1. Trang chủ
  2. » Giáo án - Bài giảng

bộ đề thi toán vào 10 toàn quốc

72 430 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 72
Dung lượng 3,28 MB

Nội dung

sở giáo dục và đào tạo hng yên đề thi chính thức (Đề thi có 02 trang) kỳ thi tuyển sinh và lớp 10 thpt năm học 2009 - 2010 Môn thi : toán Thời gian làm bài: 120 phút phần a: trắc nghiệm khách quan (2,0 điểm) Từ câu 1 đến câu 8, hãy chọn phơng án đúng và viết chữ cái đứng trớc phơng án đó vào bài làm. Câu 1: Biểu thức 1 2 6x có nghĩa khi và chỉ khi: A. x 3 B. x > 3 C. x < 3 D. x = 3 Câu 2: Đờng thẳng đi qua điểm A(1;2) và song song với đờng thẳng y = 4x - 5 có phơng trình là: A. y = - 4x + 2 B. y = - 4x - 2 C. y = 4x + 2 D. y = 4x - 2 Câu 3: Gọi S và P lần lợt là tổng và tích hai nghiêm của phơng trình x2 + 6x - 5 = 0. Khi đó: A. S = - 6; P = 5 B. S = 6; P = 5 C. S = 6; P = - 5 D. S = - 6 ; P = - 5 Câu 4: Hệ phơng trình 2 5 3 5 x y x y + = = có nghiệm là: A. 2 1 x y = = B. 2 1 x y = = C. 2 1 x y = = D. 1 2 x y = = Câu 5: Một đờng tròn đi qua ba đỉnh của một tam giác có độ dài ba cạnh lần lợt là 3cm, 4cm, 5cm thì đờng kính của đờng tròn đó là: A. 3 2 cm B. 5cm C. 5 2 cm D. 2cm Câu 6: Trong tam giác ABC vuông tại A có AC = 3, AB = 3 3 thì tgB có giá trị là: A. 1 3 B. 3 C. 3 D. 1 3 Câu 7: Một nặt cầu có diện tích là 3600 cm 2 thì bán kính của mặt cầu đó là: A. 900cm B. 30cm C. 60cm D. 200cm Câu 8: Cho đờng tròn tâm O có bán kính R (hình vẽ bên). Biết ã 0 120=COD thì diện tích hình quạt OCmD là: A. 2 3 R B. 4 R C. 2 3 2 R D. 3 2 R phần b: tự luận (8,0 điểm) Bài 1: (1,5 điểm) a) Rút gọn biểu thức: A = 27 12 BO ẹE THI 10 Trang 1 . 120 0 O D C m b) Giải phơng trình : 2(x - 1) = 5 Bài 2: (1,5 điểm) Cho hàm số bậc nhất y = mx + 2 (1) a) Vẽ đồ thị hàm số khi m = 2 b) Tìm m để đồ thị hàm số (1) cắt trục Ox và trục Oy lần lợt tại A và B sao cho tam giác AOB cân. Bài 3: (1,0 điểm) Một đội xe cần chở 480 tấn hàng. Khi sắp khởi hành đội đợc điều thêm 3 xe nữa nên mỗi xe chở ít hơn dự định 8 tấn. Hỏi lúc đầu đội xe có bao nhiêu chiếc? Biết rằng các xe chở nh nhau. Bài 4: (3,0 điểm) Cho A là một điểm trên đờng tròn tâm O, bán kính R. Gọi B là điểm đối xứng với O qua A. Kẻ đờng thẳng d đi qua B cắt đờng tròn (O) tại C và D (d không đi qua O, BC < BD). Các tiếp tuyến của đờng tròn (O) tại C và D cắt nhau tại E. Gọi M là giao điểm của OE và CD. Kẻ EH vuông góc với OB (H thuộc OB). Chứng minh rằng: a) Bốn điểm B, H,M, E cùng thuộc một đờng tròn. b) OM.OE = R 2 c) H là trung điểm của OA. Bài 5: (1, 0 điểm) Cho hai số a,b khác 0 thoả mãn 2a 2 + 2 2 1 4 + b a = 4 Tìm giá trị nhỏ nhất của biểu thức S = ab + 2009. ===Hết=== M Môn thi: Toán Ngày thi: 24 tháng 6 năm 2009 (Thời gian làm bài: 120 phút) Bài 1 (2,5 điểm) Cho biểu thức 1 1 4 2 2 x A x x x = + + - - + , với x0; x4 1) Rút gọn biểu thức A. 2) Tính giá trị của biểu thức A khi x=25. BO ẹE THI 10 Trang 2 . Sở Giáo dục và đào tạo thái bình Kỳ thi tuyển sinh vào lớp 10 THPT Năm học: 2009 - 2010 Đề chính thức 3) T×m gi¸ trÞ cđa x ®Ĩ 1 3 A =- . Bµi 2 (2 ®iĨm) Cho Parabol (P) : y= x 2 và đường thẳng (d): y = mx-2 (m là tham số m ≠ 0 ) a/ Vẽ đồ thò (P) trên mặt phẳng toạ độ xOy. b/ Khi m = 3, hãy tìm toạ độ giao điểm (P) và (d) . c/ Gọi A(x A ; y A ), B(x A ; y B ) là hai giao điểm phân biệt của (P) và ( d). Tìm các giá trò của m sao cho : y A + y B = 2(x A + x B ) -1 . Bµi 3 (1,5 ®iĨm) Cho ph¬ng tr×nh: 2 2 2( 1) 2 0x m x m- + + + = (Èn x) 1) Gi¶i ph¬ng tr×nh ®· cho víi m =1. 2) T×m gi¸ trÞ cđa m ®Ĩ ph¬ng tr×nh ®· cho cã hai nghiƯm ph©n biƯt x 1 , x 2 tho¶ m·n hƯ thøc: 2 2 1 2 10x x+ = . Bµi 4 (3,5 ®iĨm) Cho ®êng trßn (O; R) vµ A lµ mét ®iĨm n»m bªn ngoµi ®êng trßn. KỴ c¸c tiÕp tun AB, AC víi ®êng trßn (B, C lµ c¸c tiÕp ®iĨm). 1) Chøng minh ABOC lµ tø gi¸c néi tiÕp. 2) Gäi E lµ giao ®iĨm cđa BC vµ OA. Chøng minh BE vu«ng gãc víi OA vµ OE.OA=R 2 . 3) Trªn cung nhá BC cđa ®êng trßn (O; R) lÊy ®iĨm K bÊt k× (K kh¸c B vµ C). TiÕp tun t¹i K cđa ®êng trßn (O; R) c¾t AB, AC theo thø tù t¹i c¸c ®iĨm P vµ Q. Chøng minh tam gi¸c APQ cã chu vi kh«ng ®ỉi khi K chun ®éng trªn cung nhá BC. 4) §êng th¼ng qua O, vu«ng gãc víi OA c¾t c¸c ®êng th¼ng AB, AC theo thø tù t¹i c¸c ®iĨm M, N. Chøng minh PM + QN ≥ MN. Bµi 5 (0,5 ®iĨm) Gi¶i ph¬ng tr×nh: ( ) 2 2 3 2 1 1 1 2 2 1 4 4 2 x x x x x x- + + + = + + + ----------------------HÕt---------------------- L u ý : Gi¸m thÞ kh«ng gi¶i thÝch g× thªm. Hä vµ tªn thÝ sinh: Sè b¸o danh Ch÷ ký gi¸m thÞ sè 1: . Ch÷ ký gi¸m thÞ sè 2: . §¸p ¸n (c¸c phÇn khã) Bµi 1 : Bµi 2 :  BỘ ĐỀ THI 10 Trang 3 . N M Q P E C B O A K Bài 3 : Bài 4 : 1) 2) 3) Chứng minh Chu vi APQ = AB+AC = 2AB không đổi . 4) Chứng minh : - Góc PMO = gocQNO = gocQOP ( = sđ cung BC/2) - ã ã ã 0 180MPO POM PMO= = 180 0 - ã ã QOP POM Khi đó PMO ~ ONQ ( g-g). - PM.QN = MO.NO = MO 2 Theo BĐT Côsi có PM + QN 2 . 2PM QN MO MN = = Dấu = xảy ra PM = QN K là điểm chính giữa cung BC. Bài 5 : ĐK : 2x 3 + x 2 + 2x + 1 0 ( x 2 + 1) ( 2x + 1) 0 Mà x 2 + 1 > 0 vậy x 1 2 . Ta có vế trái = 2 2 2 2 1 1 1 1 1 1 4 2 4 2 4 2 x x x x x x + + = + + = + + ữ ( vì x 1 2 ) BO ẹE THI 10 Trang 4 . S GD&T H Tnh CHNH THC Mó 04 TUYN SINH LP 10 THPT NM HC 2009-2010 Mụn: Toỏn Thi gian l bi:120 phỳt Bỡ 1: 1. Gii phng trỡnh: x 2 + 5x + 6 = 0 2. Trong h trc to Oxy, bit ng thng y = ax + 3 i qua im M(-2;2). Tỡm h s a Bi 2:Cho biu thc: + + + = xxxx x x xx P 1 2 1 2 vi x >0 1.Rỳt gn biu thc P 2.Tỡm giỏ tr ca x P = 0 Bi 3: Mt on xe vn ti nhn chuyờn ch 15 tn hng. Khi sp khi hnh thỡ 1 xe phi iu i lm cụng vic khỏc, nờn mi xe cũn li phi ch nhiu hn 0,5 tn hng so vi d nh. Hi thc t cú bao nhiờu xe tham gia vn chuyn. (bit khi lng hng mi xe ch nh nhau) Bi 4: Cho ng trũn tõm O cú cỏc ng kớnh CD, IK (IK khụng trựng CD) 1. Chng minh t giỏc CIDK l hỡnh ch nht 2. Cỏc tia DI, DK ct tip tuyn ti C ca ng trũn tõm O th t G; H a. Chng minh 4 im G, H, I, K cựng thuc mt ng trũn. b. Khi CD c nh, IK thay , tỡm v trớ ca G v H khi din tớch tam giỏc DJ t giỏ tr nh nht. Bi 5: Cỏc s [ ] 4;1,, cba tho món iu kin 432 ++ cba chng minh bt ng thc: 3632 222 ++ cba ng thc xy ra khi no? HT Bài giảI đề thi vào THPT môn Toán Năm học 2009-2010 Bài 1: a, Giải PT : x 2 + 5x +6 = 0 x 1 = -2, x 2 = -3 . b, Vì đờng thẳng y = a.x +3 đi qua điểm M(-2,2) nên ta có: 2 = a.(-2) +3 a = 0,5 Bài 2: ĐK: x> 0 a, P = ( xxx x x xx + + + 2 1 ).(2- x 1 ) = x x x xxx 12 . 1 + + = )12( xx . b, P = 0 )12( xx x = 0 , x = 4 1 Do x = 0 không thuộc ĐK XĐ nên loại . Vậy P = 0 x = 4 1 . Bài 3: Gọi số xe thực tế chở hàng là x xe ( x N * ) Thì số xe dự định chở hàng là x +1 ( xe ). Theo dự định mỗi xe phải chở số tấn là : 1 15 + x ( tấn ) Nhng thực tế mỗi xe phải chở số tấn là : x 15 ( tấn ) Theo bài ra ta có PT : x 15 - 1 15 + x = 0,5 Giải PT ta đợc : x 1 = -6 ( loại ) x 2 = 5 ( t/m) BO ẹE THI 10 Trang 5 . Vậy thực tế có 5 xe tham gia vận chuyển hàng . Bài 4 . 1, Ta có CD là đờng kính , nên : CKD = CID = 90 0 ( T/c góc nội tiếp ) Ta có IK là đờng kính , nên : KCI = KDI = 90 0 ( T/c góc nội tiếp ) Vậy tứ giác CIDK là hình chữ nhật . 2, a, Vì tứ giác CIDK nội tiếp nên ta có : ICD = IKD ( t/c góc nội tiếp ) Mặt khác ta có : G = ICD ( cùng phụ với GCI ) G = IKD Vậy tứ giác GIKH nội tiếp . b, Ta có : DC GH ( t/c) DC 2 = GC.CH mà CD là đờng kính ,nên độ dài CD không đổi . GC. CH không đổi . Để diện tích GDH đạt giá trị nhỏ nhất khi GH đạt giá trị nhỏ nhất . Mà GH = GC + CH nhỏ nhất khi GC = CH Khi GC = CH ta suy ra : GC = CH = CD Và IK CD . Bài 5 : Do -1 4,, cba Nên a +1 0 a 4 0 Suy ra : ( a+1)( a -4) 0 a 2 3.a +4 Tơng tự ta có b 2 3b +4 2.b 2 6 b + 8 3.c 2 9c +12 Suy ra: a 2 +2.b 2 +3.c 2 3.a +4+6 b + 8+9c +12 a 2 +2.b 2 +3.c 2 36 ( vì a +2b+3c 4 ) = 1 2 x + Vây ta có phơng trình x + 1 1 2 2 = ( 2x 3 +x 2 +2x+1). 1 1 2 2 = 2.x 3 +x 2 = 0 => x = 0 ; x = -1/2 Sở GD và ĐT Thành phố Hồ Chí Minh Kì thi tuyển sinh lớp 10Trung học phổ thông Năm học 2009-2010Khoá ngày 24-6-2009Môn thi: toán Câu I: Giải các phơng trình và hệ phơng trình sau: a) 8x 2 - 2x - 1 = 0 b) 2 3 3 5 6 12 x y x y + = = c) x 4 - 2x 2 - 3 = 0 d) 3x 2 - 2 6 x + 2 = 0 Câu II: a) Vẽ đồ thị (P) của hàm số y = 2 2 x và đthẳng (d): y = x + 4 trên cùng một hệ trục toạ độ. b) Tìm toạ độ giao điểm của (P) và (d) bằng phép tính. Câu III: Thu gọn các biểu thức sau: BO ẹE THI 10 Trang 6 . A = 4 8 15 3 5 1 5 5 + + + B = : 1 1 1 x y x y x xy xy xy xy + + ữ ữ ữ + Câu IV: Cho phơng trình x 2 - (5m - 1)x + 6m 2 - 2m = 0 (m là tham số) a) Chứng minh phơng trình luôn có nghiệm với mọi m. b) Gọi x 1 , x 2 là nghiệm của phơng trình. Tìm m để x 1 2 + x 2 2 =1. Câu V: Cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp đờng tròn (O) có tâm O, bán kính R. Gọi H là giao điểm của ba đờng cao AD, BE, CF của tam giác ABC. Gọi S là diện tích tam giác ABC. a) Chúng minh rằng AEHF và AEDB là các tứ giác nội tiếp đờng tròn. b) Vẽ đờng kính AK của đờng tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau. Suy ra AB.AC = 2R.AD và S = . . 4 AB BC CA R . c) Gọi M là trung điểm của BC. Chứng minh EFDM là tứ giác nội tiếp đờng tròn. d) Chứngminh rằng OC vuông góc với DE và (DE + EF + FD).R = 2 S. Gợi ý đáp án BO ẹE THI 10 Trang 7 . Sở GD&ĐT Thừa Thiên Huế Đề thi tuyển sinh lớp 10 Năm học: 2009 2010 . Môn: Toán Thời gian làm bài: 120 phút Bài 1: (2,25đ)Không sử dụng máy tính bỏ túi, hãy giải các phơng trình sau: a) 5x 3 + 13x - 6=0 b) 4x 4 - 7x 2 - 2 = 0 c) 3 4 17 5 2 11 x y x y = + = Bài 2: (2,25đ)a) Cho hàm số y = ax + b. Tìm a, b biết rằng đồ thị của hàm số đã cho song song với đ- ờng thẳng y = -3x + 5 và đi qua điểm A thuộc Parabol (P): y = 1 2 x 2 có hoàng độ bằng -2. b) Không cần giải, chứng tỏ rằng phơng trình ( 3 1+ )x 2 - 2x - 3 = 0 có hai nghiệm phân biệt và tính tổng các bình phơng hai nghiệm đó. Bài 3: (1,5đ)Hai máy ủi làm việc trong vòng 12 giờ thì san lấp đợc 1 10 khu đất. Nừu máy ủi thứ nhất làm một mình trong 42 giờ rồi nghỉ và sau đó máy ủi thứ hai làm một mình trong 22 giờ thì cả hai máy ủi san lấp đợc 25% khu đất đó. Hỏi nếu làm một mình thì mỗi máy ủi san lấp xong khu đất đã cho trong bao lâu. Bài 4: (2,75đ) Cho đờng tròn (O) đờng kính AB = 2R. Vẽ tiếp tuyến d với đờng tròn (O) tại B. Gọi C và D là hai điểm tuỳ ý trên tiếp tuyến d sao cho B nằm giữa C và D. Các tia AC và AD cắt (O) lần lợt tại E và F (E, F khác A). 1. Chứng minh: CB 2 = CA.CE 2. Chứng minh: tứ giác CEFD nội tiếp trong đờng tròn tâm (O ). 3. Chứng minh: các tích AC.AE và AD.AF cùng bằng một số không đổi. Tiếp tuyến của (O ) kẻ từ A tiếp xúc với (O ) tại T. Khi C hoặc D di động trên d thì điểm T chạy trên đờng thẳng cố định nào? Bài 5: (1,25đ)Một cái phễu có hình trên dạng hình nón đỉnh S, bán kính đáy R = 15cm, chiều cao h = 30cm. Một hình trụ đặc bằng kim loại có bán kính đáy r = 10cm đặt vừa khít trong hình nón có đầy nớc (xem hình bên). Ngời ta nhấc nhẹ hình trụ ra khỏi phễu. Hãy tính thể tích và chiều cao của khối nớc còn lại trong phễu. Gợi ý đáp án BO ẹE THI 10 Trang 8 . Sở giáo dục và đào tạo Kỳ thi tuyển sinh vào lớp 10 THPT Nghệ an Năm học 2009 - 2010 Môn thi : Toán Thời gian: 120 phút (không kể thời gian giao đề) Câu I (3,0 điểm). Cho biểu thức A = x x 1 x 1 x 1 x 1 + + . 1) Nêu điều kiện xác định và rút gọn biểu thức A. 2) Tính giá trị của biểu thức A khi x = 9 4 . 3) Tìm tất cả các giá trị của x để A < 1. Câu II (2,5 điểm). Cho phơng trình bậc hai, với tham số m : 2x 2 (m + 3)x + m = 0 (1) 1) Giải phơng trình (1) khi m = 2. BO ẹE THI 10 Trang 9 . Đề chính thức 2) Tìm m để phơng trình (1) có hai nghiệm x 1 , x 2 thoả mãn x 1 + x 2 = 1 2 5 x x 2 . 3) Gọi x 1 , x 2 là hai nghiệm của phơng trình (1). Tìm GTNN của biểu thức P = 1 2 x x . Câu III (1,5 điểm). Một thửa ruộng hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích thửa ruộng, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không thay đổi. Câu IV (3,0 điểm). Cho đờng tròn (O;R), đờng kính AB cố định và CD là một đờng kính thay đổi không trùng với AB. Tiếp tuyến của đờng tròn (O;R) tại B cắt các đờng thẳng AC và AD lần lợt tại E và F. 1) Chứng minh rằng BE.BF = 4R 2 . 2) Chứng minh tứ giác CEFD nội tiếp đợc đờng tròn. 3) Gọi I là tâm đờng tròn ngoại tiếp tứ giác CEFD. Chứng minh rằng tâm I luôn nằm trên một đờng thẳng cố định. --------------Hết------------- S GIO DC V O TO K THI TUYN SINH LP 10 THPT HI PHềNG Nm hc 2009-2010 MễN THI TON Thi gian lm bi: 120 phỳt(khụng k thi gian giao ) Phn I: Trc nghim (2,0 im) 1. Giỏ tr ca biu thc ( 2 3)( 2 3)M = bng: A. 1. B. -1. C. 2 3 . D. 3 2 . 2. Giỏ tr ca hm s 2 1 3 y x= ti l A. . B. 3. C. -1. D. 3. Cú ng thc (1 ) . 1x x x x = khi: A. x 0 B. x 0 C. 0<x<1 D. 0 x 1 4. ng thng i qua im (1;1) v song song vi ng thng y = 3x cú phng trỡnh l: A. 3x-y=-2 B. 3x+y=4. C. 3x-y=2 D. 3x+y=-2. 5. Trong hỡnh 1, cho OA = 5 cm, OA = 4 cm,AH = 3cm. di OO bng : A.9cm B. (4 7)+ cm C. 13 cm D. 41 cm 6. Trong hỡnh 2. cho bit MA, MB l cỏc tip tuyn ca (O). BC l ng kớnh, . S o bng: A. B. C. D. . Cho ng trũn (O; 2cm), hai im A v B thuc na ng trũn sao cho . di cung nh AB l: BO ẹE THI 10 .Trang 10 [...]... MN C©u V(0,5®): Gi¶i ph¬ng tr×nh: 1 1 1 x 2 − + x 2 + x + = (2 x 3 + x 2 + 2 x + 1) 4 4 2 §¸p ¸n C©u I: C©u II:  BỘ ĐỀ THI 10 Trang 27 C©u III:  BỘ ĐỀ THI 10 Trang 28 C©u V:  BỘ ĐỀ THI 10 Trang 29 §Ị thi tun sinh líp 10 N¨m häc: 2009 – 2 010 M«n: To¸n Thêi gian lµm bµi: 120 phót Së GD&§T CÇn Th¬ C©u I: (1,5®) Cho biĨu thøc A = 1 x + x −1 − 1... 2.5đ  BỘ ĐỀ THI 10 Trang 12 * Gọi:  Số áo tổ  may được trong 1 ngày là x  Số áo tổ  may được trong 1 ngày là y * Chênh lệch số áo trong 1 ngày giữa 2 tổ là: ( x ∈ ¥ ; x > 10 ) x − y = 10 * Tổng số áo tổ  may trong 3 ngày, tổ  may trong 5 ngày là: 3 x + 5 y = 1 310 y = x 10 ⇔ 3 x +5 ( x 10 ) =1 310 x − y = 10  3 x +5 y =1 310 Ta cã hƯ 0,5 ( y ∈ ¥ , y ≥ 0) y = x 10 ⇔ 8... O cđa ®êng trßn nµy 2 TÝnh BE  BỘ ĐỀ THI 10 Trang 30 3 VÏ ®êng kÝnh EF cđa ®êng trßn t©m (O) AE vµ BF c¾t nhau t¹i P Chøng minh c¸c ®êng th¼ng BE, PO, AF ®ång quy 4 TÝnh diƯn tÝch phÇn h×nh trßn t©m (O) n»m ngoµi ngò gi¸c ABFCE Gỵi ý §¸p ¸n:  BỘ ĐỀ THI 10 Trang 31 Së GD&§T Thõa Thi n H §Ị thi tun sinh líp 10 N¨m häc: 2009 – 2 010 M«n: To¸n Thêi gian lµm bµi:... ®êng trßn  BỘ ĐỀ THI 10 Trang 34 b) VÏ ®êng kÝnh AK cđa ®êng trßn (O) Chøng minh tam gi¸c ABD vµ tam gi¸c AKC ®ång AB.BC.CA d¹ng víi nhau Suy ra AB.AC = 2R.AD vµ S = 4R c) Gäi M lµ trung ®iĨm cđa BC Chøng minh EFDM lµ tø gi¸c néi tiÕp ®êng trßn d) Chøngminh r»ng OC vu«ng gãc víi DE vµ (DE + EF + FD).R = 2 S Gỵi ý ®¸p ¸n  BỘ ĐỀ THI 10 Trang 35  BỘ ĐỀ THI 10 Trang... Câu 5 (1 điểm) Cho một tam giác có số đo ba cạnh là x, y, z nguyên thỏa mãn: 2x2 + 3y2 + 2z2 – 4xy + 2xz – 20 = 0 Chứng minh tam giác đã cho là tam giác đều  BỘ ĐỀ THI 10 Trang 24 Câu 1.(1 điểm) Rút gọn: A= GIẢI ĐỀ THI VÀO LỚP 10 MÔN TOÁN CHUNG TRỪỜNG THPT CHUYÊN LÊ QUÝ ĐÔN BÌNH ĐỊNH NĂM HỌC 2008 – 2009 – Ngày: 17/06/2008 Thời gian làm bài: 150 phút a a −1 a a +1 − (a > 0, a ≠ 1) a−... cđa gi¸m thÞ 1: Ch÷ kÝ cđa gi¸m thÞ 2: ……………………………………………hÕt ,…………………………………………  BỘ ĐỀ THI 10 Trang 21 SỞ GIÁO DỤC &ĐÀO TẠO TỈNH BÌNH ĐỊNH ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH TRUNG HỌC PHỔ THƠNG NĂM HỌC 2009-2 010 Mơn thi: TỐN ( Hệ số 1 – mơn Tốn chung) Thời gian: 120 phút (khơng kể thời gian phát đề) ***** Bài 1: (1,5 điểm) x+2 x +1 x +1 + − Cho P = x x −1 x + x + 1 x −1 a Rút gọn... b»ng kim lo¹i cã b¸n kÝnh ®¸y r = 10cm ®Ỉt võa khÝt trong h×nh nãn cã ®Çy níc (xem h×nh bªn) Ngêi ta nhÊc nhĐ h×nh trơ ra khái phƠu H·y tÝnh thĨ tÝch vµ chiỊu cao cđa khèi níc cßn l¹i trong phƠu Gỵi ý ®¸p ¸n  BỘ ĐỀ THI 10 Trang 33 Së GD vµ §T Thµnh phè Hå ChÝ Minh K× thi tun sinh líp 10 Trung häc phỉ th«ng N¨m häc 2009-2 010 Kho¸ ngµy 24-6-2009 M«n thi: to¸n C©u I: Gi¶i c¸c ph¬ng tr×nh... 0) Suy ra x = y = z = 2 Vậy tam giác đã cho là tam giác đều Së GD&§T Hµ Néi C©u I(2,5®): Cho biĨu thøc A = §Ị thi tun sinh líp 10 N¨m häc: 2009 – 2 010 M«n: To¸n Ngµy thi: 23 - 6 – 2009 Thêi gian lµm bµi: 120 phót x 1 1 + + , víi x ≥ 0 vµ x ≠ 4 x−4 x −2 x +2 1/ Rót gän biĨu thøc A 2/ TÝnh gi¸ trÞ cđa biĨu thøc A khi x = 25  BỘ ĐỀ THI 10 Trang 26 3/ T×m gi¸ trÞ cđa x ®Ĩ A =... tâm đường tròn ngoại tiếp tam giác ABC Chứng minh OA vng góc với DE Gợi ý: câu d/: Kẻ Ax vng góc với OA C/m Ax song song với ED suy ra đpcm  BỘ ĐỀ THI 10 Trang 15 Sở GD & ĐT Bến Tre Đề khảo sát Bài 1:(4 điểm) Hết KỲ THI TUYỂN SINH LỚP 10 THPT Môn: Toán Thời gian : 120 phút  − 2mx + y = 5 1) Cho hệ phương trình :   mx + 3 y = 1 a) Gi¶i hƯ phương tr×nh khi m = 1 T×m m ®Ĩ x – y = 2 ... víi SB c¾t SO t¹i H; tø gi¸c AHBO lµ h×nh g× 3/CMR : AB qua 1 ®iĨm cè ®Þnh\  BỘ ĐỀ THI 10 Trang 20 C©u5 (1,5 ®iªm) Gi¶i c¸c ph¬ng tr×nh ( 2 1/ x − 2 x )( x 2 ) − 2 x + 2 = 15 2/ 2 x 4 − x 3 − 5 x 2 + x + 2 së gi¸o dơc vµ ®µo t¹o lµo cai §Ị chÝnh thøc ®Ị thi tun sinh líp 10 - thpt N¨m häc 2009 – 2 010 M«n thi: To¸n Thêi gian lµm bµi: 120 phót (kh«ng kĨ thêi gian giao ®Ị) C©u 1 (1,5 ®iĨm) . giáo dục và đào tạo hng yên đề thi chính thức (Đề thi có 02 trang) kỳ thi tuyển sinh và lớp 10 thpt năm học 2009 - 2 010 Môn thi : toán Thời gian làm bài: 120. 5 1 310 ( ) ( ) = = + = + = = = = = Ta có hệ thoả mãn điều kiện y x x y x y x x y x x x y 10 10 3 5 1 310 3 5 10 1 310 10 8 50 1 310 170

Ngày đăng: 30/08/2013, 04:10

HÌNH ẢNH LIÊN QUAN

Câu 8: Cho đờng tròn tâ mO có bán kính R (hình vẽ bên). Biết - bộ đề thi toán vào 10 toàn quốc
u 8: Cho đờng tròn tâ mO có bán kính R (hình vẽ bên). Biết (Trang 1)
Câu III (1,5 điểm). Một thửa ruộng hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m - bộ đề thi toán vào 10 toàn quốc
u III (1,5 điểm). Một thửa ruộng hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m (Trang 10)
4. Tính diện tích phần hình tròn tâm (O) nằm ngoài ngũ giác ABFCE. - bộ đề thi toán vào 10 toàn quốc
4. Tính diện tích phần hình tròn tâm (O) nằm ngoài ngũ giác ABFCE (Trang 31)
Một cái phễu có hình trên dạng hình nón đỉnh S, bán kính đáy R= 15cm, chiều cao h = 30cm - bộ đề thi toán vào 10 toàn quốc
t cái phễu có hình trên dạng hình nón đỉnh S, bán kính đáy R= 15cm, chiều cao h = 30cm (Trang 33)
Một thửa ruộng hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích thửa ruộng, biết rằng nếu chiều dài giảm đi 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không thay đổi. - bộ đề thi toán vào 10 toàn quốc
t thửa ruộng hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích thửa ruộng, biết rằng nếu chiều dài giảm đi 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không thay đổi (Trang 54)
Từ (*) và (**) =&gt; AHIO là hình bình hành =&gt; IH = AO =R (không đổi). - bộ đề thi toán vào 10 toàn quốc
v à (**) =&gt; AHIO là hình bình hành =&gt; IH = AO =R (không đổi) (Trang 55)

TỪ KHÓA LIÊN QUAN

w