1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI TUYỂN SINH LỚP 10 THPT KHÁNH HÒA NĂM HỌC 2012-2013 MÔN TOÁN

3 1,2K 5
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 113,5 KB

Nội dung

ĐỀ THI TUYỂN SINH LỚP 10 THPT KHÁNH HÒA NĂM HỌC 2012-2013 MÔN TOÁN

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT KHÁNH HÒA Năm học: 2012 – 2013 ĐỀ CHÍNH THỨC Môn thi: TOÁN Ngày thi: 30/6/2012 (Thời gian: 120 phút – không kể thời gian phát đề) (Đề thi có 01 trang) Bài 1: (2 điểm) (Không dùng máy tính cầm tay) 1) Rút gọn biểu thức: A = 2) Giải hệ phương trình: Bài 2: (2 điểm) Trong mặt phẳng Oxy, cho parapol (P) : y = . 1. Vẽ đồ thị (P). 2. Xác định các giá trị của tham số m để đường thẳng (d): y = x + m 2 cắt parabol (P) tại hai điểm phân biệt A(x 1 ;y 1 ) và B(x 2 ;y 2 ) sao cho . Bài 3: (2 điểm) Hai vòi nước cùng chảy vào một bể cạn sau 1 giờ 3 phút bể đầy nước. Nếu mở riêng từng vòi thì vòi thứ nhất chảy đầy bể chậm hơn vòi thứ hai là 2 giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu đầy bể? Bài 4 (4 điểm) Cho tam giác ABC vuông tại A. Vẽ đường tròn (O) đường kính AB, (O) cắt BC tại điểm thứ hai là D. Gọi E là trung điểm của đoạn OB. Qua D kẻ đường thẳng vuông góc với DE cắt AC tại F. 1) Chứng minh tứ giác AFDE nội tiếp. 2) Chứng minh 3) Chứng minh 4) Một đường thẳng (d) quay quanh điểm C cắt (O) tại hai điểm M, N. Xác định vị trí của (d) để độ dài CM + CN đạt giá trị nhỏ nhất. _________HẾT __________ Giám thị không giải thích gì thêm. HƯỚNG DẪN GIẢI 12 48 75 + − 2x 3 3x 2 8 y y + =   − =  2 1 4 x 1 2 2 2 1 2 1 2 3 2y y x x− + − = − · · BDE=AEF · · tanEBD = 3tan AEF Bài 2: (2.00điểm) 2) Giải: Xét phương trình hoành độ giao điểm của (d) và (P) là: = x + m 2 ⇔ - x - m 2 = 0 ⇔ x 2 – 2x – 4m 2 = 0 ∆’ = 1 + 4m 2 > 0 với mọi m Vật pt luôn có hai nghiệm x 1 , x 2 phân biệt, theo hệ thức Viet, ta có: x 1 + x 2 = 2 (1) x 1 .x 2 = -4m 2 (2) Theo đề bài ta có: mà y = . ⇔ ⇔ Ta có: x 1 + x 2 = 2 => x 1 = 2 – x 2 , ta được: ⇔ Ta có: a + b + c = 8 + 20 -28 = 0 Vậy pt có hai nghiệm: x 21 = 1; x 22 = * Với x 21 = 1=> x 11 = 1 Suy ra: -4m 2 = 1 (vô nghiệm với mọi m) * Với x 22 = => x 12 = Suy ra: -4m 2 = => m = Vậy m = thì đường thẳng (d): y = x + m 2 cắt parabol (P) tại hai điểm phân biệt A(x 1 ;y 1 ) và B(x 2 ;y 2 ) sao cho . Bài 3: (2.00điểm) HD: Gọi x, y lần lượt là thời gian chảy một mình đầy bể của vòi 1, 2 ( x, y >) Ta có hpt: Giải hpt ta có: (x;y) = Vậy thời gian chảy một mình đầy bể của vòi 1 là : ; vòi 2là: giờ. Bài 4 (4.00điểm) 2 1 4 x 1 2 2 1 4 x 1 2 2 2 1 2 1 2 3 2y y x x− + − = − 2 1 4 x 2 2 2 2 1 2 1 2 1 1 3 2 4 4 x x x x− + − = − 2 2 1 2 5 13 2 4 4 x x− = − 2 2 2 2 5 13 (2 ) 2 4 4 x x− − = − 2 2 2 8x 20x 28 0+ − = 28 7 8 2 − − = 7 2 −11 2 77 4 − 77 4 ± 77 4 ± 1 2 2 2 1 2 1 2 3 2y y x x− + − = − 21 20 1 1 20 21 2 x y x y  + =    − =  7 3 ; 2 2    ÷   7 2 3 2 c) Ta có: ∆ABD vuông tại D: tan = ∆AEF vuông tại A: tan = => 3tan = Mà: ∆AFD # ∆BEB (gg) => Suy ra: tan = 3tan d) Ta có: ∆CMA # ∆CAN (gg) => CM.CN = CA 2 (không đổi) suy ra: CM + CN nhỏ nhất khi CM = CN ⇔ M trùng với N => d là tiếp tuyến của (O) LÊ QUỐC DŨNG (GV trường THCS Trần Hưng Đạo, Nha Trang, Khánh Hòa) · EBD D D A B · AEF F E 3 A AF A BE = · AEF 3 3 AF AF BE BE = = AF D D A BE B = · EBD · AEF . (2.00đi m) 2) Giải: Xét phương trình hoành độ giao đi m của (d) và (P) là: = x + m 2 ⇔ - x - m 2 = 0 ⇔ x 2 – 2x – 4m 2 = 0 ∆’ = 1 + 4m 2 > 0 với m i m Vật. nghi m: x 21 = 1; x 22 = * Với x 21 = 1=> x 11 = 1 Suy ra: - 4m 2 = 1 (vô nghi m với m i m) * Với x 22 = => x 12 = Suy ra: - 4m 2 = => m = Vậy m =

Ngày đăng: 29/08/2013, 08:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w