Đối với khoa học vật liệu hiện đại, hệ tinh thể nano của các oxit kim loại đang ngày càng được quan tâm không chỉ bởi những đặc điểm cấu trúc đặc trưng mà còn do hoạt tính xúc tác của chúng được ứng dụng khá rộng rãi trong công nghiệp. Trong các ứng dụng đó, hoạt tính của hệ các oxit kim loại được áp dụng cho các quá trình chuyển đổi hóa học, phân hủy quang chất độc và sản xuất năng lượng xanh
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC HUẾ TRƢỜNG ĐẠI HỌC KHOA HỌC LÊ THỊ THANH TUYỀN NGHIÊN CỨU T NG H P VẬT LIỆU CeO2/TiO2 NANO ỐNG VÀ HOẠT TÍNH XÚC TÁC PHÂN HỦY QUANG HĨA TRONG VÙNG KHẢ KIẾN LUẬN ÁN TIẾN SĨ HÓA LÝ THUYẾT VÀ HÓA LÝ HUẾ - NĂM 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC HUẾ TRƢỜNG ĐẠI HỌC KHOA HỌC LÊ THỊ THANH TUYỀN NGHIÊN CỨU T NG H P VẬT LIỆU CeO2/TiO2 NANO ỐNG VÀ HOẠT TÍNH XÚC TÁC PHÂN HỦY QUANG HÓA TRONG VÙNG KHẢ KIẾN Chuyên ngành: Hóa lý thuyết Hóa lý Mã số: 62.44.01.19 LUẬN ÁN TIẾN SĨ HÓA LÝ THUYẾT VÀ HÓA LÝ Ngƣời hƣớng dẫn khoa học: GS.TS Trần Thái Hòa TS Trƣơng Quý Tùng HUẾ - NĂM 2019 LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu riêng tôi, số liệu kết nghiên cứu nêu luận án trung thực, đƣợc đồng tác giả cho phép sử dụng chƣa đƣợc cơng bố cơng trình khác Việc tham khảo nguồn tài liệu đƣợc trích dẫn ghi nguồn tài liệu tham khảo quy định Tác giả luận án Lê Thị Thanh Tuyền i LỜI CẢM ƠN Tơi xin bày tỏ lòng biết ơn chân thành sâu sắc đến GS.TS Trần Thái Hòa, TS Trương Quý Tùng, người thầy hướng dẫn tận tình, chu đáo tạo điều kiện tốt giúp đỡ thời gian thực luận án Xin chân thành cảm ơn PGS.TS Đinh Quang Khiếu, PGS.TS Trần Thị Vân Thi, PGS.TS Nguyễn Hải Phong tạo niềm tin, động viên, tận tình giúp đỡ tơi suốt thời gian học tập, nghiên cứu hồn thành luận án Tơi xin trân trọng cảm ơn khoa Hóa học, phòng Đào tạo Sau đại học, Trường Đại học Khoa học - Đại học Huế; Sở giáo dục Đào tạo TP Đà Nẵng, Ban Giám hiệu trường THPT Chuyên Lê Quý Đôn TP Đà Nẵng tạo điều kiện thuận lợi cho tơi hồn thành luận án Tơi xin chân thành cảm ơn trường Cao Đẳng Cơng nghiệp Huế; Khoa Hóa học, trường Đại học Khoa học Tự nhiên Hà Nội; Viện Hóa học - Viện Hàn lâm Khoa học Cơng nghệ Việt Nam; Khoa Hóa học, trường Đại học Sư phạm Hà Nội; Phòng thí nghiệm Hiển vi điện tử, Viện Vệ sinh dịch tễ Trung ương; Ban Giám đốc Trung tâm Kiểm nghiệm Dược Thừa Thiên Huế; Trung tâm Nghiên cứu Vật lý - Quang phổ - Huỳnh quang Trường Đại học Duy Tân giúp đỡ tơi tiến hành phân tích mẫu thí nghiệm luận án Tôi xin trân trọng cảm ơn TS Đào Anh Quang, NCS Trần Thanh Tâm Toàn, Cử nhân Nguyễn Minh Quân, Nguyễn Thị Vũ Tuyết, Nguyễn Cao Duy Ân, Ths Nguyễn Quỳnh Trâm giúp đỡ tận tình q trình thực nghiệm hồn thành luận án Cuối tơi xin bày tỏ lòng biết ơn sâu sắc đến người thân gia đình tôi, thầy cô, đồng nghiệp, bạn bè gần xa, học sinh yêu quý dành cho tình cảm, động viên, chia sẻ giúp đỡ suốt q trình tơi học tập nghiên cứu Đặc biệt, xin dành lời cảm ơn sâu nặng đến chồng hai – người đồng hành tạo chỗ dựa vững cho tơi suốt hành trình thực đam mê Tơi xin trân trọng cảm ơn! Thừa Thiên Huế, tháng năm 2019 Tác giả luận án Lê Thị Thanh Tuyền ii MỤC LỤC Trang DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT v DANH MỤC CÁC BẢNG vi DANH MỤC CÁC HÌNH viii MỞ ĐẦU Chƣơng T NG QUAN TÀI LIỆU 1.1 TỔNG QUAN VỀ PHẢN ỨNG XÚC TÁC QUANG HÓA 1.1.1 Các chất xúc tác quang bán dẫn 1.1.2 Cơ chế phản ứng xúc tác quang hóa 1.2 TỔNG QUAN VỀ VẬT LIỆU TiO2 1.3 VẬT LIỆU NANO ỐNG TiO2 PHA TẠP CeO2 (CeO2/TiO2-NTs) 12 1.3.1 Vật liệu nano ống TiO2 (TiO2-NTs) 13 1.3.2 Vật liệu nano ống TiO2 pha tạp CeO2 (CeO2/TiO2-NTs) 20 1.4 TỔNG QUAN ỨNG DỤNG CỦA PHƢƠNG PHÁP ĐÁP ỨNG BỀ MẶT TRONG THIẾT KẾ TỐI ƢU 24 Chƣơng NỘI DUNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU 28 2.1 MỤC TIÊU .28 2.2 NỘI DUNG .28 2.2.1 Nghiên cứu tổng hợp vật liệu TiO2 cấu trúc nano ống 28 2.2.2 Nghiên cứu tổng hợp vật liệu TiO2 cấu trúc nano ống pha tạp với CeO2 để tạo CeO2/TiO2-NTs 28 2.2.3 Nghiên cứu ứng dụng chất xúc tác CeO2/TiO2-NTs phản ứng phân hủy quang hóa chất màu hữu vùng xạ khả kiến 28 2.3 PHƢƠNG PHÁP NGHIÊN CỨU 28 2.3.1 Phƣơng pháp nhiễu xạ tia X (X-ray diffraction, XRD) 28 2.3.2 Hiển vi điện tử truyền qua (Transmission Electron Microscopy, TEM) 29 2.3.3 Hiển vi điện tử quét (Scanning Electron Microscopy, SEM) 30 2.3.4 Phổ tán s c n ng lƣợng tia X (Energy Dispersive X-ray Spectrometry, EDX) 31 2.3.5 Phổ quang điện tử tia X (X-ray photoelectron spectroscopy, XPS) .33 2.3.6 Đẳng nhiệt hấp phụ - khử hấp phụ nitơ (Nitrogen Adsorption and Desorption Isotherms) 34 2.3.7 Phổ phản xạ khuếch tán tử ngoại khả kiến (UV-Visible Diffuse Reflectance Spectroscopy, UV-Vis DRS) 36 iii 2.3.8 Phổ hấp thụ tử ngoại – khả kiến (UV-Vis Absorption Spectroscopy) .37 2.3.9 Phổ Raman (Raman spectroscopy) 38 2.3.10 Phổ hấp thụ nguyên tử (Atomic Absorption Spectrophotometric – AAS) 39 2.3.11 Phổ huỳnh quang (Fluorescence spectroscopy) .40 2.3.11 Nghiên cứu động học hấp phụ 41 2.3.12 Nghiên cứu đẳng nhiệt hấp phụ 42 2.4 THỰC NGHIỆM 43 2.4.1 Hóa chất 43 2.4.2 Tổng hợp ống nano TiO2 (TiO2-NTs) .44 2.4.3 Tổng hợp vật liệu CeO2/TiO2-NTs 45 2.4.4 Xác định điểm đẳng điện CeO2/TiO2-NTs 46 2.4.5 Xúc tác quang phân hủy MB CeO2/TiO2-NTs 46 2.4.6 Phƣơng pháp đo nhu cầu oxy hóa học (COD) 48 2.4.7 Phƣơng pháp quy hoạch hóa thực nghiệm bốn yếu tố nhằm tối ƣu hóa điều kiện tổng hợp CeO2/TiO2-NTs cho phản ứng xúc tác quang hóa phân hủy MB 49 Chƣơng KẾT QUẢ VÀ THẢO LUẬN 50 3.1 TỔNG HỢP NANO ỐNG TiO2 PHA TẠP CeO2 (CeO2/TiO2-NTs) 50 3.1.1 Nghiên cứu tổng hợp nano ống TiO2 (TiO2-NTs) 50 3.1.2 Nghiên cứu tổng hợp nano ống TiO2 pha tạp CeO2 (CeO2/TiO2-NTs) 59 3.2 HOẠT TÍNH XÚC TÁC QUANG HÓA CỦA CeO2/TiO2-NTs 76 3.2.1 Nghiên cứu khả n ng hấp phụ chất màu MB vật liệu CeO2/TiO2-NTs 76 3.2.2 Nghiên cứu phản ứng phân hủy quang hóa chất màu MB vùng ánh sáng khả kiến vật liệu CeO2/TiO2-NTs 80 KẾT LUẬN 119 DANH MỤC CÁC CƠNG TRÌNH NGHIÊN CỨU 121 TÀI LIỆU THAM KHẢO 122 PHỤ LỤC 148 iv DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT AAS Atomic Absorption Spectrophotometric (Phổ hấp thụ nguyên tử) ANOVA BBD Analysis of Variance (Phân tích phƣơng sai) Box–Behnken Design BET Brunauer-Emmett-Teller BCG Bromocresol Green BTB Bromothymol Blue CB Conduction band (Vùng dẫn) CeO2/TiO2-NTs CCD CeO2-doped TiO2 nanotubes (Nano ống TiO2 pha tạp CeO2) Central Composite Design COD Chemical oxygen demand (Nhu cầu oxy hóa học) Eg Energy of band gap (N ng lƣợng vùng cấm) EDX Energy Dispersive X-ray Spectrometry (Phổ tán s c n ng lƣợng tia X) IUPAC Internationnal Union of Pure and Applied Chemistry MB RSM Methylene Blue (Xanh methylene) Response surface methodology SEM Scanning Electron Microscopy (Hiển vi điện tử quét) SBET P25 Diện tích bề mặt riêng tính theo phƣơng trình BET Bột TiO2 với tỉ lệ anatase/rutile 70/30 pHPZC Điểm đẳng điện TEM Transmission Electron Microscopy (Hiển vi điện tử truyền qua) TiO2-NTs TiO2 nanotubes (Nano ống TiO2) TiO2-NTs 550 Nano ống TiO2 nung 550 oC UV-Vis UV-Vis Absorption Spectroscopy (Phổ hấp thụ tử ngoại – khả kiến) UV-Vis DRS UV-Visible Diffuse Reflectance Spectroscopy (Phổ phản xạ khuếch tán tử ngoại khả kiến) VB Valence Band (Vùng hóa trị) XPS X-ray photoelectron spectroscopy (Phổ quang điện tử tia X) XRD X-ray diffraction (Phƣơng pháp nhiễu xạ tia X) v DANH MỤC CÁC BẢNG Bảng 1.1 Cấu trúc tinh thể dạng thù hình TiO2 Bảng 1.2 So sánh phương pháp điển hình tổng hợp vật liệu TiO2-NTs 14 Bảng 1.3 nh hưởng tiền chất, điều kiện thủy nhiệt trình rửa đến hình thái TiO2-NTs 16 Bảng 1.4 nh hưởng trình rửa đến hình thái TiO2-NTs 19 Bảng 1.5 Tổng hợp cơng trình nghiên cứu tổng hợp CeO2/TiO2 theo phương pháp sol –gel 23 Bảng 2.1 Các loại hóa chất sử dụng luận án 43 Bảng 2.2 Thông số thiết lập với bốn yếu tố ảnh hưởng 49 Bảng 3.1 Tính chất bề mặt TiO2-NTs nhiệt độ thủy nhiệt khác 53 Bảng 3.2 Tính chất bề mặt TiO2-NTs tổng hợp thời gian thủy nhiệt khác 57 Bảng 3.3 Tính chất bề mặt TiO2-NTs 550; CeO2/TiO2-NTs 400; CeO2/TiO2NTs 550; CeO2/TiO2-NTs 600; P25 69 Bảng 3.4 Kết phân tích EDX mẫu tổng hợp theo tỉ lệ CeO2/TiO2 khác 71 Bảng 3.5 Giá trị lượng vùng cấm mẫu TiO2-NTs 550, CeO2/TiO2NTs@X CeO2 72 Bảng 3.6 Phương trình mơ hình động học dạng tuyến tính 78 Bảng 3.7 Các tham số động học hấp phụ phẩm màu MB vật liệu CeO2/TiO2NTs xác định theo mơ hình động học bậc bậc tuyến tính 78 Bảng 3.8 Phương trình mơ hình đẳng nhiệt 79 Bảng 3.9 Các tham số mô hình đẳng nhiệt Langmuir Freundlich 80 Bảng 3.10 Hiệu suất phân hủy quang hóa MB nồng độ đầu MB khác 86 Bảng 3.11 Giá trị vùng dẫn vùng hóa trị điểm đẳng điện TiO2 CeO2 98 vi Bảng 3.12 Hằng số tốc độ phản ứng phân hủy quang hóa nhiệt độ khác 102 Bảng 3.13 Các thông số nhiệt động q trình phân hủy quang hóa MB 106 Bảng 3.14 Thông số thiết lập với bốn yếu tố ảnh hưởng 107 Bảng 3.15 Ma trận hóa thí nghiệm phần mềm Minitab kết thí nghiệm 107 Bảng 3.16 Phân tích phương sai ANOVA 109 Bảng 3.17 Đánh giá phương sai ANOVA mơ hình đáp ứng bề mặt cho hiệu suất phản ứng phân hủy quang MB 110 Bảng 3.18 Kết thí nghiệm với điều kiện tối ưu 113 Bảng 3.19 Hằng số tốc độ biểu kiến tính tốn giá trị nồng độ đầu khác MB 116 vii DANH MỤC CÁC HÌNH Hình 1.1 Sự phân bố vùng hóa trị (VB) vùng dẫn (CB) chất cách điện, chất bán dẫn chất dẫn điện Hình 1.2 Cơ chế phản ứng xúc tác quang hóa dị thể .8 Hình 1.3 Cấu trúc tinh thể TiO2: anatase, rutile, brookite 10 Hình 1.4 nh SEM TEM nano composite CeO2/TiO2 22 Hình 2.1 Sơ đồ tia tới tia phản xạ mạng tinh thể 29 Hình 2.2 Đồ thị biểu diễn biến thiên P/[V(Po – P)] theo P/Po .35 Hình 2.3 Sơ đồ tổng hợp TiO2-NTs 45 Hình 2.4 Sơ đồ tổng hợp CeO2/TiO2-NTs 46 Hình 2.5 Thiết bị thí nghiệm phản ứng quang hóa phân hủy MB CeO2/TiO2NTs 47 Hình 3.1 nh SEM TiO2 tổng hợp nhiệt độ thủy nhiệt khác 51 Hình 3.2 nh TEM TiO2 (thủy nhiệt 20 h 160 oC) với độ phân giải khác .51 Hình 3.3 Phân tích XRD TiO2 thủy nhiệt 20 h nhiệt độ khác .52 Hình 3.4 Đường đẳng nhiệt hấp phụ - khử hấp phụ vật lý N2 TiO2 thủy nhiệt 20 h nhiệt độ khác 53 Hình 3.5 nh SEM TiO2 tổng hợp thời gian thủy nhiệt khác .55 Hình 3.6 Đường đẳng nhiệt hấp phụ - khử hấp phụ vật lý N2 TiO2 thủy nhiệt 160 oC khoảng thời gian khác .56 Hình 3.7 Phân tích XRD TiO2 thủy nhiệt 160 oC khoảng thời gian khác .57 Hình 3.8 Hình ảnh TEM sản phẩm thủy nhiệt rửa với a) nước, b) axit HCl loãng kết hợp với nước 58 Hình 3.9 a) Hình ảnh TiO2-NTs (thủy nhiệt 20 h 160 oC) b) CeO2/TiO2NTs@0,1 60 viii [166] Qin Y., Yang H., Lv R., et al (2013) TiO2 nanotube arrays supported Pd nanoparticles for ethanol electrooxidation in alkaline media Electrochimica Acta, Vol.106, pp.372–7 [167] Rajeshwar K., Osugi M.E., Chanmanee W., et al (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol.9, Iss.4, pp.171–192 [168] Rani S., Roy S.C., Paulose M., et al (2010) Synthesis and applications of electrochemically self-assembled titania nanotube arrays Physical Chemistry Chemical Physics, Vol.12, Iss.12, pp.2780 [169] Reli M., Ambrožová N., Šihor M., et al (2015) Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia Applied Catalysis B: Environmental, Vol.178, pp.108–116 [170] Ribbens S., Meynen V., Tendeloo G Van, et al (2008) Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies Microporous and Mesoporous Materials, Vol.114, Iss.1–3, pp.401–409 [171] Ricardo J., Corena A (2015) Heterogeneous Photocatalysis for the Treatment of Contaminants of Emerging Concern in Water Diss Worcester Polytechnic Institute, [172] Roy P., Berger S., Schmuki P (2011) TiO2 Nanotubes: Synthesis and Applications Angewandte Chemie International Edition, Vol.50, Iss.13, pp.2904–2939 [173] Rynkowski J., Farbotko J., Touroude R., et al (2000) Redox behaviour of ceria–titania mixed oxides Applied Catalysis A: General, Vol.203, Iss.2, pp.335–348 [174] Sahu J.N., Acharya J., Meikap B.C (2009) Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process Journal of Hazardous 140 Materials, Vol.172, Iss.2–3, pp.818–825 [175] Saien J., Khezrianjoo S (2008) Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: Optimization, kinetics and toxicity studies Journal of Hazardous Materials, Vol.157, Iss.2–3, pp.269–276 [176] Saien J., Shahrezaei F (2012) Organic pollutants removal from petroleum refinery wastewater with nanotitania photocatalyst and UV light emission International Journal of Photoenergy, Vol.2012, [177] Salamat S., Younesi H., Bahramifar N (2017) Synthesis of magnetic core– shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater RSC Adv., Vol.7, Iss.31, pp.19391–19405 [178] Saponjic Z V., Dimitrijevic N.M., Tiede D.M., et al (2005) Shaping Nanometer-Scale Architecture Through Surface Chemistry Advanced Materials, Vol.17, Iss.8, pp.965–971 [179] Sauer T., Cesconeto Neto G., José H.J., et al (2002) Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor Journal of Photochemistry and Photobiology A: Chemistry, Vol.149, Iss.1–3, pp.147– 154 [180] Seo D.-S., Lee J.-K., Kim H (2001) Preparation of nanotube-shaped TiO2 powder Journal of Crystal Growth, Vol.229, Iss.1–4, pp.428–432 [181] Seo M.-H., Yuasa M., Kida T., et al (2009) Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes☆ Sensors and Actuators B: Chemical, Vol.137, Iss.2, pp.513–520 [182] Serway, Jewett (2006) Physics for Scientists and Engineers [183] Shi Z., Yang P., Tao F., et al (2016) New insight into the structure of CeO2 – TiO2 mixed oxides and their excellent catalytic performances for 1,2dichloroethane oxidation Chemical Engineering Journal, Vol.295, pp.99– 108 [184] Son B.H.D., Mai V.Q., Du D.X., et al (2017) Catalytic wet peroxide 141 oxidation of phenol solution over Fe–Mn binary oxides diatomite composite Journal of Porous Materials, Vol.24, Iss.3, pp.601–611 [185] Song F., Zhao Y., Zhong Q (2013) Adsorption of carbon dioxide on aminemodified TiO2 nanotubes Journal of Environmental Sciences, Vol.25, Iss.3, pp.554–560 [186] Song S., Tu J., He Z., et al (2010) Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination Applied Catalysis A: General, Vol.378, Iss.2, pp.169–174 [187] Sreekantan S., Wei L.C (2010) Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method Journal of Alloys and Compounds, Vol.490, Iss.1–2, pp.436–442 [188] Sun J., Wang Y., Sun R., et al (2009) Photodegradation of azo dye Congo Red from aqueous solution by the WO3–TiO2/activated carbon (AC) photocatalyst under the UV irradiation Materials Chemistry and Physics, Vol.115, Iss.1, pp.303–308 [189] Tan Y., Zhang S., Liang K (2014) Photocurrent response and semiconductor characteristics of Ce-Ce2O3-CeO2-modified TiO2 nanotube arrays Nanoscale Research Letters, Vol.9, Iss.1, pp.67 [190] Tan Y.N., Wong C.L., Mohamed A.R (2011) An Overview on the Photocatalytic Activity of Nano-Doped-TiO2 in the Degradation of Organic Pollutants ISRN Materials Science, Vol.2011, pp.1–18 [191] Tian J., Sang Y., Zhao Z., et al (2013) Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures Small, Vol.9, Iss.22, pp.3864–3872 [192] Tian J., Zhao Z., Kumar A., et al (2014) Recent progress in design, synthesis, and applications of one-dimensional TiO nanostructured surface heterostructures: a review Chem Soc Rev., Vol.43, Iss.20, pp.6920–6937 [193] Tomova D., Iliev V., Eliyas A., et al (2015) Promoting the oxidative removal rate of oxalic acid on gold-doped CeO2/TiO2 photocatalysts under 142 UV and visible light irradiation Separation and Purification Technology, Vol.156, pp.715–723 [194] Tsai C.-C., Teng H (2004) Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment Chemistry of Materials, Vol.16, Iss.22, pp.4352–4358 [195] Verma R., Samdarshi S.K., Singh J (2015) Hexagonal Ceria Located at the Interface of Anatase/Rutile TiO Superstructure Optimized for High Activity under Combined UV and Visible-Light Irradiation The Journal of Physical Chemistry C, Vol.119, Iss.42, pp.23899–23909 [196] Viriya-empikul N., Charinpanitkul T., Sano N., et al (2009) Effect of preparation variables on morphology and anatase–brookite phase transition in sonication assisted hydrothermal reaction for synthesis of titanate nanostructures Materials Chemistry and Physics, Vol.118, Iss.1, pp.254–258 [197] Wang Y., Li B., Zhang C., et al (2013) Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation Applied Catalysis B: Environmental, Vol.130–131, pp.277–284 [198] Wang Y., Zhao J., Wang T., et al (2016) CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity Journal of Catalysis, Vol.337, pp.293–302 [199] Wenzhong Wang, Oomman K Varghese, Maggie Paulose, Craig a Grimes, Qinglei Wang E.C.D (2004) A study on the growth and structure of titania nanotubes Journal of Materials Research, Vol.19, Iss.02, pp.417–422 [200] Wong C.L., Tan Y.N., Mohamed A.R (2011) A review on the formation of titania nanotube photocatalysts by hydrothermal treatment Journal of Environmental Management, Vol.92, Iss.7, pp.1669–1680 [201] Wong Y.C., Szeto Y.S., Cheung W.H., et al (2004) Adsorption of acid dyes on chitosan - Equilibrium isotherm analyses Process Biochemistry, Vol.39, Iss.6, pp.693–702 143 [202] Wunderlich W., Oekermann T., Miao L., et al (2004) Electronic properties of nano-porous TiO2-and ZnO-thin films-comparison of simulations and experiments Journal Of Ceramic Processing Research, Vol.5, Iss.4, pp.343– 354 [203] Xiang Li, Xiansheng Li, Junhua Li J.H (2016) Identification of the arsenic resistance on MoO3 doped CeO2/TiO2catalyst for selective catalytic reduction of NOx with ammonia Journal of Hazardous Materials, Vol.318, pp.615– 622 [204] Xiao Q., Si Z., Zhang J., et al (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline Journal of Hazardous Materials, Vol.150, Iss.1, pp.62–67 [205] Xiong L., Yang F., Yan L., et al (2011) Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting Journal of Physics and Chemistry of Solids, Vol.72, Iss.9, pp.1104–1109 [206] Xu J., Wang Y., Li Z., et al (2008) Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithiumion batteries Journal of Power Sources, Vol.175, Iss.2, pp.903–908 [207] Xu Y., Schoonen M.A.A (2000) The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals American Mineralogist, Vol.85, pp.543–556 [208] Xue W., Zhang G., Xu X., et al (2011) Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate Chemical Engineering Journal, Vol.167, Iss.1, pp.397–402 [209] Yabe S., Sato T (2003) Cerium oxide for sunscreen cosmetics Journal of Solid State Chemistry, Vol.171, Iss.1–2, pp.7–11 [210] Yan J., Zhou F (2011) TiO2 nanotubes: Structure optimization for solar cells Journal of Materials Chemistry, Vol.21, Iss.26, pp.9406 [211] Yang X., Yang L., Lin J., et al (2015) The new insight into the structure- 144 activity relation of Pd/CeO2 -ZrO2 -Nd2O3 catalysts by Raman, in situ DRIFTS and XRD Rietveld analysis Phys Chem Chem Phys., Vol.18, pp.3103–3111 [212] Yao B.D., Chan Y.F., Zhang X.Y., et al (2003) Formation mechanism of TiO2 nanotubes Applied Physics Letters, Vol.82, Iss.2, pp.281 [213] Yao B.D., Chan Y.F., Zhang X.Y., et al (2003) Formation mechanism of TiO2 nanotubes Applied Physics Letters, Vol.82, Iss.2, pp.281–283 [214] Yetim T., Tekin T (2017) A kinetic study on photocatalytic and sonophotocatalytic degradation of textile dyes Periodica Polytechnica Chemical Engineering, Vol.61, Iss.2, pp.102–108 [215] YU, Peter, Cardona M (2010) Fundamentals of Semiconductors, SpringerVerlag Berlin Heidelberg, [216] Yu J., Yu H (2006) Facile synthesis and characterization of novel nanocomposites of titanate nanotubes and rutile nanocrystals Materials Chemistry and Physics, Vol.100, Iss.2–3, pp.507–512 [217] Yu J., Yu H., Cheng B., et al (2006) Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes Journal of Molecular Catalysis A: Chemical, Vol.249, Iss.1–2, pp.135–142 [218] Yuan, B., Long, Y., Wu, L., Liang, K., Wen, H., Luo, S., Huo, H., Yang, H and Ma J (2016) TiO2@ h-CeO2: a composite yolk-shell microsphere with enhanced photodegradation activity Catalysis Science & Technology, Vol.6, pp.6396–6405 [219] Yuan Z.-Y., Su B.-L (2004) Titanium oxide nanotubes, nanofibers and nanowires Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.241, Iss.1–3, pp.173–183 [220] Yuan Z.-Y., Zhou W., Su B.-L (2002) Hierarchical interlinked structure of titanium oxide nanofibers Chemical Communications, Iss.11, pp.1202–1203 [221] Zhang J., Du P., Schneider J., et al (2007) Photogeneration of hydrogen from water using an integrated system based on TiO2 and platinum(II) diimine 145 dithiolate sensitizers Journal of the American Chemical Society, Vol.129, Iss.25, pp.7726–7727 [222] Zhang Q., Gao L., Sun J., et al (2002) Preparation of Long TiO2 Nanotubes from Ultrafine Rutile Nanocrystals Chemistry Letters, Vol.31, Iss.2, pp.226– 227 [223] Zhang, Wu, Zhang (2011) Theoretical studies of the spin Hamiltonian parameters for the two tetragonal Cu^{2+} centers in the calcined catalysts CuO-ZnO Condensed Matter Physics, Vol.14, Iss.2, pp.23703 [224] Zhang Y.J., Wang Y.C., Yan W., et al (2009) Synthesis of Cr2O3/TNTs nanocomposite and its photocatalytic hydrogen generation under visible light irradiation Applied Surface Science, Vol.255, Iss.23, pp.9508–9511 [225] Zhang Z., Zhou Z., Nie S., et al (2014) Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries Journal of Power Sources, Vol.267, pp.388–393 [226] Zhao B., Chen F., Huang Q., et al (2009) Brookite TiO2 nanoflowers Chemical Communications, Iss.34, pp.5115 [227] Zhao H., Dong Y., Jiang P., et al (2015) Highly Dispersed CeO2 on TiO2 Nanotube: A Synergistic Nanocomposite with Superior Peroxidase-Like Activity ACS Applied Materials & Interfaces, Vol.7, Iss.12, pp.6451–6461 [228] Zhao Q., Li M., Chu J., et al (2009) Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange Applied Surface Science, Vol.255, Iss.6, pp.3773–3778 [229] Zhou K., Zhu Y., Yang X., et al (2011) Preparation of graphene–TiO2 composites with enhanced photocatalytic activity New J Chem., Vol.35, Iss.2, pp.353–359 [230] Zhou Q., Xing A., Li J., et al (2016) Synergistic enhancement in photoelectrocatalytic degradation of bisphenol A by CeO2 and reduced graphene oxide co-modified TiO2 nanotube arrays in combination with Fenton oxidation Electrochimica Acta, Vol.209, pp.379–388 146 [231] Zhu W., Xiao S., Zhang D., et al (2015) Highly Efficient and Stable Au/CeO2 –TiO2 Photocatalyst for Nitric Oxide Abatement: Potential Application in Flue Gas Treatment Langmuir, Vol.31, Iss.39, pp.10822– 10830 [232] Zolgharnein J., Shahmoradi A., Ghasemi J.B (2013) Comparative study of Box-Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves Journal of Chemometrics, Vol.27, Iss.1–2, pp.12–20 [233] Zulmajdi S.L.N., Ajak S.N.F.H., Hobley J., et al (2017) Kinetics of Photocatalytic Degradation of Methylene Blue in Aqueous Dispersions of TiO2 Nanoparticles under UV-LED Irradiation Vol.5, Iss.1, pp.1–6 [234] Zuo R., Du G., Zhang W., et al (2014) Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite Advances in Materials Science and Engineering, Vol.2014, pp.1–7 [235] Zwilling V., Aucouturier M., Darque-Ceretti E (1999) Anodic oxidation of titanium and TA6V alloy in chromic media An electrochemical approach Electrochimica Acta, Vol.45, Iss.6, pp.921–929 147 PHỤ LỤC Phụ lục Phổ Raman TiO2-NTs 550 Phụ lục Phổ Raman CeO2/TiO2-NTs@0,1 148 Phụ lục Kết đo đẳng nhiệt hấp phụ - khử hấp phụ nitơ mẫu TiO2-NTs 550 149 Phụ lục Kết đo đẳng nhiệt hấp phụ - khử hấp phụ nitơ mẫu CeO2/TiO2NTs@0,1 150 Phụ lục Kết đo đẳng nhiệt hấp phụ - khử hấp phụ nitơ mẫu TiO2NTs(160 oC, 20h) 151 Phụ lục Giản đồ XRD TiO2-NTs(160 oC, 20h) Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - T2 600 500 300 d=1.283 d=1.350 d=1.495 d=1.656 d=1.736 d=1.616 d=1.881 d=1.843 d=1.945 d=2.058 d=2.001 d=2.246 d=2.867 100 d=2.553 d=3.396 d=3.644 200 d=3.184 Lin (Cps) 400 20 30 40 50 60 70 80 2-Theta - Scale File: ThanhTuyenHue T2.raw - Type: 2Th/Th locked - Start: 20.000 ° - End: 80.000 ° - Step: 0.030 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 13 s - 2-Theta: 20.000 ° - Theta: 10.000 ° - Chi: 0.00 ° - Phi: 0.00 ° 01-074-1940 (C) - Titanium Oxide - TiO2 - Y: 65.15 % - d x by: - WL: 1.5406 - Monoclinic - a 12.17870 - b 3.74120 - c 6.52490 - alpha 90.000 - beta 107.054 - gamma 90.000 - Base-centered - C2/m (12) - - 284.221 - I/I 00-018-1405 (N) - Titanium Oxide - Ti9O17 - Y: 52.35 % - d x by: - WL: 1.5406 - Triclinic - a 5.57000 - b 7.10000 - c 22.15000 - alpha 97.100 - beta 131.000 - gamma 109.800 - Primitive - P (0) - - 543.261 - F21= 3(0.06 01-089-4921 (C) - Anatase, syn - TiO2 - Y: 59.58 % - d x by: - WL: 1.5406 - Tetragonal - a 3.77700 - b 3.77700 - c 9.50100 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - I41/amd (141) - - 135.539 - I/Ic Phụ lục Giản đồ XRD TiO2-NTs 550 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - TNT 2000 d=3.515 1900 1800 1700 1600 1500 1400 1300 1100 1000 900 800 700 600 d=1.482 100 d=1.667 200 d=1.697 300 d=2.330 400 d=1.893 d=2.379 500 d=2.441 Lin (Cps) 1200 20 30 40 50 60 70 2-Theta - Scale File: ThanhTuyen TNT.raw - Type: 2Th/Th locked - Start: 20.000 ° - End: 80.000 ° - Step: 0.030 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Theta: 20.000 ° - Theta: 10.000 ° - Chi: 0.00 ° - Phi: 0.00 ° 1) Left Angle: 23.660 ° - Right Angle: 27.410 ° - Left Int.: 51.9 Cps - Right Int.: 20.6 Cps - Obs Max: 25.319 ° - d (Obs Max): 3.515 - Max Int.: 1680 Cps - Net Height: 1642 Cps - FWHM: 0.682 ° - Chord Mid.: 25.285 ° - Int 00-021-1272 (*) - Anatase, syn - TiO2 - Y: 40.21 % - WL: 1.5406 - Tetragonal - a 3.78520 - b 3.78520 - c 9.51390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - I41/amd (141) - - 136.313 - I/Ic PDF 3.3 - F 152 80 Phụ lục Giản đồ XRD CeO2/TiO2-NTs@0,1 Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - CT11 d=3.497 600 500 d=3.100 300 d=1.339 d=1.478 d=1.608 d=1.696 d=2.369 100 d=1.918 d=1.889 200 d=3.251 Lin (Cps) 400 20 30 40 50 60 70 2-Theta - Scale File: ThanhTuyen CT11.raw - Type: 2Th/Th locked - Start: 20.000 ° - End: 80.000 ° - Step: 0.030 ° - Step time: 0.3 s - Temp.: 25 °C (Room) - Time Started: 13 s - 2-Theta: 20.000 ° - Theta: 10.000 ° - Chi: 0.00 ° - Phi: 0.00 ° 1) Left Angle: 22.070 ° - Right Angle: 26.600 ° - Left Int.: 42.3 Cps - Right Int.: 34.0 Cps - Obs Max: 25.479 ° - d (Obs Max): 3.493 - Max Int.: 465 Cps - Net Height: 429 Cps - FWHM: 0.822 ° - Chord Mid.: 25.286 ° - Int Br 2) Left Angle: 26.750 ° - Right Angle: 30.980 ° - Left Int.: 29.7 Cps - Right Int.: 35.2 Cps - Obs Max: 28.815 ° - d (Obs Max): 3.096 - Max Int.: 250 Cps - Net Height: 218 Cps - FWHM: 0.664 ° - Chord Mid.: 28.703 ° - Int Br 00-021-1272 (*) - Anatase, syn - TiO2 - Y: 39.26 % - d x by: - WL: 1.5406 - Tetragonal - a 3.78520 - b 3.78520 - c 9.51390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - I41/amd (141) - - 136.313 - I/Ic 00-034-0394 (*) - Cerianite-(Ce), syn - CeO2 - Y: 23.89 % - d x by: - WL: 1.5406 - Cubic - a 5.41134 - b 5.41134 - c 5.41134 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm-3m (225) - - 158.458 - F1 153 80 Phụ lục Phổ EDX mẫu CeO2/TiO2-NTs@0,1 84-117 theo máy Spectrum processing : No peaks omitted Processing option : All elements analyzed (Normalised) Number of iterations = Standard : O SiO2 1-Jun-1999 12:00 AM Ti Ti 1-Jun-1999 12:00 AM Ce CeO2 1-Jun-1999 12:00 AM Element Weight% Atomic% OK 27.32 56.04 Ti K 59.72 40.92 Ce L 12.96 3.03 Totals 100.00 154 ... n vào điều kiện thiết bị ph ng thí nghiệm, c ng nhƣ điều kiện nghiên cứu Việt Nam, chọn đề tài Nghiên cứu tổng hợp vật liệu CeO2/TiO2 nano ống hoạt tính xúc tác phân hủy quang hóa vùng khả kiến ... DỤC VÀ ĐÀO TẠO ĐẠI HỌC HUẾ TRƢỜNG ĐẠI HỌC KHOA HỌC LÊ THỊ THANH TUYỀN NGHIÊN CỨU T NG H P VẬT LIỆU CeO2/TiO2 NANO ỐNG VÀ HOẠT TÍNH XÚC TÁC PHÂN HỦY QUANG HĨA TRONG VÙNG KHẢ KIẾN Chuyên ngành: Hóa. .. quang xúc tác TiO2 vật liệu hoạt động vùng xạ tử ngoại hiệu xúc tác không cao tái kết hợp nhanh electron l trống quang sinh Chính thế, để cải thiện hoạt tính xúc tác quang TiO2 vùng xạ khả kiến,