Đề 14 Câu 1: x- 4(x-1) + x + 4(x-1) 1 cho A= ( 1 - ) x 2 - 4(x-1) x-1 a/ rút gọn biểu thức A. b/ Tìm giá trị nguyên của x để A có giá trị nguyên. Câu 2: Xác định các giá trị của tham số m để phơng trình x 2 -(m+5)x-m+6 =0 Có 2 nghiệm x 1 và x 2 thoã mãn một trong 2 điều kiện sau: a/ Nghiệm này lớn hơn nghiệm kia một đơn vị. b/ 2x 1 +3x 2 =13 Câu 3Tìm giá trị của m để hệ phơng trình mx-y=1 m 3 x+(m 2 -1)y =2 vô nghiệm, vô số nghiệm. Câu 4: tìm max và min của biểu thức: x 2 +3x+1 x 2 +1 Câu 5: Từ một đỉnh A của hình vuông ABCD kẻ hai tia tạo với nhau một góc 45 0 . Một tia cắt cạnh BC tại E cắt đờng chéo BD tại P. Tia kia cắt cạnh CD tại F và cắt đờng chéo BD tại Q. a/ Chứng minh rằng 5 điểm E, P, Q, F và C cùng nằm trên một đờng tròn. b/ Chứng minh rằng: S AEF =2S AQP c/ Kẻ trung trực của cạnh CD cắt AE tại M tính số đo góc MAB biết CPD=CM h ớng dẫn Câu 1: a/ Biểu thức A xác định khi x2 và x>1 ( x-1 -1) 2 + ( x-1 +1) 2 x-2 A= . ( ) (x-2) 2 x-1 x- 1 -1 + x-1 + 1 x- 2 2 x- 1 2 = . = = x-2 x-1 x-1 x-1 b/ Để A nguyên thì x- 1 là ớc dơng của 1 và 2 * x- 1 =1 thì x=0 loại * x- 1 =2 thì x=5 vậy với x = 5 thì A nhận giá trị nguyên bằng 1 Câu 2: Ta có x = (m+5) 2 -4(-m+6) = m 2 +14m+10 để phơng trìnhcó hai nghiệmphân biệt khi vàchỉ khi m-7-4 3 và m-7+4 3 (*) 1 1 Q P M F E D C B A a/ Giả sử x2>x1 ta có hệ x 2 -x 1 =1 (1) x 1 +x 2 =m+5 (2) x 1 x 2 =-m+6 (3) Giải hệ tađợc m=0 và m=-14 thoã mãn (*) b/ Theo giả thiết ta có: 2x 1 +3x 2 =13 (1) x 1 +x 2 = m+5 (2) x 1 x 2 =-m+6 (3) giải hệ ta đợc m=0 và m= 1 Thoả mãn (*) Câu 3: *Để hệ vô nghiệm thì m/m 3 =-1/(m2-1) 1/2 3m 3 -m=-m3 m 2 (4m 2 - 1)=0 m=0 m=0 3m 2 -1-2 3m 2 -1 m=1/2 m=1/2 m *Hệvô số nghiệm thì: m/m 3 =-1/(m 2 -1) =1/2 3m 3 -m=-m3 m=0 3m 2 -1= -2 m=1/2 Vô nghiệm Không có giá trị nào của m để hệ vô số nghiệm. Câu 4: Hàm số xác định với x(vì x2+10) x 2 +3x+1 gọi y 0 là 1 giá trịcủa hàmphơng trình: y 0 = x 2 +1 (y 0 -1)x 2 -6x+y 0 -1 =0 có nghiệm *y 0 =1 suy ra x = 0 y 0 1; =9-(y 0 -1) 2 0 (y 0 -1) 2 9 suy ra -2 y 0 4 Vậy: y min =-2 và y max =4 Câu 5: Giải a/ A 1 và B 1 cùng nhìn đoạn QE dới một góc 45 0 tứ giác ABEQ nội tiếp đợc. FQE = ABE =1v. chứng minh tơng tự ta có FBE = 1v Q, P, C cùng nằm trên đờng tròn đờng kinh EF. b/ Từ câu a suy ra AQE vuông cân. AE AQ = 2 (1) tơng tự APF cũng vuông cân AF AB = 2 (2) từ (1) và (2) AQP ~ AEF (c.g.c) AEF AQP S S = ( 2 ) 2 hay S AEF = 2S AQP c/ §Ó thÊy CPMD néi tiÕp, MC=MD vµ ∠ APD= ∠ CPD ⇒ ∠ MCD= ∠ MPD= ∠ APD= ∠ CPD= ∠ CMD ⇒MD=CD ⇒ ∆MCD ®Òu ⇒ ∠ MPD=60 0 mµ ∠ MPD lµ gãc ngoµi cña ∆ABM ta cã ∠ APB=45 0 vËy ∠ MAB=60 0 - 45 0 =15 0 . trên đờng tròn đờng kinh EF. b/ Từ câu a suy ra AQE vuông cân. AE AQ = 2 (1) tơng tự APF cũng vuông cân AF AB = 2 (2) từ (1) và (2) AQP ~ AEF (c.g.c). max và min của biểu thức: x 2 +3x+1 x 2 +1 Câu 5: Từ một đỉnh A của hình vuông ABCD kẻ hai tia tạo với nhau một góc 45 0 . Một tia cắt cạnh BC tại E cắt