x2 x 27 x � � � � 91 � x 64 � �2x Kết luận: Phương trình cho có hai nghiệm x = 0, Ví dụ Giải phương trình sau: x 74 91 x x x Phân tích: Thơng thường học sinh nhầm lẫn ví dụ với ví dụ 1, thấy vế phải không nên không thuộc dạng: a n A b n AB c n B2 Đối với dạng ta giải theo cách đặt hai ẩn phụ u, v giải, nên cách giải sau Giải Điều kiên: x �R � �u x u3 x � � �3 � u v3 Kết hợp với đề hệ phương trình �v x �v x Đặt: � Trang 22 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh � � u v3 (u v)(u uv v ) uv3 � u 1 � �u � � � � �2 � �2 �� �� 2 uv v2 u v uv u v uv � � � � �v �u Với � , suy ra: �v � x 1 � � 2 x 1 �� � x 1 �3 x x � � �u Với � , suy ra: �v � 2x 8 � �2x �� � x 6 �3 x x � � Kết luận: Phương trình cho có nghiệm x = 1, x = - c) Các dạng tập tự luyện tương tự: Câu 2x+1 3 2x 4x Câu x x x 2 Câu 3 3x 1 3 4x 1 12x 7x Câu 3x 2 11 3x 3x 3x 11 3.5 Dạng Phương trình vơ tỉ dạng: mx n ax bx c px q a) Cách giải: Đối với dạng ta có nhiều cách để giải Như biến đổi dạng A B2 đặt ẩn phụ, hai ẩn phụ b) Các ví dụ minh họa Ví dụ Giải phương trình sau: x x 2x x (1) Giải Điều kiện: x 2x �0 � 3 �x �1 - Cách Đưa dạng: A B2 � A �B (1) � 2(x 3) x x 2x (nhân hai vế (1) với chuyển vế) � x 2x 3 x x 2x x 4x (biến đổi dạng đẳng thức bình phương hiệu) � x 2x (x 2) 2 � � � x 2x (x 2) � � � � � � x 2x (x 2) 1 � x 2x x �� (giải dạng phần 2.2) � x 2x x � � �x � � � � x 2x � � � �� �x �1 � � � � x 2x � � � � x 3 2 x 1 � � �x �3 �x �3 � � � � 2 x 2x x 6x 2x 8x � � � � �� �� �x �1 �x �1 � � � � � � x 2x x 2x 2x 4x - � � � � Trang 23 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh � �x � � x 1 (nhận) � �� �x �3 � � � x 1 � �2 � �� x 3 (nhận) � � �x 4x � �� �� �� x 3 � �x �1 x �1 � � � � x 1 � �2 � � �x � �x 2x - � � � �x 1(loai) � Kết luận: Phương trình cho có ba nghiệm là: x = -3, x 1 , x - Cách Đặt ẩn phụ khơng hồn tồn � 2(x 3) x x 2x (1) � x 2x 3 x x 2x x 4x (2) Đặt t x 2x �0 2 (2) � t x t x 4x (giải phương trình bậc hai theo ẩn t) Có: 't (x 2) x 4x 3 � x 1 t x � x 2x x � � �� �� �� x 3 t x 1 � � � � x 2x x x 1 � - Cách Đặt ẩn phụ u, v đưa dạng đẳng thức: (u �v)2 = k2 (k số) � u x 2x 3(1) � � � u x 2x �0 � �v x 4x 4(2) Đặt � �v x � 2uv 2x 6(3) � u v 1 � u v 1 � Lấy (1) + (2) - (3), suy ra: u v � � Với u - v = 1, suy ra: x 2x (x 2) , giải tương tự cách suy ra: x = -3, x = -1 Với u - v = - 1, suy ra: x 2x (x 2) 1 � x c) Các tập tương tự: Câu x 3 x 8x 48 28 x Câu x 3 x 8x +48 x 24 Câu 2 x x 5x - 5x 20 Câu x 1 2x 7x - 9x 39 3.6 Dạng Phương trình vơ tỉ dạng: mx nx p ax b cx dx +e (*) a) Phân tích: Phương trình (*) cách giải hồn tồn tương tự dạng Để tìm hiểu kỹ dạng này, ta xét ví dụ sau: Trang 24 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh b) Các ví dụ minh họa Ví dụ Giải phương trình sau: 3x 5x x 1 2x 3x +1 (1) Giải Điều kiện: 2x 3x +1 �0 ۣ x x �1 - Cách Đặt ẩn u, v để đưa đẳng thức: u �v k (k số) � � u x 2x 1(2) �u x � � Đặt � �2 2 �v 2x 3x +1(3) �v 2x 3x +1 Thay u, v vào (1), suy ra: 3x 5x 2uv � 2uv 3x 5x 2(4) uv2 � u v 2 � Lấy (2) + (4) + (3), suy ra: u v � � Với u + v = 2, suy ra: x 2x 3x +1 � 2x 3x +1 x (giải dạng phần 2.2) �x �3 �x �3 �x �3 � �� � � � �2 2x 3x +1 6x x 2x 3x +1 x �x 3x - =0 � � � 3 � 41 (nhận) �x Với u + v = - 2, suy ra: x 2x 3x +1 2 � 2x 3x +1 1 x (giải dạng phần 2.2) �x �1 � �� 2x 3x +1 � � 1 x x (loại) �x �1 �x �1 � �� � �2 �� x (loại) 2x 3x +1 2x x � �x 5x =0 � Kết luận: Phương trình có hai nghiệm là: x 3 � 41 AB � 2 - Cách Đưa dạng A B � � A B � (1) � 2x 3x 1 x 1 2x 3x +1 x 2x � 2x 3x 1 x 1 2x 3x +1 x 2x � � 2x 3x +1 x 2 (giải tương tự cách 1) 2x 3x +1 x 22 � � � � 2x 3x +1 x 2 - Cách Đặt ẩn phụ không hoàn toàn Trang 25 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh (1) � 2x 3x 1 x 1 2x 3x +1 x 2x (5) ' 2 t 2x 3x +1 �0 , (5) � t 2(x 1).t x 2x có t � 2x 3x +1 x t 3 x � � � Suy ra: � (giải tương tị cách 1) t x 1 � � � 2x 3x +1 x c) Nhận xét: Qua ví dụ ta nhận thấy phương trình dạng mx nx p ax b cx dx +e có nhiều cách giải, chẳng hạn như: Đặt ẩn phụ khơng hồn tồn, đặt hai ẩn phụ để đưa dạng đẳng cấp Vì tùy thuộc vào tốn mà ta chọn cách giải phù hợp d) Các dạng tập tương tự Câu 5x x x + x +1 Câu x 2x x 1 x - 2x Câu 2x 6x x x - 2x Câu 5x 20x 12 x x - 4x + IV Tính giải pháp Những giải pháp giải phương trình vơ tỉ nên nên phương pháp giải cụ thể, cách giải dạng phương pháp Sắp xếp dạng, ví dụ từ dể đến khó có liên hệ mật thiết với nhau, có phân tích hướng dẫn cho ví dụ Sau dạng có tập tương tự giúp học sinh tự khắc sâu kiến thức Từ năm học 2015 - 2016 dạy số lớp trường THCS Lê Đình Chinh chưa sử dụng giải pháp giải phương trình vơ tỉ thấy đa số học sinh gặp dạng tốn thường khơng xác đinh dạng phương trình cách giải dạng Nhưng qua năm sau đến áp dụng số giải pháp giải phương trình vơ tỉ vào trình giảng dạy việc bồi dưỡng học sinh giỏi thấy học sinh biết phân biệt dạng biết phương pháp giải dạng Như thực tế cho thấy kết học tập kết bồi dưỡng học sinh giỏi nâng lên V Hiệu sáng kiến kinh nghiệm Trong năm qua, vận dụng đề tài vào việc giảng dạy bồi dưỡng học sinh giỏi trường THCS Lê Đình Chinh với kết đạt sau: Trang 26 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Chất lượng giảng dạy thể qua năm sau: Năm học 2016 - 2017 2017 - 2018 Lớp Tổng số Số lượng học sinh làm Số lượng học sinh làm chưa chặt chẽ Số Tỷ lệ lượng Số Tỷ lệ lượng Số lượng học sinh không làm Số Tỷ lệ lượng 9A1 34 15 44% 14 41% 15 % 9A3 28 14 50% 10 36% 14 % 9A4 27 12 44% 11 40% 15% Chất lượng bồi dưỡng học sinh giỏi qua năm Năm học 2016 – 2017 có 01 học sinh đạt danh hiệu học sinh giỏi cấp huyện mơn Tốn Casio Em Trần Thị Phương Mây lớp 9A3 Năm học 2018 – 2019 thân tiếp tục vận dụng đề tài vào việc bồi dưỡng học sinh giỏi văn hóa mơn Tốn Kết thu kỳ thi học sinh giỏi văn hóa cấp huyện vừa qua đạt 1/2 học sinh giỏi cấp huyện (em Nguyễn Thị Quý An lớp 9A3) PHẦN III KẾT LUẬN, KIẾN NGHỊ I Kết luận Trên giải pháp mà tơi đúc rút suốt q trình giảng dạy trường THCS Lê Đình Chinh Khi nghiên cứu vấn đề “giải phương trình vơ tỉ” tơi thấy việc áp dụng vào giảng dạy có hiệu quả, học sinh có hứng thú q trình tiếp thu kiến thức, nắm kiến thức hơn, biết phân biệt dạng phương pháp giải dạng tương ứng, biết sử dụng linh hoạt, sáng tạo kiến thức, kĩ giải toán học vào dạng tập cụ thể Đề tài chun đề khơng thể thiếu chương trình bồi dưỡng học sinh giỏi cấp mơn Tốn khối Vì đồng nghiệp học sinh đánh giá cao Tuy nhiên, với dạng tập phương pháp đưa đề tài chưa phải đầy đủ Tôi hy vọng thời gian tới với trao đổi góp ý quý đồng nghiệp, kinh nghiệm thân, tiếp tục nghiên cứu sâu vấn đề II Kiến nghị Đối với giáo viên Tận tâm với nghề dạy học, tìm tòi phương pháp để truyền thụ kiến thức đến học sinh đạt hiệu hơn, thường xuyên quan tâm đến chất lượng học tập học sinh, trân trọng thành đạt học sinh dù nhỏ Trang 27 Một số giải pháp giải phương trình vô tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Ln tìm tòi, sáng tạo dạy học, tận dụng hội tiếp xúc với học sinh, lắng nghe học sinh nói để tìm phương pháp dạy phù hợp với đối tượng học sinh từ nâng cao chất lượng Đối với nhà trường Tổ chức triển khai sáng kiến kinh nghiệm cấp trường, cấp huyện để giáo viên áp dụng đề tài đạt giải vào thực tiễn giảng dạy Đối với phòng Giáo dục Đào tạo huyện Thường xuyên tổ chức triển khai chuyên đề nâng cao chất lượng đại trà chất lượng mũi nhọn để giáo viên có điều kiện nghiên cứu, trao đổi học hỏi lẫn nhau, đồng nghiệp tìm giải pháp, biện pháp hay hoạt động dạy học Tiếp tục làm tốt công tác đạo hoạt động cụm chuyên môn, cụm tổ mơn để giáo viên chúng tơi có thêm hội trao đổi, học hỏi chuyên môn Mặc dù thân cố gắng chắn khơng tránh khỏi thiếu sót Rất mong nhận nhiều ý kiến đóng góp xây dựng thầy cô giáo, đồng nghiệp để giúp hoàn thiện sáng kiến kinh nghiệm Xin chân thành cảm ơn! Người viết Nguyễn Văn Tý NHẬN XÉT, ĐÁNH GIÁ CỦA ĐƠN VỊ Trang 28 Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh DANH MỤC CÁC TÀI LIỆU THAM KHẢO STT TÊN TÀI LIỆU TÁC GIẢ Sách giáo khoa, sách tập Toán Sách bồi dưỡng học sinh giỏi Toán đại số lớp Vũ Hữu Bình Sách chủ đề nâng cao Toán Huỳnh Quang Lâu Sách bồi dưỡng học sinh giỏi Toán đại số lớp Vũ Hữu Bình Sách bồi dưỡng học sinh giỏi Tốn đại số lớp Trần Thị Vân Anh Sách nâng cao phát triển tốn Vũ Hữu Bình Sách chun đề chọn lọc Tốn Tơn Thân Tư sáng tạo tìm tòi lời giải PT - BPT - HPT đại số vô tỉ Lê Văn Đoàn Các đề thi học sinh giỏi cấp năm học 10 Các tài liệu tham khảo mạng internet Trang 29 .. .Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh II Mục đích nghiên cứu Đề tài: Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp. .. nghiệm phương trình: S = {x �R/x �3} Trang Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Nhận xét: Giáo viên cho học sinh nhận xét hai cách giải. .. chia đa thức cho đa thức, giải phương trình, bất trương bậc ẩn, bất đẳng thức Cauchy Trang Một số giải pháp giải phương trình vơ tỉ dành cho học sinh giỏi lớp trường THCS Lê Đình Chinh Bên cạnh