Motion design of cam mechanisms by using non uniform rational b spline

198 77 0
Motion design of cam mechanisms by using non uniform rational b spline

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Motion Design of Cam Mechanisms by Using Non-Uniform Rational B-Spline Bewegungskurven von Kurvengetrieben unter Verwendung von Non-Uniform Rational B-Spline Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer Doktorin der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Thi Thanh Nga Nguyen Berichter: Univ.-Prof Dr.-Ing Dr h c (UPT) Burkhard Corves Außerplanmäßiger Professor Dr.-Ing Mathias Hüsing Tag der mündlichen Prüfung: 21 Juni 2018 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar Acknowledgement iii Acknowledgement Foremost, I would like to deeply thank my supervisor Prof Dr.-Ing Dr h c Burkhard Corves for giving me an opportunity to be a PhD student at the Institute of Mechanism Theory, Machine Dynamics and Robotics (IGMR) I am grateful for his helpful guidance, discussions, comments, and suggestions on the whole thesis Furthermore, I would like to specially thank Prof Dr.-Ing Mathias Hüsing as the second supervisor for giving me important comments, suggestions and encouragements He also supported me a chance to be a student job at IGMR My big thanks go to Dr.-Ing Stefan Kurtenbach for his time He gave me not only many useful discussions and comments from the start to the end of my thesis but also many valuable experiences in the research I would say to thank Dr.-Ing Duong Xuan Thang, working at Aachen Institute for Advanced Study in Computational Engineering Science (AICES), for carefully reading my thesis Especially, I would like to thank Prof Dr-Ing Rüdiger Schmidt for introducing me to IGMR to study in the RWTH - Aachen University, Germany I would like to thank Mrs Schneider for helping me administrative procedures at IGMR Many thanks go to all my colleagues at IGMR for their warmth and for helping me during the PhD student’s life I would like to thank the Ministry of Education and Training (MOET) of Vietnamese government for supporting me the living expense during my study time in Germany Last but not least, my greatest thanks go to my two litter daughters, Pham Khanh Linh and Pham Bao Linh, for their love and for understanding me far away from home I would specially thank to my mother-in-law and my husband for taking care my daughters during my study time in Germany Aachen, July 2018 Thi Thanh Nga Nguyen iv Acknowledgement Abstract v Abstract The follower of cam mechanisms may flexibly perform its movement based on the shape of the cam element and the direct contact with the cam With this feature, it is convenient to design a cam mechanism when an output motion is given by working requirements of machines The follower motion is characterized by the displacement, velocity, acceleration, and jerk functions The acceleration is related to inertial forces of the follower When an acceleration curve has abrupt changes, i.e., peak values, this will lead to large inertial forces Therefore, contact stresses at the bearing and on the cam surface also change abruptly, which causes noise and surface wear Additionally, the peak value of the jerk curve is also important in cam design since it determines the tendency of vibration in cam-follower systems Thus, selecting a mathematic function to describe the motion of the follower is an important step in cam design In this thesis, Non-Uniform Rational B-Spline (NURBS) is used to describe motion curves of the follower With the properties of NURBS, the motion curves including peak values of the acceleration and jerk are shown to have advantageous characteristics compared to classical approaches To this, the displacement, velocity, acceleration, and jerk functions are represented by NURBS curves These curves are then determined by solving the system of linear equations under given boundary conditions of the displacement, velocity, acceleration, and jerk Moreover, the main advantage of NURBS compared with other functions is that the NURBS curve can be controlled by its parameters such as weights and the knot vector In this thesis, the computation of the knot vector is presented to evaluate its effect on motion curves Furthermore, finding values of the weight factor to reduce peak values of the acceleration and jerk, the multi-objective functions depended on the weight factor are expressed For solving this problem, the simulated annealing algorithm is used to get the optimal value of weights Results of this thesis demonstrate that using NURBS for synthesizing motion curves is robust and effective because this may apply any motion curves of cam-follower systems In addition, the kinematics of cam mechanisms is improved by controlling NURBS’s parameters vi Abstract viii Zusammenfassung Zusammenfassung Zusammenfassung Das Eingriffsglied von Kurvengelenken kann seine Bewegung basierend auf der Geometrie der Kurvenscheibe und dem direkten Kontakt mit der Kurvenscheibe flexibel ausführen Wegen dieser Eigenschaft ist es zweckmäßig ein Kurvengelenk zu entwerfen, wenn die Abtriebsbewegung durch die Betriebsanforderungen einer Maschine gegeben sind Die Bewegung des Eingriffsglieds wird charakterisiert durch die Auslenkungs-, Geschwindigkeits-, Beschleunigungs- und Ruckfunktionen Die Beschleunigung steht in Verbindung mit den Trägheitskräften des Eingriffsglieds Wenn eine Beschleunigungskurve abrupte Wechsel hat, beispielsweise Spitzenwerte, wird dies zu großen Trägheitskräften führen Daher wechseln Kontaktbelastungen im Lager und auf der Kurvenscheibenoberfläche ebenfalls abrupt, was Geräusche und Oberflächenverschleiß erzeugt Es kommt hinzu, dass der Spitzenwert der Ruckkurve auch wichtig bei der Kurvengelenkgestaltung ist, denn er bestimmt die Tendenz zu Vibrationen des Kurvenscheiben-Eingriffsglied-Systems Daraus folgt, dass die Auswahl einer mathematischen Funktion zur Beschreibung der Eingriffsgliedsbewegung ein wichtiger Schritt der Kurvengelenkgestaltung ist In dieser Arbeit werden nicht-uniforme rationale B-Splines (NURBS) zur Beschreibung der Bewegungskurve des Eingriffsglieds genutzt Mit Hilfe der Eigenschaften von NURBS wird gezeigt, dass Bewegungskurven, die Spitzenwerte von Beschleunigung und Ruck beinhalten vorteilhafte Charakteristiken gegenüber klassischen Ansätzen aufweisen Dazu werden die Auslenkungs-, Geschwindigkeits-, Beschleunigungs- und Ruckfunktionen als NURBS-Kurven dargestellt Diese Kurven werden im Anschluss bestimmt, indem das lineare Gleichungssystem unter den gegebenen Randbedigungen von Auslenkung, Geschwindigkeit, Beschleunigung und Ruck gelöst wird Ferner ist der Hauptvorteil von NURBS verglichen mit anderen Funktionen, dass die NURBS-Kurve durch ihre Parameter wie Gewichtungen und den Knotenvektor kontrolliert werden kann In dieser Arbeit wird die Berechnung des Knotenvektors vorgestellt um seine seinen Effekt auf Bewegungskurven zu bewerten Außerdem werden, um Werte für den Gewichtungsfaktor zu finden, die Spitzenwerte von Beschleunigung und Ruck reduzieren, von dem Gewichtungsfaktor abhängige multikriterielle Funktionen formuliert Um dieses Problem zu lösen wird der Simulated AnnealingAlgorithmus genutzt, um den optimalen Werte der Gewichtungen zu erhalten Ergebnisse dieser Arbeiten zeigen, dass NURBS für das Synthetisieren von Bewegungskurven robust und effektiv ist, da sie auf jegliche Bewegungskurven von Kurvenscheiben- viii Zusammenfassung Zusammenfassung Eingriffsglied-Systemen angewandt werden können Zusätzlich wird die Kinematik von Kurvengetrieben durch die Einstellung der Parameter der NURBS verbessert xContent List Content List Content List Acknowledgement iii Abstract v Zusammenfassung vii Equation Signs and Indices xiii Abbreviations xvii Introduction 1.1 Motivation 1.2 Research objective and scope 1.3 Thesis outline State of the Art 2.1 Cam - follower system 2.1.1 Cam and follower classification 2.1.2 Displacement program 10 2.2 Follower displacement function 11 2.2.1 Polynomial for motion curves 11 2.2.2 Harmonic and cycloidal functions 15 2.2.3 Piecewise polynomials 18 2.2.4 Bezier curve 20 2.2.5 B-spline 22 2.2.6 NURBS 25 2.3 Summary and deficits 27 General Synthesis of Motion Curves Using NURBS 29 3.1 Description of NURBS for motion curves 29 3.2 General synthesis of cam motion using NURBS 35 3.3 Selecting the degree of NURBS used for motion curves 37 3.4 Evaluating weights to motion curves 38 3.5 Summary 40 Effect of the Knot Vector on Motion Curves 43 4.1 Introduction to the knot vector 43 xContent List Content List 10 4.2 Computation of the knot vector for synthesizing cam motion 46 4.2.1 Parameter calculation 47 4.2.2 Knot vector generation for cam motion 49 4.2.3 Effect of the power � on motion curve 50 4.2.4 Parameter and knot distribution 57 4.3 Motion curve evaluation 64 4.4 Summary 68 Optimizing Weight Factor of Motion Curves by Considering Kinematics 69 5.1 Optimization problem 69 5.2 Multi-objective optimization of motion curves 70 5.3 Summary 73 Simulated Annealing Algorithm for Optimizing Kinematics of Motion Curves 74 6.1 Methodology of Simulated Annealing 74 6.1.1 Introduction to simulated annealing 74 6.1.2 Physical annealing 75 6.1.3 Simulated annealing algorithm 77 6.1.4 Cooling schedule 79 6.1.5 Generation of neighboring solutions 81 6.2 Process of multi-objective optimization by Simulated Annealing for motion curves 82 6.3 Simulated Annealing algorithm for motion curve optimization 85 6.4 Summary 88 Application Examples 90 7.1 Application for a small number of boundary conditions 90 7.1.1 Six boundary conditions 90 7.1.2 Eight boundary conditions 92 7.1.3 Nine boundary conditions 93 7.1.4 Cam drive engine 94 7.2 Application for a large number of boundary conditions 97 7.2.1 Cutting machine 98 7.2.2 Cam with twenty boundary conditions 99 7.2.3 Cam mock heart 102 xContent List Content List 11 7.2.4 Fourier analysis 107 7.3 Summary 108 Conclusion and Outlook 110 8.1 Conclusion 110 8.2 Outlook 112 List of Figures CXIV List of Tables CXVIII References CXX Appendix CXXXIV CXX References References CXXI References [AK89] Aarts E H L.; Korst J H Simulated Annealing anf Boltzmann Machines: A Stochastic Approach to Combinatiorial Optimization and Neural Computing In: Wiley Interscience Series in Discrete Mathematics and Optimization, (1989) [AMH98] Abramson David; Mohan Krishnamoorthy; Henry Dang Simulated annealing Cooling Schedule for the School Timetabling Problem In: Asia Pacific Journal of Operational Research, (1998) [AS04] Andresen Ulf; Singhose William A Simple Procedure for Modifying High-Speed Cam Profiles for Vibration Reduction In: Journal of Mechanical Design, 126 (2004) , S 1105–1108 [Ati04] Atiqullah, M M An Efficient Simple Cooling Schedule for Simulated Annealing In: Computaional Science and Its Applications, 3045 (2004) , DOI 10.1007/9783-540-24767-8_41, S 396–404 [AV87] Aarts Emile; Van Laarhoven P J Simulated annealing: Theory and Applications In: Springer Science and Business Media, (1987) [Ben04] Ben-Ameur, W Computing the Initial Temperature of Simulated Annealing In: Computational Optimization and Applications, 29 (2004) 3, DOI 10.1023/B:COAP.0000044187.23143.bd, S 369–385 [Ber82] Berzak N Optimization of Cam-Follower Systems With Kinematic and Dynamic Constraints In: Journal of Mechanical Design, 104 (1982) , S 29–33 [Boo01] Boor Carl de A Practical Guide to Splines In: Mathematics of Computation, 34 (2001) 27, DOI 10.2307/2006241 [Bru88] Bruce Hajek Cooling Schedule for Optimal Annealing In: Mathematics of Operations Research, 13 (1988) 2, S 311–330 [BSL04] Barnabás Aszódi; Szabolcs Czuczor; László Szirmay-Kalos NURBS FAIRING BY KNOT VECTOR OPTIMIZATION In: Journal of WSCG, 12 (2004) No.1-3 CXX References References CXXI [Bus03] Busetti, F Simulated annealing overview In: http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.66.5018&rep=rep1&ty pe=pdf (access date 28/10/2017), (2003) [CC95] Chew M.; Chuang C H Minimizing Residual Vibrations in Higli-Speed Cam-Foilower Systems Over a Range of Speeds In: Journal of Mechanical Design, 117 (1995) , S 166–172 [CDS06] Caigny De J.; Demeulenaere B.; Swevers J.; Schutter De J A Linear Programming Approach to the Optimal Design of Spline-Based Motion System Inputs In: PROCEEDINGS OF ISMA, (2006) , S 1287–1301 [Che69] Chen Fan Yu An Algorithm for Computing the Contour of a Slow Speed Cam In: Jourmal of Mechanisms, (1969) 2, S 171–175 [Che73] Chen Fan Yu Kinematic Synthesis of Cam Profiles for Prescribed Acceleration by a Finite Integration Method In: Journal of Engineering for Industry, (1973) , S 519–524 [Che82] Chen Fan Yu Mechanics and Design of Cam Mechanisms New York: Pergamon Press, 1982, ISBN 0080280498 [CL13] Chang Yong; Lin Rong-Fu Design and Analysis of Cam Mechanisms with a Flat-faced Follower by the Application of Support Function In: Advanced Materials Research, 711 (2013) [CN06] Corves Burkhard; Niggemann Henning CAD-based, graphical dimension synthesis of spherical and spatial cam transmissions with the programme CADiS In: Proceedings of EuCoMeS, the first European Conference on Mechanism Science, (2006) [CNM16] Chen H.; Nguyen T T N.; Müller M.; Kurtenbach S.; Pan C.; Hüsing M.; Corves B Application of a Cam Workbench for Education in Mechanical Engineering In: New Advances in Mechanisms, Mechanical Transmissions and Robotics, Mechanisms and Machine Science, 46 (2016) , S 177–186 References 122 122 References [CS98] Chan Yiu Wing; Sim Siang Kok Optimum Cam Design Using the Monte Carlo Optimization Technique In: Journal of Engineering Design, (1998) [CZJ13] Cardona S.; Zayas E E.; Jordi L.; Català P Synthesis of displacement functions by Bézier curves in constant-breadth cams with parallel flat-faced double translating and oscillating followers In: Mechanism and Machine Theory (MMT), (2013) 62, S 51–62 [Deb01] Deb Kalyanmoy Multi-Objective Optimization Evolutionary Algorithms: An Introduciton In: New York: John Wiley & Sons, (2001) [DG04] DasGupta Anirvan; Ghosh Amitabha On the Determination of Basic Dimensions of a Cam With a Translating RollerFollower In: Journal of Mechanical Design, 126 (2004) , S 143–147 [DP10] Desai H D.; Patel V K Computer Aided Kinematic and Dynamic Analysis of Cam and Follower In: Proceedings of the World Congress on Engineering, (2010) , S 1246–1250 [DPD13] Dinesh Shinde; Pradip Solanki; Deshmukh D.S.; Shekhawat S P Application of SA algorithm for design optimization ot automobile suspension system In: International Journal of Innovative Research in Science, Engineering and Technology, (2013) [DS16] Du Ke-Lin; Swamy M N S Search and Optimization by Metaheuristics: Techniques and Algorithms Inspired by Nature In: Springer International Publishing Switzerland, (2016) [Egl90] Eglese R W Simulated Annealing: A tool for Operational Research In: European Journal of Opeational Research, 46 (1990) , S 271–281 [Ele10] Eles Petru Simulated Annealing In: Department of Computer and Information Science, (2010) [Eng98] Engrand P A Multi-Objective Optimization Approach Based on Annealing and Its Application to Nuclear Fuel Management In: 5th International Conference on Nuclear Engineering, (1998) , S 416–423 References 123 123 References [FCL13] Fang Rui-Ming; Cai Ji-Fei; Li Guang Cam Curve Synthesis Method Based on Classical Splines In: Applied Mechanics and Materials, 312 (2013) , S 69–73 [FFS10] Fathi Al-Shamma; Faiz F Mustafa; Sahar M Saliman An Optimum Design of Cam Mechanisms with Roller Follower for Combined Effect of Impact and High Contact Loads In: Al-Khwarizmi Engineering Journal, (2010) 4, S 62–71 [FM98] FAROUKI R T.; MANJUNATHAIAH J Design of rational cam profiles with pythagorean-hodograph curves In: Mechanism and Machine Theory (MMT), 33 (1998) 6, S 669–682 [FN89] Foley, T A.; Nielson, G M Knot selection for parametric spline interpolation In: Mathematical Methods in Computer Aided Geometric Design, (1989) , S 261–272 [For12] Forrest W Flocker A Versatile Cam Profile for Controlling A Versatile Cam Profile for Controlling Interface Force in Multiple-Dwell Cam-Follower Systems In: Journal of Mechanical Design, 134 (2012) , 094501-1 094501-6 [GG12] Ge R Y.; Guo P Q Flexible Cam Profile Synthesis Method Using NURBS and its Optimization based on Genetic Algorithm In: Advanced Materials Research, 426 (2012) , S 69–72 [GM10] Gatti Gianluca; Mundo Domenico On the direct control of follower vibrations in cam–follower mechanisms In: Mechanism and Machine Theory (MMT), (2010) 45, S 23–35 [HJJ03] Henderson D.; Jacobson S.H.; Johnson A.W Theory and Practice of simulated Annealing, In: Glover F., Kochenberger G.A (eds) Handbook of Metaheuristics In: International Series in Operations Research & Management Science, 57 (2003) , S 287–293 [HK98] Hahmann, S.; Konz, S Knot-removal surface fairing using search strategies In: Computer-Aided Design, 30 (1998) 2, DOI 10.1016/S0010-4485(97)00078-X, S 131–138 References 124 124 References [HRA12] Haron H.; Rehman A.; Adi D I S.; Lim S P.; and Saba T Parameterization Method on B-Spline Curve In: Mathematical Problems in Engineering, 2012 (2012) [IGM16] IGMR Mock Heart Project In: http://www.igm.rwth-aachen.de/index.php?id=start&L=2, (2016) [Ing93] Ingber L Simulated annealing: Practive versus theory In: Mathematical and Computer Modelling, 18 (1993) No 11, S 29–57 [Jam96] James M Varanelli On the Acceleration of Simulated Annealing Doctoral thesis, Faculty of the School of Engineering and Applied Science, Faculty of the School of Engineering and Applied Science, 1996 [JI09] Jiang j K.; Iwai Y R Improving the B-Spline Method of Dynamically-Compensated Cam Design by Minimizing or Restricting Vibrations in High-Speed Cam-Follower Systems In: Journal of Mechanical Design, 131 (2009) , 041003-1 041003-8 [JK00] Jung H B; Kim K A New Parameterisation Method for NURBS Surface Interpolation In: International Journal of Advanced Manufacturing Technology, 16 (2000) 11, S 784–790 [JMC09] Jaimes Antonio Lopez; Martinez Saul Zapotecas; Coello A Carlos An Introduction to Multi-objective Optimization Techniques In: Nova Science Publishers, (2009) , S 1–29 [JSH09] Jing, Z.; Shaowei, F.; Hanguo, C Optimized NURBS Curve and Surface Fitting Using Simulated Annealing In: Second International Symposium on Computational Intelligence and Design, (2009) , DOI 10.1109/ISCID.2009.227, S 324–329 [JTR12] Jamkhande A K.; Tika S S.; Ramdasi S S.; Marathe N V Design of High Speed Engine's Cam Profile Using B-Spline Functions for Controlled Dynamics In: Society of Automotive Engineers, (2012) [KAK02] Kim J H.; Ahn K Y.; Kim S H Optimal synthesis of a spring-actuated cam mechanism using a cubic spline In: Journal of Mechanical Engineering Science, 216 (2002) , S 875–883 References 125 125 References [KGV83] Kirkpatrick S.; Gelatt C D.; Vecchi M P Optimization by Simulated Annealing In: American Association for the Advancement of Science, 220 (1983) 4598, S 671–680 [KI72] Kanzaki K; Itao K Polydyne Cam Mechanisms for Typehead Positioning In: Journal of Mechanical Design, 94 (1972) , S 250–254 [Kid15] Kido K Digital Fourier Analysis: Fundamentals Business Media New York: Springer, 2015 [KLH04] Kuang Jao-Hwa; Lin Ah-Der; Ho Tzong-Yow Dynamic Responses of a Globoidal Cam System In: Journal of Mechanical Design, 126 (2004) , S 909–915 [KS13] Kiran Tushar; Srivastavab S K Analysis and Simulation of Cam Follower Mechanism Using Polynomial Cam Profile In: International Journal of Multidisciplinary and Current Research, (2013) , S 211–215 [Lam03] Lampinen J Cam shape optimisation by genetic algorithm In: Computer-Aided Design, (2003) 35, S 727–737 [LH14] Liang Zan; Huang Jie Design of high-speed cam profiles for vibration reduction using command smoothing technique In: Journal of Mechanical Engineering Science, (2014) , S 1–7 [LHC08] Lai L Yuan; Hung P Jui; Chen H Jian Roller Guide Design and Manufacturing for Spatial Cylindrical Cams In: International Journal of Aerospace and Mechnical Engineering, (2008) , S 17– 23 [Lim99] Lim Choong-Gyoo A universal parametrization in B-spline curve and surface interpolation In: Computer Aided Geometric Design, 16 (1999) , S 407–422 [Liu94] Liu Yajie Effect of Knot Vectors on B-spline Curves and Surfaces In: State University of New York at Stony Brook, NY, (1994) References 126 126 References [LLW14] Li Zhijie; Li Fei; Wang Hongju A Study on Conjugate Cam Beating-up Mechanism In: Applied Mechanics and Materials, 668-669 (2014) , S 134–137 [MA04] Mermelstein S P.; Acar M Optimising cam motion using piecewise polynomials In: Engineering with Computers, (2004) 19, S 241–254 [MB85] MacCarth B L.; Burns N D An evaluation of spline functions for use in cam design In: Journal of Mechanical Engineering Science, 199 (1985) C3, S 239–248 [MET11] Moise V.; Ene M.; Tabara I A.; Dugaesescu I Determination of the Minimum Size of the Disk Cam with Translating Flat-Face Follower In: 13th World Congress in Mechanism and Machine Science, Guanajuato, México, (2011) [MH10] Magnier, L.; Haghighat, F Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network In: Building and Environment, 45 (2010) 3, DOI 10.1016/j.buildenv.2009.08.016, S 739–746 [MN09] Mandal M.; Naskar T K Introduction of control points in splines for synthesis of optimized cam motion program In: Mechanism and Machine Theory (MMT), (2009) 44, S 255–271 [MT76a] Matthew G K; Tesar D Cam System Design: The Dynamic Synthesis and Analysis of the One Degree of Freedom Model In: Mechanism and Machine Theory (MMT), 11 (1976) , S 247–257 [MT76b] Matthew G K.; Tesar D Cam System Design: The Dynamic Synthesis and Analysis of the One Degree of Freedom Model In: Mechanism and Machine Theory (MMT), 11 (1976) 4, S 247–257 [NA98] Nourani, Y.; Andresen, B A comparison of simulated annealing cooling strategies In: Journal of Physics A: Mathematical and General, 31 (1998) 41, DOI 10.1088/0305-4470/31/41/011, S 8373–8385 References 127 127 References [NK07a] Nguyen Vu-Thinh; Kim Do-Joong Flexible cam profile synthesis method using smoothing spline curves In: Mechanism and Machine Theory (MMT), (2007) 42, S 825–838 [NK07b] Nguyen Vu-Thinh; Kim Do-Joong Cam profile smoothing by modified spline curves In: 12th IFToMM World Congress, Besanỗon, France, (2007) [NKH17a] Nguyen T T N.; Kurtenbach S.; Hüsing M.; Corves B Improving the kinematics of motion curves for cam mechanisms using NURBS In: New Advances in Mechanisms, Mechanical Transmissions and Robotics Mechanisms and Machine Science, 46 (2017) [NKH17b] Nguyen T T N.; Kurtenbach S.; Hüsing M.; Corves B Evaluating the knot vector to synthesize the cam motion using NURBS In: Computational Kinematics Mechanisms and Machine Science, 50 (2017) [NM12] Naskar T K.; Mishra R Introduction of control points in B-splines for synthesis of ping finite optimized cam motion program In: Journal of Mechanical Science and Technology, (2012) 26, S 489–494 [Nor02] Norton Robert Cam Design and Manufacturing Handbook New York: Industrial Press NYC, 2002, ISBN 0831133678 [Nor99] Norton, R L Design of machinery: an introduction to the synthesis and analysis of mechanisms and machines London: McGraw-Hill, 2nd, 1999, ISBN 0070483957 [NPS98] Neamtu Marian; Pottmann Helmut; Schumaker L Larry Designing NURBS cam profiles using trigonometric splines In: Journal of Mechanical Design, 120 (1998) , S 175–180 [NS00] Nist I B.; Sullivan F The Metropolis Algorithm In: Computing in Science and Engineering, (2000) [NSJ14] Nagy Lajos; Szabó Tamás; Jakab Endre Functional Analysis and Mechatronic Design of a Cam Controlled Mechanism, 2014 References 128 128 References [NW99] Nocedal Jorge; Wright J Stephen Numerical Optimization In: Springer Verlag New York, Inc, (1999) [Par01] Park, H Choosing nodes and knots in closed B-spline curve interpolation to point data In: Computer-Aided Design, 33 (2001) 13, DOI 10.1016/S0010-4485(00)001330, S 967–974 [Pie91] Piegl Les On NURBS: A Survey In: IEEE Computer Graphics and Applications, 11 (1991) 1, S 55–71 [PS12] Pridgen Brice; Singhose William Comparison of Polynomial Cam Profiles and Input Shaping for Driving Flexible Systems In: Journal of Mechanical Design, 134 (2012) [PT97] Pieg Les; Tiller Wayne The Nurbs Book Verlag Berlin Heidelberg: Springer, Second editor, 1997 [QLL05] Qiu Hua; Lin Chang-Jun; Li Zi-Ye; Ozaki Hiroaki; Wang Jian; Yue Yong A universal optimal approach to cam curve design and its applications In: Mechanism and Machine Theory (MMT), (2005) 40, S 669–692 [SA04] Shamsuddin Hj Siti Mariyam; Ahmed Ali Mahmoud A Hybrid Parameterization Method for NURBS In: Proceedings of the International Conference on Computer Graphics, Imaging and Visualization, (2004) , S 15–20 [Sar14] Saruhan, H Differential evolution and simulated annealing algorithms for mechanical systems design In: Engineering Science and Technology, an International Journal, 17 (2014) 3, DOI 10.1016/j.jestch.2014.04.006, S 131–136 [Sat14] Sateesh N Improvement in motion characteristics of cam follower systems using NURBS In: International Journal on Design and Manufacturing Technologies,, (2014) 2, S 15–21 [SBK15] Sarma Nabajit; BakulBarua Parimal; Kalita Diganta Optimization Model for Disc Cam Flat Faced Follower Mechanism CXXX References References 129 In: International Journal of Engineering Trends and Technology, 29 (2015) 1, S 6–11 [SD90] Sadek K S H.; Daadbin A Improved cam profiles for high speed machinery using polynomial curve fitting In: Journal of Process Mechanical Engineering, 204 (1990) , S 127–132 [SGS16] Sahu Laxmi Kant; Gupta Om Prakash; Sahu Meena Design of Cam Profile using Higher Order B-Spline In: International Journal of Innovative Science, Engineering and Technology, (2016) 2, S 327–335 [She11] Shene C.-K Introduction to Computing with Geometry Notes In: Department of Computer Science Michigan Technological University, (2011) [SJ96] Srinivasan L N.; Jeffrey Ge Q C^2 Piecewise Bezier harmonics for motion specification of high speed cam mechanisms In: Journal of Mechanical Design, (1996) [SJ98] Srinivasan L N.; Jeffrey Ge Q Designing Dynamically Compensated and Robust Cam Profiles With BernsteinBezier Harmonic Curves In: Journal of Mechanical Design, 120 (1998) , S 40–45 [SL13] Shala Ahmet; Likaj Rammë Analytical Method for Synthesis of Cam Mechanism In: International Journal of Current Engineering and Technology, (2013) 2, S 432–435 [SMA10] Sadettin KAPUCU; M Taylan DAS; Ali KILIÇ Cam Motion Tuning of Shedding Mechanism for Vibration Reduction of Heald Frame In: Gazi University Journal of Science, 23 (2010) 2, S 227–232 [SMH16] Sameh Zribi; Marouen Mejerbi; Hatem Tlijani; Jilani Knani Comparison between motions profiles applied to flexible manipulator arm In: Proceesings of Engineering and Technology, (2016) , S 565–571 [Son07] Sonmez, F O Shape optimization of 2D structures using simulated annealing In: Computer Methods in Applied Mechanics and Engineering, 196 (2007) 35-36, DOI 10.1016/j.cma.2007.01.019, S 3279–3299 CXXX References References 130 [SPB09] Simolowo O E.; Phil M.; Bamiro O A Roller-Cam Systems Design: Development of a Profile Analysis Software In: The Pacific Journal of Science and Technology, 10 (2009) 1, S 20 [SRB06] Sarfraz, M.; Riyazuddin, M.; Baig, M H Capturing planar shapes by approximating their outlines In: Journal of Computational and Applied Mathematics, 189 (2006) 1-2, DOI 10.1016/j.cam.2005.10.005, S 494–512 [SRJ09] Sateesh N.; Rao C S P.; Janardhan Reddy T A Optimisation of cam-follower motion using B-splines In: International Journal of Computer Integrated Manufacturing, 22 (2009) 6, S 515–523 [SSP00] SUPPAPITNARM, A.; SEFFEN, K A.; PARKS, G T.; CLARKSON, P J A SIMULATED ANNEALING ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION In: Engineering Optimization, 33 (2000) 1, DOI 10.1080/03052150008940911, S 59–85 [ST11] SUN Jianping; TANG Zhaoping International Conference on Power Electronics and Engineering Application, 2011 [SW89] Sandgren E.; West R L Shape Optimization of Cam Profiles Using a B-Spline Representation In: Journal of Mechanisms, Transmissions, and Automation in Design, 111 (1989) , S 195–201 [TD95] Thompson, J.; Dowsland, K A General Cooling Schedules for a Simulated Annealing Based Timetabling System In: Practice and Theory of Automated Timetabling, 1153 (1995) , DOI 10.1007/3540-61794-9_70, S 345–363 [TH88] Tsay D M.; Huey C O Cam Motion Synthesis Using Spline Functions In: Journal of Mechanisms, Transmissions, and Automation in Design, 110 (1988) , S 161–165 [TH96] Tsay Der Min; Hwang Guan Shyong The Synthesis of Follower Motions of Camoids Using Nonparametric B-Splines In: Journal of Mechanical Design, 118 (1996) , S 138–143 [TL96] Tsay Der Min; Lin Bor Jeng Improving the geometry design of cylindrical cams using nonparametric rational CXXXII References References 131 B-splines In: Computer-Aided Design, 28 (1996) 1, S 5–15 [TLB94] TING KWUN-LON; LEE N L.; BRANDAN G H Synthesis of polynomial and other curves with the Bezier technique In: Mechanism and Machine Theory (MMT), 29 (1994) 6, S 887–903 [TMB13] Tsiafis I.; Mitsi S.; Bouzakis K D.; Papadimitriou A Optimal Design of a Cam Mechanism with Translating Flat‐Face Follower using Genetic Algorithm In: Tribology in Industry, 35 (2013) 4, S 255–260 [TSS16] Tamboli Ketan; Singh Taranjeetsingh; Sheth Saurin; Patel Tejas Dynamic Analysis of High Speed Cam Follower System using MATLAB In: International Journal of Current Engineering and Technology, (2016) 2, S 407–412 [TW93] Tsay Der Min; Wei Hsien Min Design and machining of cylindrical cams with translating conical followers In: Computer-Aided Design, 25 (1993) 10, S 655–661 [UPS03] Uicker John; Pennock Gordon; Shigley Joseph Theory of Machines and Mechanisms New York: Oxford University Press, Inc, 3rd, 2003, ISBN 0-19-515598-X [VDI14], VDI14 Construction of planar cam mechanisms - Practical examples Norm, VDI 2142, Part 3, Verein Deutscher Ingenieure, Beuth Verlag GmbH: 10772 Berlin, 2014 [VDI17] VDI17 Construction of planar cam mechanisms – Fundamentals, profile calculation, and design (in German) Norm, VDI 2142, Part 1, Verein Deutscher Ingenieure, Beuth Verlag GmbH: 10772 Berlin, 2017 [Wei09] Wei Lü Curves with chord length parameterization In: Computer Aided Geometric Design, 26 (2009) 3, S 342–350 [Woo96] Woosuk Chang Repetitive control of a high-speed cam-follower system Master thesis, Bethlehem, Pennsylvania, U.S: Mechanical Engineering, Lehigh University, 1996 CXXXII References References 132 [WR75] Wiederrich J L.; Roth B Dynamic Synthesis of Cam Using Finite Trigonometric Series In: Journal of Engineering for Industry, 97 (1975) 1, S 287–293 [WY96] Wang T Li-Chun; Yang Yu-Tsai Computer aided design of cam motion programs In: Computers in Industry, 28 (1996) , S 151–161 [XSL12] Xuan Guantao; Shao Yuanyuan; Lü Zhaoqin Reduction of Residual Vibrations in High-speed Cam Mechanisms Using Nonuniform Rational B-splines In: Advanced Materials Research, 510 (2012) , S 90–95 [XZ09] Xiap Hansong; Zu W Jean Cam profile optimization for a new cam drive In: Journal of Mechanical Science and Technology, (2009) 23, S 2592–2602 [YL95] Yu Q.; Lee H P A New Family of Parameterized Polynomials for Cam Motion Synthesis In: Journal of Mechanical Design, 117 (1995) , S 653–655 [YL96] Yu Q.; Lee H P Optimum design of cam mechanisms with oscillating flat-face follower In: Mechanics Research Communications, 23 (1996) 2, S 181–187 [YL98] Yu Q.; Lee H P Size optimization of cam mechanisms with translating roller followers In: Instn Mech Engrs, 212 (1998) , S 381–386 [YR93] Yoon K.; Rao S S Cam Motion Synthesis Using Cubic Splines In: Journal of Mechanical Design, 115 (1993) 3, S 441–446 [YS02] Ye Zhonghe; Smith R Michael Synthesis of constant-breadth cam mechanisms In: Mechanism and Machine Theory (MMT), (2002) 37, S 941–953 [YTH96] Yan Hong-Sen; Tsai Mi-Ching; Hsu Meng-Hui A Variable-Speed Method for Improving Motion Characteristics of Cam-Follower Systems In: Journal of Mechanical Design, 118 (1996) 2, S 250–258 [YTZ14] Yang J.; Tan J.; Zeng L.; Liu S Design and analysis of cam lifting curve in applying to transient and heavy load In: MECHANIKA, 20 (2014) 3, S 299–304 CXXXIV References [ZCJ09] Appendix 133 Zayas E E.; Cardona S.; Jordi L Analysis and synthesis of the displacement function of the follower in constantbreadth cam mechanisms In: Mechanism and Machine Theory (MMT), (2009) 44, S 1938–1949 CXXXIV References Appendix 134 Appendix As shown in Eqs (3.5) and on (3.6), pth-degree functionof �p�,�th-degree (�) is � computed, which is based thethedegree � −B-spline The basis computation �,� (�) is therefore generated by a triangular as shown in Fig 0-1 [PT97] Fig 0-1: Triangular for computing B-spline basis function ���,�� (�) ... describe the motion of the follower is an important step in cam design In this thesis, Non- Uniform Rational B- Spline (NURBS) is used to describe motion curves of the follower With the properties of. .. N(u) B- spline basis function [-] N1(u) The first derivative of B- spline basis function [-] N2(u) The second derivative of B- spline basis function [-] N3(u) The third derivative of B- spline basis... Angle of camshaft [rad or degree] a Lower angle of camshaft [rad or degree] b Upper angle of camshaft [rad or degree] n Number of boudary conditions [-] p Degree of functions [-] m Number of knots

Ngày đăng: 18/04/2019, 09:24

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan