1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu ảnh hưởng của tỷ lệ tạp mn lên tính chất từ và quang học của vật liệu nano bife1 xmnxo3

64 122 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 64
Dung lượng 3,07 MB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN VĂN CHƯƠNG NGH ÊNI CỨU ẢNH HƯỞNG CỦA TỶ LỆ TẠP Mn LÊN T NH Í CHẤT TỪ VÀ QUANG HỌC CỦA VẬT L ỆU I i 1-XMnXO3 NANO B Fe LUẬN VĂN THẠC SĨ KHOA HỌC VẬT LÍ THÁ I NGUYÊN NĂM 2018 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN VĂN CHƯƠNG NGH ÊNI CỨU ẢNH HƯỞNG CỦA TỶ LỆ TẠP Mn LÊN T NH Í CHẤT TỪ VÀ QUANG HỌC CỦA VẬT L ỆU I i 1-XMnXO3 NANO B Fe CHUYÊN NGÀNH : QUANG HỌC M ã số: 8440110 LUẬN VĂN THẠC SĨ KHOA HỌC VẬT LÍ Người hư ớng dẫn khoa học: TS PHẠM MA I AN THÁ I NGUYÊN NĂM 2018 LỜI CAM ĐOAN Tôi xin cam đoan luận văn công trình nghiên cứu tơi nhóm nghiên cứu hướng dẫn TS Phạm Mai An Các kết số liệu luận văn nhóm chúng tơi thực hiện, hồn tồn trung thực khơng trùng lặp với cơng trình công bố Ngày… tháng… năm 2018 Tác giả luận văn NGUYỄN VĂN CHƯƠNG Xác nhận Xác nhận Trưởng khoa chuyên môn Người hướng dẫn khoa học TS NGUYỄN XUÂN CA TS PHẠM MAI AN i LỜI CẢM ƠN Tơi xin trân trọng cảm ơn Ban Giám hiệu, Phòng Đào tạo Khoa Vật lý Công nghệ Trường Đại học Khoa học, Đại học Thái Nguyên tạo điều kiện tốt để tơi hồn thành khố học Trường Tơi xin bày tỏ kính trọng biết ơn sâu sắc đến TS Phạm Mai An, Khoa Vật lý, Trường Đại học Sư phạm, Đại học Thái Nguyên - người thầy trực tiếp hướng dẫn tơi suốt thời gian qua Thầy tận tình giúp đỡ, hướng dẫn, tạo điều kiện tốt để tơi hồn thành tốt luận văn Xin gửi lời cảm ơn chân thành tới gia đình, bạn bè, đồng nghiệp động viên giúp đỡ mặt giúp tơi hồn thành luận văn Thái Nguyên, ngày tháng 10 năm 2018 Tác giả luận văn NGUYỄN VĂN CHƯƠNG ii MỤC LỤC Trang LỜI CAM ĐOAN i MỤC LỤC iii DANH MỤC THUẬT NGỮ VIẾT TẮT iv DANH MỤC BẢNG BIẾU v DANH MỤC .vi HÌNH VẼ MỞ ĐẦU 1 Lý chọn đề tài Mục đích nghiên cứu Phạm vi nghiên cứu Phương pháp nghiên cứu Đối tượng nghiên cứu: Mẫu bột nano BiFe1-xMnxO3 Nội dung nghiên cứu: CHƯƠNG TỔNG QUAN VỀ VẬT LIỆU BiFeO3 1.1 Cấu trúc tinh thể vật liệu BiFeO3 1.2 Ảnh hưởng pha tạp nguyên tố kim loại chuyển tiếp 3d lên đặc trưng cấu trúc, tính chất từ quang học vật liệu BiFeO3 KẾT LUẬN CHƯƠNG 17 CHƯƠNG THỰC NGHIỆM 18 2.1 Chế tạo hạt nano BiFe1-xMnxO3 (x = 0,00; 0,05; 0,075) phương pháp sol-gel 18 2.2 Các phương pháp thực nghiệm nghiên cứu tính chất vật liệu 20 2.2.1 Phép đo nhiễu xạ tia X (XRD) 20 2.2.2 Chụp ảnh hiển vi điện tử quét (SEM) 23 2.2.3 Khảo sát tính chất từ từ kế mẫu rung VSM 25 2.2.4 Phép đo phổ hấp thụ UV- Vit 27 KẾT LUẬN CHƯƠNG 29 CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 30 3.1 Kết khảo sát nhiễu xạ tia X mẫu nghiên cứu 30 3.2 Ảnh hiển vi điện tử quét (SEM) 32 3.3 Đường cong từ trễ hệ mẫu BiFe1-xMnxO3 34 3.4 Phổ hấp thụ hệ mẫu BiFe1-xMnxO3 35 KẾT LUẬN CHƯƠNG 38 KẾT LUẬN 39 TÀI LIỆU THAM KHẢO 40 DANH MỤC THUẬT NGỮ VIẾT TẮT Chữ viết tắt Tiếng Việt BFO Bismuth ferrite – BiFeO3 SEM Kính hiển vi điện tử quét VSM Từ kế mẫu rung XRD Nhiễu xạ tia X iv DANH MỤC BẢNG BIẾU Trang Bảng 3.1 Các thông số cấu trúc tinh thể hệ mẫu BiFe1-xMnxO3 32 Bảng 3.2 Các đặc trưng đường cong từ trễ hệ mẫu BiFe1-xMnxO3 35 Bảng 3.3 Các kết thu từ phổ hấp thụ UV-Vis hệ mẫu BiFe1-xMnxO3 38 Hình 3.1 Giản đồ nhiễu xạ tia X mẫu bột BiFe1-xMnxO3 (x = 0,00; 0,05; 0,075) Bảng 3.1 Các thông số cấu trúc tinh thể hệ mẫu BiFe1-xMnxO3 Tỷ lệ tạp Cấu trúc tinh thể a (Å) b (Å) c (Å) nhóm khơng gian 0,00 Hexagonal (R3c) 5,5876 5,5876 13,867 0,05 Hexagonal (R3c) 5,5876 5,5876 13,867 0,075 Hexagonal (R3m) 5,5758 5,5758 6,9185 Dựa vào giản đồ nhiễu xạ tia X sử dụng công thức Scherrer (2.3) ước tính kích thước trung bình tinh thể mẫu có tỷ lệ tạp 0%, 5% 7,5% 23,2 nm, 24,3 nm 39,1 nm 3.2 Ảnh hiển vi điện tử quét (SEM) Hình 3.2 thể ảnh hiển vi điện tử quét (SEM) mẫu nghiên cứu Kết chụp ảnh SEM cho thấy mẫu chế tạo gồm hạt không đồng hình dạng kích thước, có kết đám hạt với Ở mẫu không pha tạp (Hình 3.2 – a) hình dạng hạt đồng so với mẫu khác với kích thước từ khoảng vài trục đến khoảng 500 nm Ở mẫu có tỷ lệ tạp Mn 5% (Hình 3.2 – b) hạt có kích thước nhỏ hơn, vào khoảng từ hai trục nm đến khoảng 200 nm, có xu hướng kết đám mạnh khó quan sát rõ biên hạt Khi tỷ lệ tạp 7,5%, hạt có xu hướng phát triển theo dạng hình khối hình que, hình dạng kích thước hạt trở nên khơng đồng nhất, có hạt có kích thước lên đến 700 – 800 nm Kết đưa đến nhận định pha tạp Mn vào mẫu với tỷ lệ vừa phải làm giảm kích thước hạt Tuy nhiên tỷ lệ tạp lớn tới giá trị (trong luận văn 7,5%) mẫu có xu hướng hình thành hạt lớn Điều cần tiếp tục nghiên cứu với nhiều mẫu có tỷ lệ tạp Mn khác để có kết luận thuyết phục a) x = 0,00 b) x = 0,05 b) x = 0,075 Hình 3.3 Ản SEM hệ mẫu BiFe1-xMnxO3 3.3 Đường cong từ trễ hệ mẫu BiFe1-xMnxO3 a) x = 0,00 b) x = 0,05 c) x = 0,075 d) Sư phụ thuộc đặc trưng M – H vào tỷ lệ tạp Mn Hình 3.3 Đường cong từ trễ hệ mẫu BiFe1-xMnxO3 Đường cong từ trễ hệ mẫu BiFe1-xMnxO3 (x = 0%; 5%; 7,5%) trình bày hình 3.3 Trong luận văn này, đường cong từ trễ khảo sát nhiệt độ phòng khoảng từ trường biên thiên từ -10000 Oe đến 10000 Oe Đường cong từ trễ cho thấy mẫu thể tính sắt từ nhiệt độ phòng Tuy nhiên tính sắt từ thể yếu mẫu BFO khơng pha tạp với giá trị từ độ bão hòa Ms ≈ 0,109 emu/g lực kháng từ Hc ≈ 63,7 Oe Khi thay phần Fe Mn tính sắt từ mẫu tăng lên đáng kể Cụ thể, mẫu có tỷ lệ pha tạp Mn 5% có từ độ bão hòa Ms = 0,87 emu/g lực kháng từ Hc ≈ 100 Oe, mẫu có tỷ lệ tạp Mn 7,5% có từ độ bão hòa Ms = 0,79 emu/g lực kháng từ Hc ≈ 100 Oe Điều giải thích thay phần Fe Mn làm triệt tiêu cấu trúc spin xoắn, hình thành cấu trúc spin đồng [3] Trong số mẫu chế tạo được, mẫu chứa 5% tạp Mn có tính sắt từ mạnh Kết nghiên cứu phù hợp với công bố [11] tỷ lệ tạp cho tính sắt từ mạnh Tuy nhiên, khơng có thống giá trị từ độ bão hòa mẫu không thống với công bố khác [4], [11], [16] Sự không thống nhiều ngun nhân kích thước độ đồng hạt, pha thứ cấp tồn mẫu,… Các đặc trưng đường cong từ trễ mẫu trình bày cụ thể bảng 3.2 Bảng 3.2 Các đặc trưng đường cong từ trễ hệ mẫu BiFe1-xMnxO3 Mẫu Mr (emu/g) Ms(emu/g) Hc (Oe) BiFeO3 0,014 0,109 63,7 BiFe0,95Mn0,05O3 0,092 0,87 100 BiFe0,925Mn0,075O3 0,011 0,79 100 3.4 Phổ hấp thụ hệ mẫu BiFe1-xMnxO3 Hình 3.4 a) Phổ hấp tụ UV-Vis mẫu BiFeO3; b) Giá trị (αE) biểu diễn theo lượng E photon ánh sáng kích thích mẫu Để đánh giá tính chất hấp thụ quang học mẫu, thực phép đo phổ hấp thụ UV-Vis hệ đo Cary 5000 UV-Vis-NIR Spectrophotometer Viện Khoa học Vật liệu thuộc Viện Hàn lâm Khoa học Công nghệ Việt nam Trên hình 3.4 – a mơ tả phổ hấp thụ mẫu bột nano BiFeO3 Phân tích phổ hấp thụ mẫu cho thấy, dải hấp thụ mạnh mẫu BFO khơng pha tạp kéo dài từ miền có bước sóng khoảng 210 nm đến 515 nm Tâm bờ hấp thụ nằm vị trí ứng với bước sóng 548 nm Để xác định độ rộng vùng cấm vật liệu, sử dụng phương pháp Tauc [2], [17] Kết trình bày hình 3.4 – b xác định độ rộng vùng cấm mẫu 2,11 eV Kết phù hợp với số cơng bố gần [12], [2] Hình 3.5 a) Giản đồ hấp thụ UV-Vis mẫu BiFe0,95Mn0,05O3; b) Giá trị (αE) biểu diễn theo lượng E photon ánh sáng kích thích mẫu Hình 3.5 trình bày kết khảo sát phổ hấp thụ UV-Vis mẫu BiFe0,95Mn0,05O3 Từ hình 3.5 – a chúng tơi xác định mẫu hấp thụ mạnh dải bước sóng khoảng từ 216 nm đến 520 nm, tâm bờ hấp thụ mẫu vị trí bước sóng 561 nm Như vậy, pha tạp Mn vào làm cho bờ hấp thụ mẫu dịch chuyển phía bước sóng dài Bằng cách làm tương tự với mẫu BFO không pha tạp, xác định độ rộng vùng cấm mẫu có tỷ lệ tạp Mn 5% 1,97 eV Nghĩa tạp Mn có tác dụng làm giảm độ rộng vùng cấm mẫu So với kết nghiên cứu [12] hệ mẫu có tỷ lệ tạp Mn giá trị độ btrong mẫu g i chúng ế nhỏ nkhá nhiều t h i ê n E Kết khảo sát phổ hấp thụ UV-Vis mẫu pha tạp Mn với tỷ lệ 7,5% trình bày hình 3.6 Phân tích phổ hấp thụ UV-Vis xác định vùng hấp thụ mạnh mẫu khoảng bước sóng từ 221 nm đến khoảng 519 nm, trung tâm bờ hấp thụ tương tứng với bước sóng 556 nm độ rộng vùng cấm mẫu xấp xỉ 1,94 eV Như vậy, độ rộng vùng cấm mẫu BiFe0,925Mn0,075O3 nhỏ so với mẫu BFO không pha tạp chênh lệch không đáng kể so với mẫu chứa 5% tạp Mn Hình 3.6 a) Phổ hấp thụ UV-Vis mẫu BiFe0,925Mn0,075O3; b) Giá trị (αE) biểu diễn theo lượng E photon ánh sáng kích thích mẫu Như vậy, thơng qua nghiên cứu phổ hấp thụ UV-Vis mẫu chế tạo cho thấy tạp Mn làm mở rộng dịch chuyển bờ hấp thụ mẫu phía bước sóng dài, giảm độ rộng vùng cấm Sự dịch bờ hấp thụ phía bước sóng dài giảm độ rộng khe lượng làm tăng hoạt tính quang xúc tác hệ vật liệu BFO, giúp ứng dụng thực tế thuận lợi Các kết khảo sát phổ hấp thụ UV-Vis mẫu thống kê bảng 3.3 Bảng 3.3 Các kết thu từ phổ hấp thụ UV-Vis hệ mẫu BiFe1-xMnxO3 Vùng bước sóng Tâm bờ Độ rộng hấp thụ mạnh hấp thụ vùng cấm (eV) BiFeO3 210 nm đến 515 nm 548 nm 2,11 eV BiFe0,95Mn0,05O3 216 nm đến 520 nm 561 nm 1,97 eV BiFe0,925Mn0,075O3 221 nm đến 519 nm 556 nm 1,94 eV Mẫu KẾT LUẬN CHƯƠNG Trong chương chúng tơi trình bày kết khảo sát đặc trưng cấu trúc, hình thái học, đặc trưng từ trễ đặc tính hấp thụ quang mẫu BiFe1-xMnxO3 Các kết thu từ thực nghiệm gồm: Mẫu chế tạo có độ đơn pha cao, mẫu khơng pha tạp tồn pha thứ cấp Bi25FeO40 với tỷ phần thấp, mẫu có tỷ lệ tạp 5% 7,5% gần không tồn pha thứ cấp Kích thước hạt mẫu từ vài trục đến vài trăm nano mét không đồng Kết khảo sát nhiễu xạ tia X chụp SEM cho thấy tạp Mn làm thay đổi cấu trúc tinh thể hình thái hạt vật liệu Kết khảo sát đường cong từ trễ mẫu cho thấy thay phần Fe Mn đặc tính sắt từ mẫu cải thiện đáng kể Trong mẫu chế tạo được, mẫu có tỷ lệ tạp Mn 5% có tính sắt từ mạnh với từ độ bão hòa Ms ≈ 0,87 emu/g lực kháng từ Hc ≈ 100 Oe Phép đo phổ hấp thụ UV-Vis cho kết dải hấp thụ mạnh kéo dài từ khoảng bước sóng 210 nm đến 515 nm mẫu khơng chứa tạp dịch phía bước sóng dài mẫu chứa tạp Mn Kết tính tốn xác định độ rộng vùng cấm mẫu có tỷ lệ tạp 0%; 5%; 7,5% 2,11 eV; 1,97 eV; 1,94 eV KẾT LUẬN Trong đề tài luận văn thu số kết sau: Đã tìm hiểu tổng quan cấu trúc tinh thể vật liệu BiFeO3; tính chất từ, tính chất hấp thụ quang vật liệu; ảnh hưởng tạp chất nhóm kim loại chuyển tiếp lên đặc trưng cấu trúc, tính chất từ đặc trưng hấp thụ vật liệu Chế tạo thành công mẫu bột nano BiFe1-xMnxO3 với tỷ lệ tạp Mn 0%; 5%; 7,5% phương pháp sol-gel sử dụng chất acid nitric acid citric Kết phân tích giản đồ nhiễu xạ tia X cho thấy mẫu chế tạo có độ đơn pha cao, mẫu khơng pha tạp tồn pha thứ cấp Bi25FeO40 với tỷ phần thấp, mẫu có tỷ lệ tạp 5% 7,5% gần không tồn pha thứ cấp Kết khảo sát nhiễu xạ tia X chụp SEM cho thấy tạp Mn làm thay đổi cấu trúc tinh thể hình thái hạt vật liệu Kết khảo sát đường cong từ trễ mẫu cho thấy thay phần Fe Mn đặc tính sắt từ mẫu cải thiện đáng kể Trong mẫu chế tạo được, mẫu có tỷ lệ tạp Mn 5% có tính sắt từ mạnh với từ độ bão hòa Ms ≈ 0,87 emu/g lực kháng từ Hc ≈ 100 Oe Phép đo phổ hấp thụ UV-Vis cho kết dải hấp thụ mạnh kéo dài từ khoảng bước sóng 210 nm đến 515 nm mẫu khơng chứa tạp dịch phía bước sóng dài mẫu chứa tạp Mn Kết tính tốn xác định độ rộng vùng cấm mẫu có tỷ lệ tạp 0%; 5%; 7,5% 2,11 eV; 1,97 eV; 1,94 eV Kiến nghị hướng nghiên cứu tiếp theo: Chế tạo nghiên cứu tính chất hấp thụ quang bột nano BiFe1xMnxO3 với tỷ lệ tạp Mn từ 4% đến 7% để xác định tỷ lệ tạp cho đặc trưng hấp thụ tốt cho ứng dụng quang xúc tác Nghiên cứu thực nghiệm hoạt tính quang xúc tác phân hủy chất màu hữu bột nano BiFe1-xMnxO3 chế tạo TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt [1] Nguyễn Thị Hà Chi (2015), “Tổng hợp nghiên cứu tính chất quang xúc tác vật liệu BiFeO3 kích thước nanomet”, luận văn thạc sĩ khoa học, Khoa hóa học, ĐH Khoa học Tự Nhiên ĐHQGHN, Hà Nội [2] Đào Việt Thắng (2017), “Chế tạo vật liệu BiFeO3, pha tạp nghiên số tính chất”, luận án tiến sĩ vật lí, Trường Đại học Sư phạm Hà Nội [3] Lưu Hoàng Anh Thư (2014), “Chế tạo nghiên cứu vật liệu BiFeO3 3+ pha tạp Eu ”, Luận văn thạc sĩ khoa học, Khoa Vật lý, ĐH Khoa học Tự Nhiên ĐHQGHN, Hà Nội [4] Vũ Thị Tuyết (2017) "Chế tạo nghiên cứu tính chất điện từ hạt nano BiFe1-xMnxO3" Luận văn thạc sĩ khoa học vật chất, Khoa Vật lí, trường Đại học sư phạm Thái Nguyên Tài liệu tiếng Anh [5] Azia Wahida Aziz and Noor Haida Mohd Kaus, “Structural, morphological, and optical properties of Mn-doped BiFeO3 nanoparticlebased polysaccharides”, Proceeding of The 6th of International Congress Energy and Environment Engineering and Management (CIIEM2015), Paris, France [6] Catalan G., Scott J F., “Physics and Applycations of Bismuth Ferite”, Adv, Mater, 2009, 21, 2463-2485 [7] Dai Y.R., Xun Q., Zheng X., Yuan S., Zhai Y., and Xu M (2012), "Magnetic properties of Ni-substituted BiFeO3", Physica B 407, pp 560–563 [8] Fischer P, Polomska M., Sosnowska I and Szymanski M (1980), “Temperature dependence of the crystal and magnetic structures of BiFeO3”, J Phys C: Solid State Phys., 13, pp 1931-1940 [9] Fukumura H., Matsui S., Tonari N., Nakamura T., Hasuike N., Nishio K., Isshiki T., and Harima H (2009), "Synthesis and Characterization of Mn Doped BiFeO3 Nanoparticles", Acta Phs Pol A 116(1), pp 47-50 [10] T Gao, Z Chen, Q Huang, F Niu, X Huang, L Qin and Y Huang, A review: Preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalyses, Rev Adv Mater Sci 40 (2015) 97 – 109 [11] Ghanshyam A., Ashwani K., Mast R., and Nainjeet S N (2013), “Structural, dielectric, ferroelectric and magnetic properties of Mn-dope BiFeO3 nanoparticles synthesized by sol-gel method”, Internationa Journal of Advances in Engineering and Technology,Vol.5, Issue 2, pp 245-252 [12] Han Y et al “Substitution-driven structural, optical and magnetic transformation of Mn, Zn doped BiFeO3”, Ceramics International 41 (2015) 2476–2483 [13] Hao-Min Xu, Huanchun Wang, Ji Shi, Yuanhua Lin, Cewen Nan “Photoelectrochemical Heterostructured Performance Thin Films”, Observed in Nanomaterials Mn-Doped 2016, 6, BiFeO3 215; doi:10.3390/nano6110215 [14] Hussain T et al (2013), “Induced modifications in the properties of Sr doped BiFeO3 multiferroics”, Progress in Natural Science: MaterialsInternational, 23(5), pp 487-492 [15] Manisha Arora, P.C Sati, Sunil Chauhan, Sandeep Chhoker, A.K Panwar, Manoj Kumar, “Structural, Optical and Multiferroic Properties of BiFeO3 Nanoparticles Synthesized by Soft Chemical Route”, J Supercond Nov Mag, 2012, DOI 10.1007/s10948-012-1761-4 [16] Manoj Kumar, Subhash Chander K.atyal, Mukesh Jewariya, KanhaiyaLal Yadav (2012), “Multiferroic, Magnetoelectric and Optical Properties of Mn Doped BiFeO3 Nanoparticles”, Solid State Communications 152 (2012), 525–529 [17] Manpreet Kaur, K L Yadav, Poonam Uniyal, “Investigations on multiferroic, optical and photocatalytic properties of lanthanum doped bismuth ferrite nanoparticles”, Adv Mater Lett 2015, 6(10), 895-901 [18] Rusakov V S et al,“Spatial Spin-Modulated Structure and Hyperfine Interactions of Fe Nuclei in Multiferroics BiFe1 – xTxO3 (T = Sc, Mn; x = 0, 0.05)”, ISSN 1063-7834, Physics of the Solid State, 2016, Vol 58, No 1, pp 102–107 [19] Samar Layek, Santanu Saha, and H C Verma (2013), Department of Physics, Indian Institute of Technology, Kanpur, 208016, India, “Preparation, structural and magnetic studies on BiFe1-xCrxO3 (x = 0.0, 0.05 and 0.1) multiferroic nanoparticles”, AIP Advances 3, 032140 [20] Shreeja Pillai, Deepika Bhuwal, Alok Banerjee, and Vilas Shelke, “Bulk interface engineering for enhanced magnetization in multiferroic BiFeO3 compounds”, Appl Phys Lett 102, 072907 (2013); doi: 10.1063/1.4793485 [21] Srinivas V., Raghavender A T., and Vijaya Kumar K (2016), “Structural and Magnetic Properties of Mn Doped BiFeO3 Nanomaterials”, Physics Research International, Volume 2016, Article ID 4835328, pages http://dx.doi.org/10.1155/2016/4835328 [22] Xiaofei BAI et al, “Size and doping effect on the structure, transitions and optical properties of multiferroic BiFeO3 particles for photocatalytic applications”, These de doctorat, Université Paris-Saclay, 2016, 198 page DANH MỤC CƠNG TRÌNH KHOA HỌC ĐÃ CƠNG BỐ Pham Mai An, Nguyen Van Chuong, Vu Thi Tuyet (2017), “Influence of calcination regimes on phase formation and magnetic property of nanopowders BiFeO3 synthesized by sol-gel method using citric acid”, International Research Journal, ISSN: 2227-6017, № 08 (62), P 156-160 ... tài: Nghiên cứu ảnh hưởng tỷ lệ tạp Mn lên tính chất từ quang học vật liệu nano BiFe1- xMnxO3 làm đề tài luận văn Mục đích nghiên cứu 2.1 Mục tiêu: Chế tạo nghiên cứu tính chất từ, tính chất quang. ..ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN VĂN CHƯƠNG NGH ÊNI CỨU ẢNH HƯỞNG CỦA TỶ LỆ TẠP Mn LÊN T NH Í CHẤT TỪ VÀ QUANG HỌC CỦA VẬT L ỆU I i 1 -XMnXO3 NANO B Fe CHUYÊN NGÀNH : QUANG HỌC... bột nano BiFe1- xMnxO3 2.2 Nhiệm vụ: - Chế tạo mẫu bột BiFe1- xMnxO3 phương pháp sol-gel sử dụng acid citric acid nitric - Nghiên cứu ảnh hưởng tạp Mn lên tính chất từ tính chất quang hệ mẫu BiFe1- xMnxO3

Ngày đăng: 12/03/2019, 11:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w