Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 56 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
56
Dung lượng
7,12 MB
Nội dung
Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A File Word liên hệ:0937351107 Trang Hình học tọa độ Oxyz Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz MỤC LỤC MỤC LỤC TỌA ĐỘ ĐIỂM, TỌA ĐỘ VÉC TƠ VÀ CÁC PHÉP TOÁN VÉC TƠ A – LÝ THUYẾT TÓM TẮT B – BÀI TẬP C – ĐÁP ÁN 11 PHƯƠNG TRÌNH MẶT PHẲNG .12 A – LÝ THUYẾT TÓM TẮT 12 B – BÀI TẬP 13 C – ĐÁP ÁN 21 PHƯƠNG TRÌNH ĐƯỜNG THẲNG .21 A-LÝ THUYẾT TÓM TẮT 22 B – BÀI TẬP 23 C – ĐÁP ÁN 27 PHƯƠNG TRÌNH MẶT CẦU 27 A-LÝ THUYẾT TÓM TẮT 27 B – BÀI TẬP 28 C – ĐÁP ÁN 34 KHOẢNG CÁCH 35 A – LÝ THUYẾT TÓM TẮT 35 B – BÀI TẬP 35 C – ĐÁP ÁN 38 GÓC 39 A – LÝ THUYẾT TÓM TẮT 39 B – BÀI TẬP 39 C – ĐÁP ÁN 41 VỊ TRÍ TƯƠNG ĐỐI GIỮA ĐIỂM, MẶT PHẲNG, ĐƯỜNG THẲNG,MẶT CẦU 42 A – LÝ THUYẾT TÓM TẮT 42 B – BÀI TẬP 43 C – ĐÁP ÁN 48 TÌM ĐIỂM THỎA MÃN U CẦU BÀI TỐN .49 A – MỘT SỐ DẠNG TOÁN 49 B-BÀI TẬP .49 C-ĐÁP ÁN .54 File Word liên hệ:0937351107 Trang Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz TỌA ĐỘ ĐIỂM, TỌA ĐỘ VÉC TƠ VÀ CÁC PHÉP TỐN VÉC TƠ A – LÝ THUYẾT TĨM TẮT uuur AB (x B x A , y B y A , z B z A ) uuur 2 2 AB AB x B x A y B y A z B z A r r a �b a1 �b1 , a �b , a �b r k.a ka1 , ka , ka r a a12 a 22 a 32 �a1 b1 r r � a b � � a b2 �a b �3 rr a.b a1.b1 a b a b3 r r r r r r r a a a a / /b � a k.b � a �b � b1 b b r r rr a b � a.b � a1.b1 a b a b z r k 0;0;1 r j 0;1;0 y O x r i 1;0;0 r r �a a a a1 a1 a � 10 a �b � , , � b b b b b1 b � 3 � rr r r a1b1 a b a b3 a.b 11 cos(a, b) r r 2 a|b a1 a a 32 b12 b 22 b32 r r r r r r 12 a, b, c đồng phẳng � a �b c y ky B z kz B � �x kx B , A , A 13 M chia đoạn AB theo tỉ số k ≠ 1: M � A � 1 k 1 k � � 1 k �x x B y A y B z A z B � , , 14 M trung điểm AB: M � A � 2 � � �x x B x C y A y B yC z A z B z C � , , ,� 15 G trọng tâm tam giác ABC: G � A 3 � � r r r 16 Véctơ đơn vị : i (1, 0, 0); j (0,1, 0); k (0, 0,1) 17 M(x, 0, 0) �Ox; N(0, y, 0) �Oy; K(0, 0, z) �Oz 18 M(x, y, 0) �Oxy; N(0, y, z) �Oyz; K(x,0, z) �Oxz uuur uuur a1 a 22 a 32 19 SABC AB �AC 2 uuur uuur uuur 20 VABCD (AB �AC).AD uuur uuur uuuur/ V (AB �AD).AA 21 ABCD.A / B/ C/ D/ B – BÀI TẬP uuur r r r r Câu 1: Trong không gian với hệ tọa độ Oxyz, cho vecto AO i j 2k 5j Tọa độ điểm A File Word liên hệ:0937351107 Trang Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A A 3, 2,5 Hình học tọa độ Oxyz B 3, 17, C 3,17, 2 D 3,5, 2 uuur r r r uuur r r r Câu 2: Trong không gian Oxyz cho điểm A, B, C thỏa: OA 2i j 3k ; OB i j k ; uuur r r r r r r OC 3i j k với i; j; k vecto đơn vị Xét mệnh đề: uuur uuur I AB 1,1, II AC 1,1, Khẳng định sau ? A Cả (I) (II) B (I) đúng, (II) sai C Cả (I) (II) sai D (I) sai, (II) uu r r uu rr Câu 3: Cho A m.n 1 B [m, n] (1; 1;1) uu r r r C m n không phương D Góc n 600 r r r r r r r Câu 4: Cho vectơ a 2;3; 5 , b 0; 3; , c 1; 2;3 Tọa độ vectơ n 3a 2b c là: r r r r A n 5;5; 10 B n 5;1; 10 C n 7;1; 4 D n 5; 5; 10 r r r Câu 5: Trong không gian Oxyz, cho a 5;7; , b 3;0; , c 6;1; 1 Tọa độ vecto r r r r r n 5a 6b 4c 3i là: r r r r A n 16;39;30 B n 16; 39;26 C n 16;39; 26 D n 16;39; 26 r r Câu 6: Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ a (1; 2; 2) , b (0; 1;3) , r c (4; 3; 1) Xét mệnh đề sau: r r r r r r (I) a (II) c 26 (III) a b (IV) b c r r r r rr 10 (V) a.c (VI) a, b phương (VII) cos a, b 15 Trong mệnh đề có mệnh đề ? A B C D r r r r r r 2 Câu 7: Cho a b tạo với góc Biết a 3, b a b bằng: A B C D r r r r r r Câu 8: Cho a, b có độ dài Biết (a, b) Thì a b bằng: 3 A B C D 2 r r r Câu 9: Cho a b khác Kết luận sau sai: r r r r r r r r rr A [a, b] a b sin(a, b) B [a,3b]=3[a,b] rr rr r r rr C [2a,b]=2[a,b] D [2a,2b]=2[a,b] r r r r Câu 10: Cho vectơ a 1; m; 1 , b 2;1;3 a b khi: A m 1 B m C m D m 2 r r r r Câu 11: Cho vectơ a 1;log 3; m , b 3;log 25; 3 a b khi: 5 A m B m C m D m r r r r Câu 12: Cho vectơ a 2; 3;1 , b sin 3x;sin x;cos x a b khi: k 2 7 k �x k, k �Z �x k, k �Z A x B x 24 24 12 File Word liên hệ:0937351107 Trang Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A Hình học tọa độ Oxyz k k �x k, k �Z �x k, k �Z D x 24 12 24 12 Câu 13: Trong không gian với hệ trục tọa độ Oxyz cho điểm A 2; 0; , B 4; 3;5 , C sin 5t;cos 3t;sin 3t O gốc tọa độ với giá trị t để C x AB OC 2 � t k � (k ��) A � k � t � 24 � t k � (k ��) C � k � t � 24 � 2 t k � (k ��) B � k � t � 24 � 2 t k � (k ��) D � k � t � 24 r r uu r r r uu r � u, v w Câu 14: Trong hệ trục tọa độ Oxyz cho u 4;3; , v 2; 1; , w 1; 2;1 � � � là: A B C D r r r r Câu 15: Điều kiện cần đủ để ba vec tơ a, b, c khác đồng phẳng là: r r r r rrr r � a, c A a.b.c B � � b� D Ba vectơ có độ lớn C Ba vec tơ đơi vng góc Câu 16: Chọn phát biểu đúng: Trong không gian A Vec tơ có hướng hai vec tơ phương với vectơ cho B Tích có hướng hai vec tơ vectơ vng góc với hai vectơ cho C Tích vơ hướng hai vectơ vectơ D Tích vectơ có hướng vô hướng hai vectơ tùy ý r r r Câu 17: Cho hai véctơ u, v khác Phát biểu sau không ? r r r r r r r r r r r �có độ dài u v cos u, v � � hai véctơ u, v phương u, v u, v A � B � � � � r r r r r r �vng góc với hai véctơ u, v � � u, v u, C � D � � � v �là véctơ r r r Câu 18: Ba vectơ a 1; 2;3 , b 2;1; m ,c 2; m;1 đồng phẳng khi: m9 � A � m 1 � m 9 m9 m 9 � � � B � C � D � m 1 m 2 m 1 � � � r r r Câu 19: Cho ba vectơ a 0;1; 2 , b 1; 2;1 , c 4;3; m Để ba vectơ đồng phẳng giá trị m ? A 14 B C -7 D r r r r r r Câu 20: Cho vecto a 1; 2;1 ; b 1;1; c x;3 x; x Nếu vecto a, b, c đồng phẳng x A B -1 C -2 D r r r Câu 21: Cho vectơ a 4; 2;5 , b 3;1;3 ,c 2;0;1 Chọn mệnh đề đúng: A vectơ đồng phẳng B vectơ không đồng phẳng r r r a, b � C vectơ phương D c � � � Câu 22: Cho điểm M 2; 3;5 , N 4; 7; 9 , P 3; 2;1 , Q 1; 8;12 Bộ điểm sau thẳng hàng: A N, P, Q B M, N, P C M, P, Q D M, N, Q File Word liên hệ:0937351107 Trang Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A � � Hình học tọa độ Oxyz � Câu 23: Trong không gian Oxyz, cho vecto a 1;1;0 ; b 1;1; ; c 1;1;1 Trong mệnh đề sau,uu rmệnh đề sai A a ur B c r r C a b r r D b c Câu 24: Trong không gian với hệ tọa độ Oxyz cho điểm M 2;3; 1 , N 1;1;1 , P 1; m 1; Với giá trị m tam giác MNP vuông N ? A m B m C m D m r r r r Câu 25: Cho vecto u (1;1; 2) v (1; 0; m) Tìm m để góc hai vecto u v có số đo 450 Một học sinh giải sau : r r 2m Bước 1: cos u, v m2 r r Bước 2: Góc hai vecto u v có số đo 450 suy ra: 2m � 2m m (*) 2 m 1 � m 2 2 Bước 3: Phương trình (*) � 2m m 1 � m 4m � � m 2 � Bài giải hay sai ? Nếu sai sai bước ? A Đúng B Sai bước C Sai bước D Sai bước � � � Câu 26: Trong không gian Oxyz, cho vecto a 1;1; ; b 1;1;0 ; c 1;1;1 Trong mệnh đề sau, mệnh đề r r r urr A a.c B a, b, c đồng phẳng r r r r r r C cos b, c D a b c r r r r r r r r Câu 27: Cho hai vectơ a, b thỏa mãn: a 3, b 3, a, b 30 Độ dài vectơ a 2b là: A B C D 13 r r r r Câu 28: Cho a 3; 2;1 ; b 2;0;1 Độ dài vecto a b A B C D r r Câu 29: Cho hai vectơ a 1;1; 2 , b 1;0; m Góc chúng 450 khi: A m B m C m � D m uuur uuur Câu 30: Trong hệ trục Oxyz , cho ba điểm A 2,1, , B 3, 0, , C 0, 7,3 Khi , cos AB, BC bằng: 14 118 14 14 C D 59 57 57 r � � r Câu 31: Trong không gian Oxyz cho a 3; 2; ; b 5;1;6 ; c 3;0; Tọa độ x cho r r r r x đồng thời vng góc với a, b, c là: A (0;0;1) B (0;0;0) C (0;1;0) D (1;0;0) Câu 32: Trong hệ tọa độ Oxyz cho điêm M(3;1;-2) Điểm N đối xứng với M qua trục Ox có tọa độ là: A A (-3;1;2) B B (-3;-1;-2) C (3;1;0) D (3;-1;2) Câu 33: Trong hệ trục Oxyz , M’ hình chiếu vng góc M 3, 2,1 Ox M’ có toạ độ là: File Word liên hệ:0937351107 Trang Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A A 0, 0,1 B 3, 0, C 3,0, Hình học tọa độ Oxyz D 0, 2, Câu 34: Trong không gian với hệ trục Oxyz, cho hai điểm A(2;-2;1), B(3;-2;1) Tọa độ điểm C đối xứng với A qua B là: A C(1; 2;1) B D(1; 2; 1) C D(1; 2; 1) D C(4; 2;1) Câu 35: Cho A 1;0;0 , B 0;0;1 , C 3;1;1 Để ABCD hình bình hành tọa điểm D là:: A D 1;1; B D 4;1;0 C D 1; 1; 2 D D 3; 1;0 Câu 36: Cho ba điểm 1; 2;0 , 2;3; 1 , 2; 2;3 Trong điểm A 1;3; , B 3;1; , C 0;0;1 điểm tạo với ba điểm ban đầu thành hình bình hành ? A Cả A B B Chỉ có điểm C C Chỉ có điểm A D Cả B C Câu 37: Cho A(4; 2; 6), B(10;-2; 4), C(4;-4; 0), D(-2; 0; 2) tứ giác ABCD hình: A Bình hành B Vng C Chữ nhật D Thoi Câu 38: Cho hình hộp ABCD A’B’C’D’, biết A(1;0;1), B(2;1; 2), D(1; 1;1), C '(4;5; 5) Tìm tọa độ đỉnh A’ ? A A '( 2;1;1) B A '(3;5; 6) C A '(5; 1;0) D A '(2; 0; 2) Câu 39: uuu r Trong uuu r không gian Oxyz, cho điểm B(1;2;-3) C(7;4;-2) Nếu E điểm thỏa mãn đẳng thức CE 2EB tọa độ điểm E 8� 8� � 8� �8 � � 1� 3; ; � 3;3; � 1; 2; � A � B � ;3; � C � D � 3� 3� � 3� �3 � � 3� Câu 40: Trong ba điểm: (I) A(1;3;1); B(0;1; 2); C(0;0;1), (II) M(1;1;1); N(4;3;1); P(9;5;1), (III) D(1; 2;7); E(1;3; 4); F(5;0;13), Bộ ba thẳng hàng ? A Chỉ III, I B Chỉ I, II C Chỉ II, III D Cả I, II, III Câu 41: Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC biết A(1;0; 2) , B(1;3; 1) , C(2; 2; 2) Trong khẳng định sau khẳng định sai ? �2 � A Điểm G � ; ;1�là trọng tâm tam giác ABC �3 � B AB 2BC C AC BC � 1� 0; ; �là trung điểm cạnh AB D Điểm M � � 2� uuur uuur Câu 42: Trong khơng gian Oxyz , cho hình bình hành OADB có OA ( 1;1; 0) , OB (1;1; 0) (O gốc tọa độ) Khi tọa độ tâm hìnhhình OADB là: A (0;1; 0) B (1;0;0) C (1;0;1) D (1;1;0) Câu 43: Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;1;0) , B(3;1; 1) , C(1; 2;3) Tọa độ điểm D để ABCD hình bình hành là: A D(2;1; 2) B D(2; 2; 2) C D(2;1; 2) D D(0; 2; 4) uuur uuur Câu 44: Cho điểm A(2; 1; 4), B(–2; 2; –6), C(6; 0; –1) Tích AB.AC bằng: A –67 B 65 C 67 D 33 File Word liên hệ:0937351107 Trang Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A Hình học tọa độ Oxyz Câu 45: Cho tam giác ABC với A 3; 2; 7 ; B 2; 2; 3 ; C 3;6; 2 Điểm sau trọng tâm tam giác ABC �4 10 � � 10 � ; ;4� A G 4;10; 12 B G � ; ; � C G 4; 10;12 D G � � �3 �3 � Câu 46: Trong không gian Oxyz, cho bốn điểm A 1, 0, ; B 0,1, ;C 0, 0,1 ; D 1,1,1 Xác định tọa độ trọng tâm G tứ diện ABCD �1 1 � �1 1 � �2 2 � �1 1 � A � , , � B � , , � C � , , � D � , , � �2 2 � �3 3 � �3 3 � �4 4 � Câu 47: Trong không gian Oxyz cho điểm A(1;0;1), B(-2;1;3) C(1;4;0) Tọa độ trực tâm H tam giác ABC �8 7 15 � �8 15 � �8 7 15 � �8 7 15 � A � ; ; � B � ; ; � C � ; ; � D � ; ; � 13 13 13 � 13 13 13 � 13 13 13 � � � �13 13 13 � � Câu 48: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; 1), B(2;1;1), C(0;1; 2) Gọi H a; b; c trực tâm tam giác Giá trị a b c A B C D Câu 49: Cho điểm A 2; 1;5 ; B 5; 5;7 M x; y;1 Với giá trị x ; y A, B, M thẳng hàng ? A x ; y B x 4; y 7 C x 4; y 7 D x 4 ; y Câu 50: Cho A 0; 2; 2 , B 3;1; 1 , C 4;3;0 , D 1; 2; m Tìm m để A, B, C, D đồng phẳng: A m 5 B m 1 C D Câu 51: Trong không gian Oxyz cho tứ diện ABCD Độ dài đường cao vẽ từ D tứ diện ABCD cho công thức sau đây: uuur uuur uuur uuur uuur uuur � � � AB, AD AB, AC AD � AC � � � � A h B h uuur uuur uuur uuur � AB.AC AB, AC � � � uuur uuur uuur uuur uuur uuur � AB, AC � AD AB, AC � AD � � � � � C h uuur uuur D h uuur uuur � � AB, AC � AB, AC � � � � � r r Câu 52: Trong không gian với hệ trục tọa độ Oxyz, cho u (1;1; 2) , v ( 1; m; m 2) Khi r r � � u, � v � : 11 11 11 A m 1; m B m 1; m C m D m 1; m 5 Câu 53: Cho ba điểm A 2;5; 1 , B 2; 2;3 , C 3; 2;3 Mệnh đề sau sai ? A ABC B A, B, C không thẳng hàng C ABC vuông D ABC cân B Câu 54: Trong không gian Oxyz, cho bốn điểm A(1;0;0); B(0;1;0); C(0;0;1); D(1;1;1) Trong mệnh đề sau, mệnh đề sai A Bốn điểm ABCD tạo thành tứ diện B Tam giác ABD tam giác C AB CD D Tam giác BCD tam giác vuông Câu 55: Cho bốn điểm A(-1, 1, 1), B(5, 1, -1) C(2, 5, 2) , D(0, -3, 1) Nhận xét sau A A, B, C, D bốn đỉnh tứ diện B Ba điểm A, B, C thẳng hàng C Cả A B D A, B, C, D hình thang File Word liên hệ:0937351107 Trang Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz Câu 56: Cho bốn điểm A(1, 1, -1) , B(2, 0, 0) , C(1, 0, 1) , D (0, 1, 0) , S(1, 1, 1) Nhận xét sau A ABCD hình chữ nhật B ABCD hình bình hành C ABCD hình thoi D ABCD hình vng Câu 57: Cho hình hộp ABCD A’B’C’D’ có A(1;0;1), B(2;1;2); D(1;-1;1) C’(4;5;5) Tọa độ C A’ là: A C(2;0;2), A’(3;5;4) B C(2;0;2), A’(3;5;-4) C C(0;0;2), A’(3;5;4) D C(2;0;2), A’(1;0;4) Câu 58: Trong không gian Oxyz , cho bốn điểm A(1;0;0) , B(0;1;0) , C(0;0;1) D(1;1;1) Gọi M, N trung điểm AB CD Khi tọa độ trung điểm G đoạn thẳng MN là: �1 1 � �1 1 � �1 1 � �2 2 � A G � ; ; � B G � ; ; � C G � ; ; � D G � ; ; � �2 2 � �3 3 � �4 4 � �3 3 � Câu 59: Trong không gian Oxyz, cho bốn điểm A 1,1,1 ; B 1,3,5 ;C 1,1, ; D 2,3, Gọi I, J trung điểm AB CD Câu sau ? A AB IJ B CD IJ C AB CD có chung trung điểm D IJ ABC Câu 60: Cho A(0; 2; 2) , B(3;1; 1) , C(4;3; 0) D(1; 2; m) Tìm m để bốn điểm A, B, C, D đồng phẳng Một u học sau: uur sinh giải nhưuu ur uuur Bước 1: AB (3; 1;1) ; AC (4;1; 2) ; AD (1; 0; m 2) uuur uuur �1 1 3 � � AB, Bước 2: � � (3;10;1) � AC � � ; ; 1� � uuur uuur uuur � � AB, AD m m � AC � uuur uuur uuur � AB, AD � m Bước 3: A, B,C, D đồng phẳng � � � AC � Đáp số: m 5 Bài giải hay sai ? Nếu sai sai bước ? A Sai bước B Đúng C Sai bước D Sai bước z B C có cạnh đáy a Câu 61: Cho lăng trụ tam giác ABC.A��� AB� BC� Tính thể tích khối lăng trụ Một học sinh giải sau: B' C' Bước 1: Chọn hệ trục hình vẽ: A' � a � �a �a � � a � � � � �a � A � ;0; �, B � 0; ;0� 0; ;h � ; 0;0 �, C � ; 0; h � ( �, B � � �, C � �2 � � � �2 � � � � � �2 uuuu r �a a � � h chiều cao lăng trụ), suy AB� � ; ; h � �; � � uuur � a a � BC� � ; ;h � � � 2 � � uuuu r uuur a 3a a Bước 2: AB� h2 � h BC� � AB� BC� 0 � 4 2 a a a Bước 3: VABC.A��� B C B.h 2 Bài giải hay sai ? Nếu sai sai bước ? File Word liên hệ:0937351107 Trang y C B A x Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz A Lời giải r B Sai rbước C Sai bước D Sai bước r r m Câu 62: Cho vectơ u (1;1; 2) v (1;0; m) Tìm để góc hai vectơ u v có số đo 450 Một học sinh giải sau: r r 2m Bước 1: cos u, v m 1 2m r r Bước 2: Góc u , v 450 suy � 2m m (*) m � m 2 Bước 3: phương trình (*) � (1 2m) 3(m 1) � m 4m � � m 2 � Bài giải hay sai ? Nếu sai sai bước ? A Sai bước B Sai bước C Bài giải D Sai bước Câu 63: Cho A 2; 0;0 , B 0;3;0 , C 0; 0; Tìm mệnh đề sai: uuur uuur A AB 2;3;0 B AC 2;0; C cos A D sin A 65 Câu 64: Trong không gian Oxyz cho điểm A(2;0;0), B(0;3;0) C(0;0;4) Tìm câu 61 2 65 A cos A B sin A C dt ABC 61 D dt ABC 65 65 65 Câu 65: Trong không gian Oxyz cho tứ diện ABCD với A(0;0;1); B(0;1;0); C(1;0;0) D(-2;3;-1) Thể tích ABCD là: 1 1 A V đvtt B V đvtt C V đvtt D V đvtt Câu 66: Cho A 1; 0; , B 0;1;0 , C 0; 0;1 , D 2;1; 1 Thể tích khối tứ diện ABCD là: A đvtt B đvtt C 1đvtt D 3đvtt 2 Câu 67: Cho A 2; 1;6 , B 3; 1; 4 , C 5; 1;0 , D 1; 2;1 Thể tích khối tứ diện ABCD là: A 30 B 40 C 50 D 60 Câu 68: Cho A 1;0;3 , B 2; 2;0 ,C 3; 2;1 Diện tích tam giác ABC là: A 62 B 62 C 12 D Câu 69: Cho A 2; 1;3 , B 4; 0;1 , C 10;5;3 Độ dài phân giác góc B là: D Câu 70: Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC với A 1; 2; 1 , B 2; 1;3 , C 4;7;5 Đường cao tam giác ABC hạ từ A là: A B C A 110 57 B 1110 52 C 1110 57 D 111 57 D 61 Câu 71: Cho A 2;0;0 , B 0;3;0 , C 0;0; Diện tích tam giác ABC là: A 61 65 B File Word liên hệ:0937351107 20 C 13 Trang 10 Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A Hình học tọa độ Oxyz Câu 40: Cho hình lập phương ABCD A’B’C’D’ biết A trùng với gốc tọa độ B a;0;0 , D 0;a;0 , A ' 0;0;a , a M, N, P trung điểm BB’, CD A’D’ Góc giữ hai đường thẳng MP C’N là: A 00 B 300 C 600 D 900 Câu 41: Cho điểm A 1;1; , B 0; 2;1 , C 1;0; , D 1;1;1 Góc đường thẳng AB CD bằng: A B 450 C 900 D 600 �x 1 2t � Câu 42: Cho mặt phẳng (P): 3x 4y 5z đường thẳng d : �y t Góc (P) d � z 2 t � bằng: A 900 B 450 C 600 D 300 x 1 y z Câu 43: Cho mặt phẳng (P) qua gốc tọa độ chứa d : Tính cosin góc tạo (P) (Oxy): 10 3 19 A B C D 10 10 10 19 Câu 44: Cho mặt phẳng (P) : 3x 4y 5z đường thẳng d giao tuyến hai mặt phẳng () : x 2y () : x 2z Gọi góc đường thẳng d mp(P) Khi A 450 B 600 C 300 D 900 Câu 45: Tìm góc hai mặt phẳng : 2x y z ; : x y 2z : A 300 B 900 C 450 D 600 �x t � Câu 46: Cho mặt phẳng : 2x y 2z đường thẳng d : �y 2t Gọi góc �z 2t � đường thẳng d mặt phẳng Khi đó, giá trị cos là: A B 65 C 65 D 65 x y 1 z mặt phẳng x 2y 3z 2 A 900 B 450 C 00 D 1800 B��� C D với A(0;0; 0) , B(1; 0;0) , Câu 48: Trong không gian Oxyz, cho hình lập phương ABCD.A� D(0;1;0) , A� (0;0;1) Gọi M, N trung điểm cạnh AB CD Tính khoảng cách C MN Một học sinh giải sau: hai đường thẳng A� uuuu r uuuu r uuuu r uuuu r � (1; 0;1) � A C, MN Bước 1: Xác định A� C (1;1; 1); MN (0;1;0) Suy � � � (0;0;1) có vectơ C song song với MN mặt phẳng qua A� Bước 2: Mặt phẳng () chứa A� r pháp tuyến n (1;0;1) � () : x z 1 Bước 3: � d(A C, MN) d(M, ()) 2 1 1 2 Bài giải hay sai ? Nếu sai sai bước ? A Sai bước B Lời giải C Sai bước D Sai bước Câu 47: Góc đường thẳng d : File Word liên hệ:0937351107 Trang 42 Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A Hình học tọa độ Oxyz Câu 49: Cho mặt phẳng (P) : x y mặt phẳng (Q) Biết hình chiếu gốc O lên (Q) điểm H(2; 1; 2) Khi góc hai mặt phẳng (P) (Q) có giá trị là: A 300 B 600 C 900 D 450 C – ĐÁP ÁN 35D, 36C, 37A, 38C, 39C, 40D, 41C, 42C, 43D, 44C, 45D, 46A, 47C, 48B, 49D File Word liên hệ:0937351107 Trang 43 Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz VỊ TRÍ TƯƠNG ĐỐI GIỮA ĐIỂM, MẶT PHẲNG, ĐƯỜNG THẲNG,MẶT CẦU A – LÝ THUYẾT TĨM TẮT 1.Vị trí tương đối hai mặt phẳng: () , () có véc tơ pháp tuyến (A1; B1; C1), (A2; B2; C2): + () cắt () : A1 : B1 : C1 �A : B2 : C A1 B1 C1 D1 � , (với điều kiện thỏa mãn) + () / /( ) : A B2 C D A1 B1 C1 D1 + () �( ) : , (với điều kiện thỏa mãn) A B2 C D + Đặc biệt: () () : A1A B1B2 C1C2 uur r Vị trí tương đối đường thẳng: (d) qua M có vtcp a d , (d’) qua N có vtcp a d / r uur � + d chéo d’ � [ a d , a d / ] MN ≠ (không đồng phẳng) r uur � + d,d’ đồng phẳng � [ a d , a d / ] MN = r uur r r uur � + d,d’ cắt � [ a d , a d / ] �0 [ a d , a d / ] MN =0 uur r + d,d’ song song � { a d // a d / M �(d / ) } uur r + d,d’ trùng � { a d // a d / M �(d / ) } Vị trí tương đối đường thẳng (d) mặt phẳng () �x x at � Cho đường thẳng (d): �y y bt mặt phẳng ( ): Ax+By+Cz+D = �z z ct � r r Từ phương trình này, ta lấy VTCP (d) a = (a;b;c) VTPT ( ) n = (A;B;C) M0(x0;y0;z0) � (d) r r + Nếu thấy a n tọa độ M0 khơng thỏa mãn phương trình ( ) (d) // ( ) (Tức Aa+Bb+Cc = Ax0+By0+Cz0+D �0) r r + Nếu thấy a n tọa độ M0 thỏa mãn phương trình ( ) (d) � ( ) (Tức Aa+Bb+Cc = Ax0+By0+Cz0+D = 0) r r + Nếu thấy a n khơng vng góc (d) cắt ( ): Aa+Bb+Cc �0 (d) cắt ( ) Tọa độ giao điểm lànghiệm hệ phương trình: () : Ax By Cz D � � d) : x x a1t, y y0 a t, z z a t � r r r r + Đặc biệt : Nếu thấy a n phương (tức a = k n ) (d) ( ) Vị trí tương đối mặt phẳng mặt cầu: 2 Cho (S) : x a x b x c R (): Ax+By+Cz+D = Gọi d = d(I,) : khỏang cách từ tâm mặt cầu (S) đến mp() : File Word liên hệ:0937351107 Trang 44 Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz d > R : (S) = d = R : () tiếp xúc (S) H (H: tiếp điểm, (): tiếp diện) 2 � (S) : x a x b x c R � d < R : () cắt (S) theo đường tròn có phương trình: � () : Ax By Cz D � B – BÀI TẬP Câu 1: Trong không gian với hệ trục Oxyz, cho (P): 2x-y+2z-4=0 Mặt phẳng sau vng góc với (P) A x 4y z B x 4y z C x 4y z D x 4y z Câu 2: Cho điểm I 2;6;3 ba mặt phẳng : x 0, : y 0, : z Tìm mệnh đề sai mệnh đề sau: A qua I B / / Oxz C / /Oz D Câu 3: Cho hai mặt phẳng (P): x+y-z+5=0 (Q): 2x-z=0 Nhận xét sau x y5 z A Mặt phẳng (P) mặt phẳng (Q) có giao tuyến 1 x y5 z B Mặt phẳng (P) mặt phẳng (Q) có giao tuyến 1 C Mặt phẳng (P) song song với mặt phẳng (Q) D Mặt phẳng (P) vng góc với mặt phẳng (Q) x y 1 z Câu 4: Cho hai điểm A(2; 0; 3), B(2; -2; -3) đường thẳng : Nhận xét sau A A, B nằm mặt phẳng B A B thuộc đường thẳng C Tam giác MAB cân M với M (2; 1; 0) D đường thẳng AB hai đường thẳng chéo x 1 y z Câu 5: Đường thẳng vng góc với mặt phẳng mặt phẳng sau đây? 3 1 A 6x 4y 2z B 6x 4y 2z C 6x 4y 2z D 6x 4y 2z Câu 6: Cho mặt phẳng : x y 2z 0, : x y z 0, : x y Tìm mệnh đề sai mệnh đề sau: A B C D / / Câu 7: Hai mặt phẳng P : 2x my 3z 0, Q : nx 8y 6z song song với khi: A m = 4, n =-4 B m = 4, n = C m = 2, n =-4 D m = 0, n =-4 2 Câu 8: Cho hai mặt phẳng () : m x y (m 2)z () : 2x m y 2z Mặt phẳng () vng góc với () A m B m C m D m uu r uur Câu 9: Cho đường thẳng 1 qua điểm M có VTCP u1 , qua điểm N có VTCP u Điều kiện để 1 chéo là: uu r uur uuuu r uu r uur � u , u MN A u1 u phương B � � � �0 uu r uur u u r u u r uuuu r r uuuu r �và MN phương � � u , u u , u MN C � D 2 � � � � �0 File Word liên hệ:0937351107 Trang 45 Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz Câu 10: Trong không gian với hệ tọa độ Oxyz, cho điểm M 1, 1,1 hai đường thẳng x y 1 z x y 1 z (d1 ) : (d ) : Mệnh đề 2 3 A (d1 ) , (d1 ) M đồng phẳng B M � d1 M � d C M � d M � d1 D (d1 ) (d1 ) vng góc �x 2t x 1 y z � Câu 11: Cho hai đường thẳng a : �y 4t b : Khẳng định sau đúng? �z 6t � A a, b cắt B a, b chéo C a, b trùng D a, b song song �x 2t �x 4t ' � � y 3t d : �y 6t ' Câu 12: Cho hai đường thẳng d1 : � � �z 8t ' z 4t � � Trong mệnh đề sau, mệnh đề đúng? A d1 d B d1 �d C d1 Pd D d1 d chéo �x 2t �x 3ts � � Câu 13: Vị trí tương đối hai đường thẳng d1 : �y 2 3t ;d : �y 2t là: �z 4t �z 2t � � A Chéo B Trùng C Song song D Cắt x 1 y z x y z 1 , 2 : Câu 14: Vị trí tương đối hai đường thẳng 1 : là: A Song song với B Cắt điểm M(3; 2;6) C Cắt điểm M(3; 2; 6) D Chéo x2 y4 z4 Câu 15: Đường thẳng sau song song với (d): 3 x 1 y z 1 x2 y4 z4 A B 3 1 x 1 y z 1 x 1 y z 1 C D 1 2 1 2 Câu 16: Cho hai đường thẳng có phương trình sau: �x 2y �x y z d1 : � d2 : � 5x 2y 4z 3y z � � Mệnh đề sau đúng: A d1 hợp với d góc 60o B d1 cắt d C d1 d D d1 Pd �x 2t �x t ' � � Câu 17: Giao điểm đường thẳng d : �y 2 3t , d ' : �y 1 4t ' có tọa độ là: �z 4t �z 20 t ' � � A 1; 2; B 3; 2;10 C 2;5; D Đáp án khác �x mt �x t ' � � , d ' : �y 2t ' Giá trị m để (d) cắt (d’) là: Câu 18: Cho đường thẳng d : �y t �z 1 2t �z t ' � � A m B m 1 File Word liên hệ:0937351107 C m Trang 46 D m 2 Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz �x (m 1)t x y 1 z m � , : �y (2 m)t Tìm m để hai đường thẳng Câu 19: Cho hai đường thẳng 1 : � z (2m 1)t � trùng A m 3, m B m C m 0, m 1 D m 0, m Câu 20: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng x y z 1 x y 1 z m ; d2 : 2 Để d1 cắt d m A B C D 4 4 Câu 21: Khi véc tơ phương (d) vng góc với véc tơ pháp tuyến (P) thì: A Đường thẳng d vng góc với mặt phẳng (P) B đường thẳng d song song với (P) C đường thẳng d song song nằm (P) D Đường thẳng d nằm (P) �x 3 t � Câu 22: Cho mặt phẳng P : 2x y 3z đường thẳng d : �y 2t Chọn câu trả lời � z 1 � d1 : đúng: A d P B d / /(P) D d � P C d cắt (P) �x 2t � y 4t mặt phẳng P : x y z Câu 23: Cho đường thẳng d : � �z t � Khẳng định sau ? A d / / P B d cắt P điểm M 1; 2;3 C d � P Câu 24: Cho đường thẳng d: D d cắt P điểm M 1; 2; x 8 y 5 z 8 mặt phẳng (P) x+2y+5z+1=0 Nhận xét sau 1 A Đường thẳng d song song với mặt phẳng (P) B Đường thẳng d thuộc mặt phẳng (P) C Đường thẳng d cắt mặt phẳng (P) A(8, 5, 8) D Đường thẳng d vng góc với mặt phẳng (P) Câu 25: Mặt phẳng P : 3x 5y z cắt đường thẳng d : x 12 y z điểm có tọa độ: A 1;3;1 B 2; 2;1 C 0;0; 2 D 4;0;1 Câu 26: Hai mặt phẳng 3x 5y mz 2x ly 3z song song khi: A m.l 15 B m.l C m.l D m.l 3 Câu 27: Trong không gian Oxyz, xác định cặp giá trị (l, m) để cặp mặt phẳng sau song song với nhau: 2x ly 3z 0; mx 6y 6z A 3, B 4; 3 C 4,3 D 4,3 Câu 28: Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P) : x my 3z (Q) : 2x y nz Khi hai mặt phẳng (P), (Q) song song với giá trị m n 13 11 A B 4 C D 1 2 File Word liên hệ:0937351107 Trang 47 Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz Câu 29: Cho hai mặt phẳng song song (P): nx 7y 6z (Q): 3x my 2z Khi giá trị m n là: 7 A m ; n B n ; m C m ; n D m ; n 3 Câu 30: Trong không gian toạ độ Oxyz, cho điểm A 1, 2,1 hai mặt phẳng : 2x y 6z , : x 2y 3z Mệnh đề sau ? A không qua A không song song với B qua A song song với C qua A không song song với D không qua A song song với Câu 31: Hai mặt phẳng 7x 2m y mx y 3z vng góc khi: B m C m 1 D m 5 Câu 32: Cho ba mặt phẳng P : 3x y z ; Q : 3x y z R : 2x 3y 3z A m Xét mệnh đề sau: (I): (P) song song (Q) (II): (P) vng góc (Q) Khẳng định sau ? A (I) sai ; (II) B (I) ; (II) sai : x y 2z C (I) ; (II) sai D (I) ; (II) Câu 33: Cho mặt phẳng () : x y z Trong mệnh đề sau, mệnh đề sai ? () : x y A B C D �x 3t � Câu 34: Cho đường thẳng d : �y 2t mp(P) : 2x y 2z Giá trị m để d �(P) � z 2 mt � là: A m B m 2 C m D m 4 x 1 y z Câu 35: Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : mặt m 2m phẳng (P) : x 3y 2z Để đường thẳng d vng góc với (P) thì: A m B m C m 2 D m 1 2 Câu 36: Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S): x y z 2x 2z mặt phẳng : 4x 3y m Xét mệnh đề sau: I cắt (S) theo đường tròn 4 m 4 II tiếp xúc với (S) m 4 �5 III � S � m 4 m 4 Trong ba mệnh đề trên, mệnh đề ? A II III B I II C I D Đáp án khác Câu 37: Gọi (d) giao tuyến hai mặt phẳng x 2y 3z 2x 3y z Xác định m r để có mặt phẳng (Q) qua (d) vng góc với a (m; 2; 3) 85 A B C D File Word liên hệ:0937351107 Trang 48 Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A Hình học tọa độ Oxyz 2 Câu 38: Cho mặt phẳng : 4x 2y 3z mặt cầu S : x y z 2x 4y 6z Khi đó, mệnh đề sau mệnh đề sai: A cắt S theo đường tròn B tiếp xúc với S C có điểm chung với S D qua tâm S 2 Câu 39: Cho mặt cầu S : x y z 2x 4y 6z mặt phẳng : x y z Khẳng định sau ? A qua tâm (S) B tiếp xúc với (S) C cắt (S) theo đường tròn không qua tâm mặt cầu (S) D S khơng có điểm chung Câu 40: Trong không gian (Oxyz) Cho mặt cầu (S): x y z 2x 4y 2z mặt phẳng (P): x 2y 2z m (m tham số) Mặt phẳng (P) tiếp xúc với mặt cầu (S) ứng với giá trị m là: �m 3 �m �m �m A � B � C � D � m 15 m 15 m 5 m 15 � � � � Câu 41: Cho mặt cầu (S) : (x 1) (y 2) (z 3) 25 mặt phẳng : 2x y 2z m Tìm m để α (S) khơng có điểm chung A 9 �m �21 B 9 m 21 m � C m �21 D m 9 m 21 Câu 42: Gọi (S) mặt cầu tâm I(2 ; ; -1) tiếp xúc với mặt phẳng ( ) có phương trình: 2x – 2y – z + = Bán kính (S) ? 2 A B C D 2 Câu 43: Cho (S): x y z 4x 2y 10z+14 Mặt phẳng (P): x y z cắt mặt cầu (S) theo đường tròn có chu vi là: A 8 B 4 C 4 D 2 Câu 44: Cho (P): x + 2y + 2z – = cắt mặt cầu (S) theo đường tròn giao tuyến có bán kính r = 1/3, biết tâm (S) I(1; 2; 2) Khi đó, bán kính mặt cầu (S) là: 1 2 1 2 65 Câu 45: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x y 4z mặt cầu (S): x y z 4x 10z Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến đường tròn có bán kính A B C D bằng: A B C D 2 Câu 46: Cho mặt phẳng (P) :2x 2y z mặt cầu (S) :x y z 2x 4y 6z 11 Giả sử (P) cắt (S) theo thiết diện đường tròn (C) Xác định tọa độ tâm tính bán kính đường tròn (C) A Tâm I(3;0; 2), r B Tâm I(3;0; 2), r C Tâm I(3;0; 2), r D Tất đáp án sai Câu 47: Trong không gian với hệ trục tọa độ Oxyz cho tọa độ cho mặt cầu S : x y z mặt phẳng P :x y z m , m tham số Biết (P) cắt (S) theo đường tròn có bán kính r Giá trị tham số m là: File Word liên hệ:0937351107 Trang 49 Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz A m 3; m B m 3; m 5 C m 1; m 4 D m 1; m 5 2 Câu 48: Cho mặt cầu (S) : x y z 2x 2y 2z Đường thẳng d qua O(0;0;0) cắt (S) theo dây cung có độ dài Chọn khẳng định đúng: x y z A d nằm mặt nón B d : 1 1 C d nằm mặt trụ D Không tồn đường thẳng d Câu 49: Tồn mặt phẳng (P) vng góc với hai mặt phẳng (α): x+y+z+1=0, (β): 2xy+3z-4=0 cho khoảng cách từ gốc tọa độ đến mặt phẳng (P) 26 A B C D Vô số Câu 50: Cho mặt phẳng (P) : k(x y z) (x y z) điểm A(1;2;3) Chọn khẳng định đúng: A Hình chiếu A (P) ln thuộc đường tròn cố định k thay đổi B (P) chứa trục Oy k thay đổi C Hình chiếu A (P) ln thuộc mặt phẳng cố định k thay đổi D (P) không qua điểm cố định k thay đổi C – ĐÁP ÁN 1D, 2A, 3A, 4A, 5C, 6C, 7A, 8C, 9B, 10A, 11C, 12D, 13A, 14B, 15A, 16D, 17D, 18C, 19B, 20D, 21C, 22B, 23D, 24A, 25C, 26A, 27A, 28C, 29D, 30B, 31A, 32B, 33D, 34C, 35B, 36D, 37D, 38B, 39D, 40B, 41D, 42C, 43B, 44D, 45B, 46B, 47D, 48A, 49A, 50B File Word liên hệ:0937351107 Trang 50 Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A Hình học tọa độ Oxyz TÌM ĐIỂM THỎA MÃN U CẦU BÀI TỐN A – MỘT SỐ DẠNG TỐN H hình chiếu M mp() uu r r + Viết phương trình đường thẳng (d) qua M vng góc mp () : ta có a d n + Tọa độ H nghiệm hpt : (d) () H hình chiếu M đường thẳng (d) uur uu r +Viết phương trình mp qua M vng góc với (d): ta có n a d +Tọa độ H nghiệm hpt : (d) () 3.Điểm M/ đối xứng với M qua mp() +Tìm hình chiếu H M mp () (dạng 4.1) +H trung điểm MM/ 4.Điểm M/ đối xứng với M qua đường thẳng d: +Tìm hình chiếu H M (d) ( dạng 4.2) +H trung điểm MM/ Giao điểm đường thẳng mặt cầu �x xo a1t � 2 y yo a2t (1) (S): x a y b z c R2 (2) + d: � � z zo a3t � + Thay ptts (1) vào pt mc (2), giải tìm t, + Thay t vào (1) tọa độ giao điểm Tìm tiếp điểm H mp() mặt cầu S(I;R) (H hình chiếu tâm I mp()) uu r r +Viết phương trình đường thẳng (d) qua I vng góc mp(): ta có a d n +Tọa độ H nghiệm hpt : (d) () Tìm tâm H đường tròn giao tuyến mp() mặt cầu S(I;R) (H hchiếu tâm I mp()) uu r r +Viết phương trình đường thẳng (d) qua I vng góc mp() : ta có a d n +Tọa độ H nghiệm hpt : (d) () Các toán khác liên quan B-BÀI TẬP Câu 1: Trong không gian với hệ tọa độ Oxyz , đường thẳng : Khi giá trị m, n là: A m 2; n B m 2; n 1 x y z 1 qua điểm M(2; m; n) 1 C m 4; n D m 0; n Câu 2: Cho phương trình mặt phẳng P : x 2y 3x Trong mệnh đề sau, mệnh đề đúng? A Ba điểm M 1;0;0 , N 0;1;1 , Q 3;1; thuộc mặt phẳng (P) B Ba điểm M 1;0;0 , N 0;1;1 , K 0;0;1 thuộc mặt phẳng (P) File Word liên hệ:0937351107 Trang 51 Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A Hình học tọa độ Oxyz C Ba điểm M 1;0;0 , N 0;1; , Q 3;1; thuộc mặt phẳng (P) D Ba điểm M 1;0;0 , N 0;1; , K 1;1; thuộc mặt phẳng (P) Câu 3: Trong không gian với hệ tọa độ Oxyz , cho điểm M 2; 5; Trong phát biểu sau, phát biểu sai: A Tọa độ điểm M ' đối xứng với M qua trục Oy M 2; 5; 4 B Khoảng cách từ M đến trục Oz 29 C Khoảng cách từ M đến mặt phẳng tọa xOz D Tọa độ điểm M ' đối xứng với M qua mặt phẳng yOz M 2;5; 4 2 Câu 4: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S ; x y z 2x 4y 6z ba điểm O 0, 0, ; A 1, 2,3 ; B 2, 1, 1 Trong ba điểm trên, số điểm nằm bên mặt cầu A B C D x 12 y z Câu 5: Đường thẳng d : cắt mặt phẳng : 3x 5y z điểm có tọa độ là: A 2;0; B 0;1;3 C 1; 0;1 D 0; 0; 2 Câu 6: Cho điểm A(1; -2; 1), B(2; 1; 3) mặt phẳng (P): x – y + 2z – = Đường thẳng AB cắt mặt phẳng (P) điểm có tọa độ: A (0;5;1) B (0; 5;1) C (0;5; 1) D (0; 5; 1) Câu 7: Cho A 1; 2; 1 , B 5;0;3 , C 7, 2, Tọa độ giao điểm M trục Ox với mặt phẳng qua ABC là: A M 1;0;0 B M 1;0;0 C M 2;0;0 D M 2;0;0 Câu 8: Cho mặt cầu (S) : x y2 z 2x 6y 4z Biết OA , ( O gốc tọa độ) đường kính mặt cầu (S) Tìm tọa độ điểm A ? A A(1;3; 2) B Chưa thể xác định tọa độ điểm A mặt cầu (S) có vơ số đường kính C A(2; 6; 4) D A(2;6; 4) x 1 y z Câu 9: Gọi (S) mặt cầu tâm I thuộc d : , bán kính r tiếp xúc với P : 2x y 2z Tọa độ điểm I là: � I 5;11; � I 5; 11; 2 � I 5;11; � I 5;11; A � B � D � � C � I 1;1;1 I 1; 1; 1 I 1; 1; 1 I 1; 1; 1 � � � Câu 10: Điểm nằm đường thẳng (d) giao tuyến x + 2y – z +3 = 2x – 3y – 2z + = A (0; 1; 5) B (-1; -1; 0) C (1; 2; 1) D ( 1; 0; 4) Câu 11: Mặt phẳng (Q) qua hai điêm A(1; 0; 1), B(2; 1; 2) vng góc với mặt phẳng (P) : x 2y 3z cắt trục oz điểm có cao độ A B C D Câu 12: Trên mặt phẳng Oxy , cho điểm E có hồnh độ 1, tung độ nguyên cách mặt phẳng : x 2y z mặt phẳng : 2x y z Tọa độ E là: File Word liên hệ:0937351107 Trang 52 Giáo viên: Th.S ĐặngViệtĐông Trường THPT Nho Quan A A 1; 4;0 B 1; 0; 4 C 1; 0; Hình học tọa độ Oxyz D 1; 4;0 Câu 13: Cho hai mặt phẳng P : x y z 0, Q : x y z Điểm nằm Oy cách điều P Q là: A 0;3;0 B 0; 3; C 0; 2; D 0; 2; Câu 14: Trong không gian Oxyz cho điểm A(3; -4; 0), B(0; 2; 4), C(4; 2; 1) Tọa độ điểm D trục Ox cho AD = BC là: A D(0;0;0) D(0;0;6) B D(0;0;2) D(0;0;8) C D(0;0;-3) D(0;0;3) D D(0;0;0) D(0;0;-6) Câu 15: Trong không gian với hệ tọa độ Oxyz, cho điểm A(3; 0; -1) B(1;3; -2) M điểm nằm trục hoành Ox cách điểm A, B Tọa độ điểm M là: A (2; ; 0) B ( -1; ; 0) C ( -2; ;0) D ( 1; ; 0) Câu 16: Cho A 1; 0; , B 2; 4;1 Điểm trục tung cách A B là: � 11 � � � 0; ;0 � 0; ; � C � D � � � � 11 � Câu 17: Trong mặt phẳng (Oxz), tìm điểm M cách ba điểm A(1;1;1), B(1;1;0), C(3;1; 1) 7� �5 11 � �9 � �5 A M � ;0; � B M � ;0;5 � C M � ; 0; � D M 5; 0; 7 2� 6� �2 �4 � �6 A 0;11;0 � � 0; ; � B � � � Câu 18: Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(0; 1; 2), B(2; –2; 1), C(–2; 0; 1) Gọi M a; b;c điểm thuộc mặt phẳng (P): 2x 2y z – cho MA=MB=MC Giá trị a b c A -2 B C -1 D -3 Câu 19: Trong không gian Oxyz cho hai điểm A(0;0;-3), B(2;0;-1) mặt phẳng (P): 3x-8y+7z-1=0 Gọi C điểm (P) để tam giác ABC đói tọa độ điểm C là: 1 1 2 2 1 A C( 3;1; 2) B C( ; ; ) C C( ; ; ) D C(1; 2; 1) 2 3 Câu 20: Cho mặt phẳng : 3x 2y z điểm A 2, 1, Hình chiếu vng góc A lên mặt phẳng là: A 1, 1,1 B 1,1, 1 C 3, 2,1 D 5, 3,1 Câu 21: Trong không gian Oxyz, cho điểm A 2;1; 1 mặt phẳng P : x 2y 2z Gọi H 1;a; b hình chiếu vng góc A lên mặt phẳng (P) Khi a bằng: A 1 B C 2 D Câu 22: Cho P : x 2y 3z 14 M 1; 1;1 Tọa độ điểm N đối xứng M qua P A 1; 3; B 2; 1;1 C 2; 3; 2 D 1;3;7 Câu 23: Cho A(5;1;3) , B(5;1; 1) , C(1; 3;0) , D(3; 6; 2) Tọa độ điểm A�đối xứng với điểm A qua mp(BCD) A (1; 7;5) B (1; 7; 5) C (1;7;5) D (1; 7;5) Câu 24: Cho mặt phẳng (P): 16x – 15y – 12z + 75 =0 mặt cầu (S) x y z (P) tiếp xúc với (S) điểm: 48 36 19 36 48 36 A ( ;11; ) B (1;1; ) C (1;1; ) D ( ; ; ) 25 25 25 25 25 File Word liên hệ:0937351107 Trang 53 Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A Hình học tọa độ Oxyz Câu 25: Trong không gian (Oxyz) Cho mặt cầu (S): x 1 y z 3 56 Gọi I tâm mặt cầu (S) Giao điểm OI mặt cầu (S) có tọa độ là: A 1; 2; 3 3; 6;9 B 1; 2; 3 3; 6;9 2 C 1; 2; 3 3; 6; 9 D 1; 2; 3 3;6;9 Câu 26: Một khối tứ diện ABCD với A(2;3;1), B(1;1;1), C(2;1;0) D(0;1;2) Tọa độ chân đường cao H tứ diện dựng từ đỉnh A 1 1 A (1;3;1) B (3; ; ) C (1;3; ) D (1; ; ) 2 2 Câu 27: Cho A(3; 0;0) , B(0; 6;0) , C(0;0;6) mp() : x y z Tọa độ hình chiếu vng góc trọng tâm tam giác ABC mp() A (2;1;3) B (2; 1;3) C (2; 1;3) D (2; 1; 3) Câu 28: Tìm tọa độ tâm J đường tròn (C) giao tuyến mặt cầu (S) : (x 2) (y 3) (z 3) mặt phẳng (P): x 2y 2z �3 3 � A J � ; ; � �2 � B J 1; 2;0 �5 11 � C J � ; ; � �3 3 � D J 1; 2;3 �x 4t � Câu 29: Cho điểm A(1;1;1) đường thẳng d: �y 2 t Hình chiếu điểm A d là: � z 1 2t � A 2; 3; 1 B 2;3;1 C 2; 3;1 D 2;3;1 x 1 y z là: A (2; 2; 3) B (1; 0; 2) C (0; -2; 1) D (-1; -4; 0) Câu 31: Cho tam giác ABC có A(0;0;1), B(-1;-2;0), C(2; ;-1) Khi tọa độ chân đường cao H hạ từ A xuống BC: 14 8 ; ) A H( ; B H( ;1;1) C H(1;1; ) D H(1; ;1) 19 19 19 9 Câu 30: Tọa độ hình chiếu vng góc M(2; 0; 1) đường thằng : �x t � Câu 32: Tìm tọa độ điểm H đường thẳng d: �y t cho MH nhắn nhất, biết M(2;1;4): �z 2t � A H(2;3;3) B H(1;3;3) Câu 33: Cho đường thẳng d : cho d M, P : � M 4;6; 1 A � M 8; 18;11 � C H(2; 2;3) D H(2;3; 4) x 1 y z , (P): 2x y z Tìm tất điểm M (d) 1 � M 4;6; 1 B � M 8; 18;11 � � M 2; 2;1 C � M 14; 26; 11 � � M 4;6;1 D � M 8; 18;11 � x y z 1 cho khoảng cách từ điểm A đến 1 mp() : x 2y 2z Biết A có hồnh độ dương A A(0;0; 1) B A( 2;1; 2) C A(2; 1;0) D A(4; 2;1) Câu 34: Tìm điểm A đường thẳng d : File Word liên hệ:0937351107 Trang 54 Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A Hình học tọa độ Oxyz Câu 35: Trong không gian (Oxyz) Cho điểm A 1;0; 1 , B 2;1; 1 ,C 1; 1; Điểm M thuộc đường thẳng AB mà MC 14 có tọa độ là: A M 2; 2; 1 , M 1; 2; 1 C M 2;1; 1 , M 1; 2; 1 B M 2;1; 1 , M 1; 2; 1 D M 2;1;1 , M 1; 2; 1 Câu 36: Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC với A 1; 2; 1 , B 2; 1;3 , C 4;7;5 Chân đường phần giác góc B tam giác ABC điểm D có tọa độ là: � 11 � � 11 � � 11 � �2 11 � ; ;1� A D � ; ; 1 � B D � ; ;1� C D � D D � ; ;1� �3 � �3 � �3 � �3 � Câu 37: Trong không gian Oxyz, tam giác ABC có A 1,0,0 ; B 0, 2,0 ;C 3,0, Tọa độ điểm M mặt phẳng Oyz cho MC vng góc với (ABC) là: � 11 � � 11 � � 11 � � 11 � 0, , � 0, , � 0, , � 0, , � A � B � C � D � � 2� � 2� � 2� � 2� Câu 38: Cho A(2;1; 1) , B(3; 0;1) , C(2; 1;3) ; điểm D thuộc Oy , thể tích khối tứ diện ABCD Tọa độ điểm D là: A (0; 7; 0) (0;8;0) B (0; 7;0) C (0;8;0) D (0;7;0) (0; 8;0) Câu 39: Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2;2), B(5;4;4) mặt phẳng (P): 2x + y – z + =0 Tọa độ điểm M nằm (P) cho MA2 + MB2 nhỏ là: A M(-1;1;5) B M(1;-1;3) C M(2;1;-5) D M(-1;3;2) x 1 y z Điểm M thuộc d, biết Câu 40: Cho A(1; 4; 2), B(1; 2; 4) đường thẳng d: 1 2 nhỏ Điểm M có toạ độ là? MA MB A M(1;0; 4) B M(0; 1; 4) C M( 1; 0; 4) D M(1; 0; 4) Câu 41: Trong không gian Oxyz cho điểm A(1;2;3), B(4;4;5) Tọa độ điểm M �(Oxy) cho tổng MA MB2 nhỏ là: 17 11 1 11 1 A M( ; ; 0) B M(1; ;0) C M( ; ;0) D M( ; ;0) 8 Câu 42: Cho hai điểm M( 2;3;1) , N(5;6; 2) Đường thẳng MN cắt mặt phẳng (Oxz) điểm A Điểm A chia đoạn MN theo tỉ số 1 A B C 2 D 2 Câu 43: Gọi (d) đường thẳng qua điểm A(2;3;5) vng góc mặt phẳng (P): 2x 3y z 17 Tìm giao điểm (d) trục Oz � 6� 0; 0; � A 0;0;6 B 0; 4;0 C 0;0; D � � 7� Câu 44: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x 2y 2z điểm A(4; -4; 4), B(4; -2 ;6), C(3 ; -5; 7) Mặt cầu (S) tiếp xúc với (P), qua điểm C có tâm nằm đường thẳng AB Tâm I mặt cầu (S) có tọa độ là: A (-4; -3; 5) B (4; -3; 5) C (4; 3; 5) D (4:3; -5) Câu 45: Trong không gian oxyz cho hai điểm A(5, 3, -4) điểm B(1, 3, 4) Tìm tọa độ điểm C �(Oxy) cho tam giác ABC cân C có diện tích Chọn câu trả lời A C(3, 7, 0) C(3, -1, 0) File Word liên hệ:0937351107 B C(-3-7, 0) C(-3, -1, 0) Trang 55 Giáo viên: Th.S ĐặngViệtĐơng Trường THPT Nho Quan A Hình học tọa độ Oxyz C C(3, 7, 0) C(3, 1, 0) D C(-3, -7, 0) C(3, -1, 0) Câu 46: Trong không gian với hệ tọa độ Oxyz , cho hai điểm A(3;5; 4) , B(3;1; 4) Tìm tọa độ điểm C thuộc mặt phẳng (P) : x y z cho tam giác ABC cân C có diện tích 17 A Đáp án khác B C(7; 3; 3) C C(4; 3; 0) C(7; 3; 3) D C(4; 3; 0) Câu 47: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng x 3 y z 5 mặt phẳng (P): 2x y 2z M điểm d cách (P) 1 khoảng Tọa độ M là: A (3;0;5) B (1;2;-1) C Cả đáp án A) B) sai D Cả đáp án A) B) d: Câu 48: Trong không gian với hệ trục tọa độ Oxyz cho A 4;0; , B b;c;0 Với b, c số � 450 Điểm C thuộc tia Oz thỏa mãn thể tích tứ diện thực dương thỏa mãn AB 10 góc AOB OABC có tọa độ là: A C(0;0; 2) B C(0;0;3) C C(0; 0; 2) D C(0;1; 2) Câu 49: Cho điểm A(1, 2, 1), B( 2,1,3) Tìm điểm M thuộc Ox cho tam giác AMB có diện tích nhỏ 1 A M( 7, 0, 0) B M( , 0, 0) C M( , 0, 0) D M(3, 0, 0) Câu 50: Trong không gian Oxyz cho hai điểm A(–1;3; –2), B(–3;7; –18) mặt phẳng (P): 2x – y z Gọi M a; b; c điểm (P) cho MA+MB nhỏ Giá trị a b c A B C D Câu 51: Trong không gian với hệ toạ độ Oxyz, cho điểm M(0;1;1) đường thẳng (d 1), (d2) với: (d1): x 1 y z ; (d2) giao tuyến mặt phẳng (P): x (Q): x y z Gọi (d) đường thẳng qua M vng góc (d1) cắt (d2) Trong số điêm A(0;1;1), B(-3;3;6), C(3;-1;-3), D(6;-3;0), có điểm nằm (d)? A B C D C-ĐÁP ÁN 1C, 2A, 3D, 4A, 5D, 6D, 7A, 8C, 9D, 10D, 11A, 12D, 13B, 14A, 15B, 16B, 17C, 18C, 19C, 20B, 21A, 22D, 23B, 24D, 25B, 26D, 27B, 28C, 29C, 30B, 31A, 32A, 33C, 34C, 35B, 36C, 37A, 38A, 39A, 40C, 41A, 42A, 43C, 44B, 45A, 46C, 47D, 48A, 49B, 50C, 51A File Word liên hệ:0937351107 Trang 56 ... hệ tọa độ Oxyz, cho vecto AO i j 2k 5j Tọa độ điểm A File Word liên hệ:0937351107 Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A A 3, 2,5 Hình học tọa độ Oxyz B ... THPT Nho Quan A Hình học tọa độ Oxyz k k �x k, k �Z �x k, k �Z D x 24 12 24 12 Câu 13: Trong không gian với hệ trục tọa độ Oxyz cho điểm A 2; 0; , B... Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A � � Hình học tọa độ Oxyz � Câu 23: Trong không gian Oxyz, cho vecto a 1;1;0 ; b 1;1; ; c 1;1;1 Trong mệnh đề sau,uu