Đề 2 Bài 1: Cho biểu thức: P = ( ) + + + 1 122 : 11 x xx xx xx xx xx a,Rút gọn P b,Tìm x nguyên để P có giá trị nguyên. Bài 2: Cho phơng trình: x 2 -( 2m + 1)x + m 2 + m - 6= 0 (*) a.Tìm m để phơng trình (*) có 2 nghiệm âm. b.Tìm m để phơng trình (*) có 2 nghiệm x 1 ; x 2 thoả mãn 3 2 3 1 xx =50 Bài 3: Cho phơng trình: ax 2 + bx + c = 0 có hai nghiệm dơng phân biệt x 1 , x 2 Chứng minh: a,Phơng trình ct 2 + bt + a =0 cũng có hai nghiệm dơng phân biệt t 1 và t 2 . b,Chứng minh: x 1 + x 2 + t 1 + t 2 4 Bài 4: Cho tam giác có các góc nhọn ABC nội tiếp đờng tròn tâm O . H là trực tâm của tam giác. D là một điểm trên cung BC không chứa điểm A. a, Xác định vị trí của điẻm D để tứ giác BHCD là hình bình hành. b, Gọi P và Q lần lợt là các điểm đối xứng của điểm D qua các đờng thẳng AB và AC . Chứng minh rằng 3 điểm P; H; Q thẳng hàng. c, Tìm vị trí của điểm D để PQ có độ dài lớn nhất. Bài 5: Cho hai số dơng x; y thoả mãn: x + y 1 Tìm giá trị nhỏ nhất của: A = xyyx 5011 22 + + Đáp án Bài 1: (2 điểm). ĐK: x 1;0 x a, Rút gọn: P = ( ) ( ) ( ) 1 12 : 1 12 2 x x xx xx z <=> P = 1 1 )1( 1 2 + = x x x x b. P = 1 2 1 1 1 += + xx x Để P nguyên thì )(121 9321 0011 4211 Loaixx xxx xxx xxx == === === === Vậy với x= { } 9;4;0 thì P có giá trị nguyên. Bài 2: Để phơng trình có hai nghiệm âm thì: ( ) ( ) <+=+ >+= ++= 012 06 06412 21 2 21 2 2 mxx mmxx mmm 3 2 1 0)3)(2( 025 < < >+ >= m m mm b. Giải phơng trình: ( ) 50)3(2 3 3 =+ mm = + = =+=++ 2 51 2 51 0150)733(5 2 1 22 m m mmmm Bài 3: a. Vì x 1 là nghiệm của phơng trình: ax 2 + bx + c = 0 nên ax 1 2 + bx 1 + c =0. . Vì x 1 > 0 => c. .0 1 . 1 1 2 1 =++ a x b x Chứng tỏ 1 1 x là một nghiệm dơng của ph- ơng trình: ct 2 + bt + a = 0; t 1 = 1 1 x Vì x 2 là nghiệm của phơng trình: ax 2 + bx + c = 0 => ax 2 2 + bx 2 + c =0 vì x 2 > 0 nên c. 0 1 . 1 2 2 2 =+ + a x b x điều này chứng tỏ 2 1 x là một nghiệm dơng của phơng trình ct 2 + bt + a = 0 ; t 2 = 2 1 x Vậy nếu phơng trình: ax 2 + bx + c =0 có hai nghiẹm dơng phân biệt x 1 ; x 2 thì phơng trình : ct 2 + bt + a =0 cũng có hai nghiệm dơng phân biệt t 1 ; t 2 . t 1 = 1 1 x ; t 2 = 2 1 x b. Do x 1 ; x 1 ; t 1 ; t 2 đều là những nghiệm dơng nên t 1 + x 1 = 1 1 x + x 1 2 t 2 + x 2 = 2 1 x + x 2 2 Do đó x 1 + x 2 + t 1 + t 2 4 Bài 4 a. Giả sử đã tìm đợc điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành . Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên CH AB và BH AC => BD AB và CD AC . Do đó: ABD = 90 0 và ACD = 90 0 . Vậy AD là đờng kính của đờng tròn tâm O Ngợc lại nếu D là đầu đờng kính AD của đờng tròn tâm O thì tứ giác BHCD là hình bình hành. b) Vì P đối xứng với D qua AB nên APB = ADB nhng ADB = ACB nhng ADB = ACB Do đó: APB = ACB Mặt khác: AHB + ACB = 180 0 => APB + AHB = 180 0 Tứ giác APBH nội tiếp đợc đờng tròn nên PAB = PHB Mà PAB = DAB do đó: PHB = DAB Chứng minh tơng tự ta có: CHQ = DAC Vậy PHQ = PHB + BHC + CHQ = BAC + BHC = 180 0 Ba điểm P; H; Q thẳng hàng c). Ta thấy APQ là tam giác cân đỉnh A Có AP = AQ = AD và PAQ = 2BAC không đổi nên cạnh đáy PQ đạt giá trị lớn nhất AP và AQ là lớn nhất hay AD là lớn nhất H O P Q D C B A D lµ ®Çu ®êng kÝnh kÎ tõ A cña ®êng trßn t©m O . dơng x; y thoả mãn: x + y 1 Tìm giá trị nhỏ nhất của: A = xyyx 5011 22 + + Đáp án Bài 1: (2 điểm). ĐK: x 1;0 x a, Rút gọn: P = ( ) ( ) ( ) 1 12 : 1 12 2. đờng tròn tâm O . H là trực tâm của tam giác. D là một điểm trên cung BC không chứa điểm A. a, Xác định vị trí của điẻm D để tứ giác BHCD là hình bình