1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giải pháp nâng cao hiệu năng mạch sạc pin li ion sử dụng công nghệ CMOS

180 232 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 180
Dung lượng 8,08 MB
File đính kèm luan van full.rar (6 MB)

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN VĂN HÀO GIẢI PHÁP NÂNG CAO HIỆU NĂNG MẠCH SẠC PIN LIION SỬ DỤNG CÔNG NGHỆ CMOS LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ Hà Nội – 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN VĂN HÀO GIẢI PHÁP NÂNG CAO HIỆU NĂNG MẠCH SẠC PIN LI-ION SỬ DỤNG CÔNG NGHỆ CMOS Ngành: Kỹ thuật điện tử Mã số: 9520203 LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ NGƯỜI HƯỚNG DẪN KHOA HỌC: TS PHẠM NGUYỄN THANH LOAN PGS TS NGUYỄN ĐỨC MINH Hà Nội – 2019 i LỜI CAM ĐOAN Tôi xin cam đoan kết khoa học trình bày luận án kết nghiên cứu thân suốt thời gian làm nghiên cứu sinh chưa xuất công bố tác giả khác Các kết nghiên cứu luận án xác trung thực Tập thể hướng dẫn TS Phạm Nguyễn Thanh Loan PGS.TS Nguyễn Đức Minh Hà Nội, ngày tháng năm 2019 Tác giả luận án Nguyễn Văn Hào 22 LỜI CẢM ƠN Đầu tiên, tác giả xin bày tỏ lời cảm ơn sâu sắc kính trọng đến tập thể hướng dẫn TS Phạm Nguyễn Thanh Loan PGS.TS Nguyễn Đức Minh hướng dẫn định hướng khoa học cho tơi suốt khóa học Tác giả xin gửi lời cảm ơn chân thành đến TS Nguyễn Quang Tuấn thành viên BKIC Lab hỗ trợ thực số công việc thiết kế luận án Tác giả xin trân trọng cảm ơn Ban Lãnh đạo, quý thầy cô cán Bộ môn Điện tử Kỹ thuật máy tính, Viện Điện tử - Viễn thông Viện Đào tạo Sau Đại học tạo điều kiện thuận lợi nơi học tập, nghiên cứu, thủ tục hành góp ý chun mơn cho tơi suốt q trình học tập nghiên cứu Trường Đại học Bách khoa Hà Nội Tác giả trân trọng cảm ơn Ban Giám hiệu Trường Đại học Quy Nhơn, Ban Lãnh đạo đồng nghiệp Khoa Kỹ thuật & Công nghệ tạo điều kiện thuận lợi cho tác giả tập trung nghiên cứu thời gian qua Xin chân thành cảm ơn quan tâm, giúp đỡ, động viên đồng nghiệp, nhóm Nghiên cứu sinh – Viện Điện tử Viễn thông dành cho Cuối cùng, tơi xin bày tỏ lòng biết ơn sâu sắc đến thành viên gia đình tơi Những người động viên tinh thần giúp đỡ suốt thời gian vừa qua Đây động lực lớn giúp tơi vượt qua khó khăn hoàn thành kết luận án Tác giả luận án Nguyễn Văn Hào 33 MỤC LỤC LỜI CAM ĐOAN I LỜI CẢM ƠN II MỤC LỤC III DANH MỤC CÁC TỪ VIẾT TẮT VI DANH MỤC CÁC KÝ HIỆU .VIII DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ X DANH MỤC CÁC BẢNG BIỂU XIII MỞ ĐẦU 1 Đặt vấn đề Mục tiêu, đối tượng, phương pháp phạm vi nghiên cứu Các kết đạt luận án Cấu trúc luận án CHƯƠNG TỔNG QUAN VỀ MẠCH SẠC PIN LI-ION 1.1 Giới thiệu chương 1.2 Sơ lược pin sạc Li-Ion 1.2.1 Giới thiệu chung 1.2.2 Các yếu tố ảnh hưởng đến chất lượng pin Li-Ion 10 1.2.2.1 Ảnh hưởng điều kiện nhiệt độ mức 10 1.2.2.2 Ảnh hưởng hoạt động sạc/xả mức 11 1.2.2.3 Ảnh hưởng tốc độ sạc/xả nhanh 12 1.2.3 Mơ hình hoạt động pin Li-Ion 12 1.2.3.1 Mơ hình mạch tương đương 13 1.2.3.2 Mơ hình mạch dựa thời gian chạy 15 1.3 Phương thức sạc pin Li-Ion 17 1.3.1 Phương thức sạc dòng điện khơng đổi-điện áp không đổi 17 1.3.2 Phương thức sạc Boostcharging 18 1.3.3 Phương thức sạc dòng điện khơng đổi nhiều pha 19 44 1.3.4 Phương thức sạc xung 19 55 1.3.5 Đánh giá phương thức sạc 20 1.4 Cấu trúc thiết kế mạch sạc pin Li-Ion 22 1.4.1 Mạch sạc kiểu tuyến tính 22 1.4.1.1 Cấu trúc ổn định kiểu tuyển tính 22 1.4.1.2 Nguyên lý mạch sạc kiểu tuyến tính 23 1.4.2 Mạch sạc kiểu chuyển mạch 24 1.4.2.1 Cấu trúc ổn định kiểu chuyển mạch 24 1.4.2.2 Nguyên lý mạch sạc kiểu chuyển mạch 30 1.5 Các mạch chức sử dụng thiết kế mạch sạc 31 1.5.1 Mạch gương dòng điện 31 1.5.2 Mạch khuếch đại thuật toán 34 1.5.3 Mạch so sánh điện áp 37 1.6 Kết luận chương 40 CHƯƠNG THIẾT KẾ VÀ ĐỀ XUẤT GIẢI PHÁP CẢI THIỆN HIỆU NĂNG CỦA MẠCH SẠC PIN LI-ION 41 2.1 Giới thiệu chương 41 2.2 Sơ đồ khối chức 41 2.3 Thiết kế hệ thống 43 2.3.1 Nguồn dòng song song mạch cảm biến dòng điện 43 2.3.1.1 Giải pháp thiết kế nguồn dòng song song 43 2.3.1.2 Mạch cảm biến dòng điện 45 2.3.2 Giải pháp thiết kế mạch điều khiển dòng điện sạc 46 2.3.3 Giải pháp thiết kế mạch tạo dòng điện/điện áp 48 2.3.3.1 Mạch tạo dòng điện tham chiếu 48 2.3.3.2 Mạch tạo điện áp điều khiển 53 2.4 Lựa chọn thiết kế phần tử chức 56 2.4.1 Mạch khuếch đại thuật toán OA 56 2.4.2 Mạch khuếch đại truyền dẫn OTA 58 2.4.3 Mạch so sánh điện áp có trễ 60 2.4.4 Mạch cổng logic 62 2.5 Kết mô thảo luận 63 66 2.5.1 Thiết lập mơ hình mạch mơ 63 2.5.2 Kết thảo luận 65 2.6 Kết luận chương 69 CHƯƠNG ĐỀ XUẤT GIẢI PHÁP THIẾT KẾ MẠCH BIẾN ĐỔI DC-DC KIỂU GIẢM ÁP CHO MẠCH SẠC HIỆU NĂNG CAO 71 3.1 Giới thiệu chương 71 3.2 Giải pháp thiết kế hệ thống mạch sạc hiệu cao 71 3.3 Thiết kế mạch biến đổi DC-DC áp dụng cho mạch sạc pin Li-Ion 72 3.3.1 Mạch biến đổi DC-DC với tải mạch sạc 72 3.3.2 Tính tốn thiết kế hệ thống 73 3.3.2.1 Mạch công suất 73 3.3.2.2 Mạch điều chế độ rộng xung PWM 76 3.3.2.3 Mạch bù tần số 79 3.3.2.4 Mạch điều khiển chuyển mạch 83 3.3.2.5 Mạch tạo xung cưa 85 3.3.2.6 Mạch dịch mức điện áp tham chiếu 88 3.4 Tính ổn định hệ thống 89 3.5 Kết mô thảo luận 94 3.5.1 Thiết lập mơ hình mạch mơ 94 3.5.2 Kết thảo luận 95 3.6 Đánh giá kết đạt 98 3.7 Kết luận chương 99 KẾT LUẬN 101 Nội dung kết đạt luận án 101 Đóng góp khoa học luận án 102 Hướng phát triển luận án 102 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 103 TÀI LIỆU THAM KHẢO 104 77 DANH MỤC CÁC TỪ VIẾT TẮT Ký hiệu Nghĩa tếng Anh Nghĩa tếng Việt BC Boostcharging Boostcharging BCD Bipolar-CMOS-DMOS Thư viện công nghệ BCD BW Bandwidth Độ rộng băng tần C Capacity of the Battery Dung lượng pin CC-CV Constant Current-Constant Voltage Dòng điện không đổi-Điện áp không đổi CCM Continuous Conduction Mode Chế độ dẫn dòng liên tục CM Charge Mode Chế độ sạc CMOS Complementary Metal-Oxide Semiconductor Công nghệ CMOS CV Constant Voltage Điện áp không đổi D Duty Cycle Hệ số hoạt động DC Direct Current Dòng điện chiều DC-DC Direct Current-Direct Curent Mạch DC-DC DCM Discontinuous Conduction Mode Chế độ dẫn dòng khơng liên tục EC Ethylene Carbonate Etylen cacbonat EIS Electrochemical Impedance Spectroscopy Phổ tổng trở điện hóa EOC End of Charge Kết thúc sạc FCDM Full Charge Detect Mode Chế độ phát sạc đầy GM Gain Margin Dự trữ biên độ IC Integrated Circuit Mạch tích hợp LA Lead-Acid Chì-Axít LC Large Current Dòng điện lớn LDO Low Drop-Out Cấu trúc LDO Li-Ion Lithium-Ion Lithi-Ion LR Linear Regulator Bộ ổn định kiểu tuyến tính 88 MSCC Multistage Constant Current Dòng điện khơng đổi nhiều pha 99 99 thiết kế luận án thiết kế [21, 28] có kích thước phần tử thiết kế ngồi chíp giảm đáng kể so với cấu trúc mạch biến đổi DC-DC kiểu Flyback [8] Đặc điểm giúp giảm kích thước mạch thiết kế PCB tăng khả áp dụng hệ thống mạch sạc cho thiết bị điện tử di động với kích thước nhỏ gọn Bảng 3.9 So sánh hệ thống mạch sạc luận án với nghiên cứu khác [8] Cấu trúc thiết kế Thư viện công nghệ Điện áp cung cấp Flyback & LDO TSMC 0,35 m [21] [28] DC-DC DC-DC kiểu giảm áp kiểu giảm áp TSMC VIS 0,18 m 0,25 m [29] Thiết kế luận án CMOS 0,35 m DC-DC kiểu giảm áp & LDO BCD 0,35 m LDO 2,3 – 4,5 V 10 V 4,5 – 5,5 V 4,5 V 5,5 – V Chuyển tiếp chế độ sạc ổn định X X X Hiệu suất công suất trung bình 91,2 % 86 % 87 % @ 1A 82 % @ 2A 70,9 % 86 % Dòng điện sạc ICh-TC 300 mA 300 mA 210 mA Dòng điện sạc ICh-LC 698 mA 900 mA 2000 mA 700 mA 1010 mA Điện áp đầu VBatt – 4,2 V 2,1 – 4,2 V 2,1 – 4,2 V – 4,2 V – 4,2 V Hơn nữa, hệ thống mạch sạc thiết kế đưa dòng điện điện áp sạc phù hợp cho pin Li-Ion theo phương thức sạc CC-CV Hiệu suất cơng suất trung bình hệ thống thiết kế đạt 86 % cao thiết kế mạch sạc [29] tương đương với thiết kế mạch sạc [21, 28] Các kết đạt dựa ưu điểm cấu trúc mạch biến đổi DC-DC kiểu giảm áp cấu trúc mạch sạc kiểu tuyến tính hoạt động với điện áp cung cấp thay đổi thích ứng Thêm vào đó, lựa chọn cấu trúc thực thiết kế phần tử chức với giải pháp thiết kế cho hệ thống mạch sạc giúp giảm thiểu công suất tiêu thụ tĩnh mạch điều khiển góp phần cải thiện hiệu suất công suất hệ thống 3.7 Kết luận chương Với mục đích thực hệ thống mạch sạc pin Li-Ion hiệu cao phù hợp để áp dụng thiết bị điện tử di động cầm tay, dựa hệ thống mạch sạc hiệu cao cấu thành từ cấu trúc mạch biến đổi DC-DC cấu trúc mạch 100 100 sạc kiểu tuyến tính, nội dung chương đưa giải pháp thiết kế mạch biến đổi DC-DC kiểu giảm áp cho mạch sạc hiệu cao Theo đó, mạch DC-DC 100 100 phân tích thiết kế chi tiết cho khối mạch chức Giải pháp thực mạch bù tần số loại III phân tích thiết kế theo đặc tính hoạt động mạch tải đảm bảo cho mạch hoạt động ổn định chế độ CCM đáp ứng yêu cầu đầu dải rộng cho mạch sạc Bên cạnh đó, hoạt động ổn định hệ thống mạch sạc xác định dựa kết phân tích mơ hình xoay chiều theo chế độ hoạt động dòng điện khơng đổi điện áp không đổi Cùng với thiết kế mạch sạc chương luận án, hệ thống mạch sạc pin Li-Ion hiệu cao thực dựa thư viện công nghệ BCD 0,35 m Các kết đạt thể rõ, hệ thống mạch sạc hoạt động ổn định tiến trình sạc, đáp ứng yêu cầu phương thức sạc CC-CV đạt hiệu suất cao (hiệu suất trung bình đạt 86 % cho chế độ sạc TC LC) Ngoài ra, hệ thống mạch sạc đề xuất đạt độ cách ly cho pin Li-Ion tốt thiết kế mạch sạc kiểu chuyển mạch, sử dụng tối thiểu phần tử thiết kế ngồi chíp so với thiết kế sử dụng cấu trúc Flyback cấu trúc mạch DC-DC kiểu tăng điện áp Điều giúp cải thiện khả áp dụng hệ thống thiết bị điện tử di động cầm tay với kích thước nhỏ gọn 101 101 KẾT LUẬN Nội dung kết đạt luận án Nội dung luận án trình bày chương sau: Trong chương 1, nội dung liên quan đến pin Li-Ion khái quát đặc tính điều kiện hoạt động pin Yêu cầu nhiệm vụ thiết kế mạch sạc thể rõ thông qua phương thức sạc phù hợp cho pin Li-Ion Nội dung trọng tâm trình bày chi tiết cấu trúc thiết kế mạch sạc kiểu tuyến tính/kiểu chuyển mạch cấu trúc thiết kế phần tử chức sử dụng công nghệ CMOS đưa đánh giá cụ thể cho cấu trúc thiết kế Nội dung xem sở để nghiên cứu đưa giải pháp thiết kế chương luận án Nội dung chương tập trung phân tích thiết kế mạch sạc pin Li-Ion dựa giải pháp cải thiện hiệu đề xuất bao gồm nguồn dòng song song, khuếch đại truyền dẫn OTA, mạch so sánh có trễ mạch tạo dòng điện tham chiếu liên tục Theo đó, mạch sạc pin Li-Ion thực dựa thư viện công nghệ BCD 0,35 m Các kết đạt thể rõ, mạch sạc thiết kế đưa dòng điện điện áp sạc phù hợp cho pin Li-Ion theo phương thức sạc CCCV, hiệu suất trung bình đạt 88,6 % 92,1 % tương ứng với chế độ sạc TC LC Ngoài ra, vấn đề đột biến xung nhọn dòng điện sạc chuyển tiếp chế độ sạc không ổn định cải thiện Các kết chương đăng cơng trình cơng bố [HN1], [HN2], [HN3], [TC1] [TC2] Trên sở giải pháp thiết kế hệ thống mạch sạc pin Li-Ion hiệu cao dựa kết hợp mạch biến đổi DC-DC mạch sạc kiểu tuyến tính Nội dung chương đưa giải pháp thiết kế mạch biến đổi DC-DC kiểu giảm áp cho mạch sạc pin Li-Ion Theo đó, mạch DC-DC với tải mạch sạc phân tích thiết kế chi tiết nhằm đáp ứng yêu cầu đầu dải rộng cho mạch sạc pin Li-Ion Tính ổn định hệ thống mạch sạc xem xét dựa mơ hình hoạt động xoay chiều Hệ thống mạch sạc đề xuất thực dựa thư viện công nghệ BCD 0,35 m với kết đạt hệ thống mạch sạc hoạt động ổn định đạt hiệu suất cao (86 %), đạt độ cách ly tốt cho pin Li-Ion đảm bảo 102 102 yêu cầu dòng điện điện áp đầu theo phương thức sạc CC-CV Các kết đạt chương trình bày cơng trình cơng bố [HN4] [TC3] 102 102 Đóng góp khoa học luận án Các đóng góp khoa học luận án thể thông qua nội dung phân tích thiết kế với kết đạt chương chương Để tường minh hơn, đóng góp khoa học đưa sau: Đề xuất ba giải pháp cải thiện hiệu mạch sạc pin Li-Ion, cụ thể là: − Áp dụng cấu trúc nguồn dòng song song nhằm cung cấp dòng điện phù hợp theo phương thức sạc dòng điện khơng đổi-điện áp khơng đổi − Áp dụng khuếch đại truyền dẫn (OTA) để đồng thời cải thiện khả điều khiển dòng điện sạc giảm công suất tiêu thụ tĩnh mạch điều khiển − Sử dụng giải pháp giảm điện áp tham chiếu cho mạch so sánh có trễ với đề xuất mạch tạo dòng điện tham chiếu liên tục nhằm giảm thiểu đột biến xung nhọn dòng điện sạc ảnh hưởng nội trở pin Li-Ion đến hoạt động ổn định hệ thống Đề xuất thực giải pháp thiết kế mạch biến đổi DC-DC kiểu giảm áp cho mạch sạc hiệu cao Giải pháp bù tần số hướng phân tích thiết kế dựa đặc tính hoạt động mạch sạc pin Li-Ion thực nhằm đảm bảo cho mạch biến đổi DC-DC hoạt động ổn định chế độ dẫn dòng liên tục đáp ứng yêu cầu đầu dải rộng cho mạch sạc Hướng phát triển luận án Nhằm nâng cao khả ứng dụng thực tiễn, kết đạt luận án tiếp tục nghiên cứu thực thời gian sau: − Thực layout chế tạo chíp (IC sạc) nhằm đánh giá đặc tính hoạt động hệ thống mạch sạc thơng qua kết đo lường thực tiễn − Nghiên cứu áp dụng kết đạt luận án cho hệ thống mạch sạc công suất lớn với nhiều phần tử pin Li-Ion − Nghiên cứu triển khai hệ thống mạch sạc đề xuất luận án hệ thống mạch sạc không dây, xem hướng phát triển tiềm thách thức thời gian 103 103 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN [HN1] Hao Nguyen-Van, Cuong Dao, Long Nguyen, Minh nguyen, Loan PhamNguyen (2014), "A Fast and Long-Life Li-Ion Batery Charger with Decoupled Current Source," International Conference on Integrated Circuits, Design, and Verification (ICDV), pp 123-128 [HN2] Hao Nguyen-Van, Dat Nguyen, Minh Nguyen, Thang Nguyen, Loan PhamNguyen (2015), "A Li-Ion Batery Charger with Stable Charging Mode Controller in Noise Environments," International Conference on Advanced Technologies for Communications (ATC), pp 270-274 [HN3] Hao Nguyen-Van, Thang Nguyen, Vu Quan, Minh Nguyen, Loan PhamNguyen (2016), "A Topology of Charging Mode Control Circuit Suitable for Long-Life Li-Ion Batery Charger," International Conference on Communications and Electronics (ICCE), pp 167-171 [TC1] Hao Nguyen-Van, Minh Nguyen, Loan Pham-Nguyen (2017), "A New Topology of Parallel Current Source Applied for Li-Ion Batery Charger," Journal of Science & Technology, No 120, pp 078-084 [HN4] Hao Nguyen-Van, Minh nguyen, Loan Pham-Nguyen (2017), "An Adaptive DC-DC Converter for Loading Circuit of Li-Ion Batery Charger," International Conference on Integrated Circuits, Design, and Verification (ICDV), pp 100103 [TC2] Nguyễn Văn Hào, Nguyễn Đức Minh, Phạm Nguyễn Thanh Loan (2017), "Thiết Kế Mạch Sạc Pin Li-Ion Trên Cơ Sở Dòng Điện Tham Chiếu Liên Tục Nhằm Giảm Thiểu Dòng Đột Biến Chuyển Tiếp Mềm Chế Độ Sạc," Tạp Chí Nghiên Cứu Khoa Học Công Nghệ Quân Sự, Số 51, Trang 86-94 [TC3] Nguyen Van Hao, Nguyen Duc Minh, Pham Nguyen Thanh Loan (2018), "An Adaptive and Wide-Range Output DC-DC Converter for Loading Circuit of LiIon Battery Charger," VNU Journal of Science: Comp Science & Com Eng, Vol 34, No 1, pp 10-18 104 104 TÀI LIỆU THAM KHẢO [1] T Reddy (2010), "Linden's Handbook of Bateries, 4th Edition", McGraw- Hill Education [2] Christophe Pillot (2015), "The rechargeable batery market and main trends 2014–2025", 31st International Battery Seminar & Exhibit [3] Christophe Pillot (2012), "The worldwide batery market 2011-2025", Avicenne Energy, Nice, France [4] MA Danzer, V Liebau, and F Maglia (2015), "Aging of lithium-ion bateries for electric vehicles", Advances in Batery Technologies for Electric Vehicles, Elsevier, pp 359-387 [5] Chao Wu, Chunbo Zhu, et al (2015), "A review on fault mechanism and diagnosis approach for Li-ion batteries", Journal of Nanomaterials, vol 2015, p [6] Shen Weixiang, Vo Thanh Tu, and A Kapoor (2012), "Charging algorithms of lithium-ion batteries: An overview", 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp 1567-1572 [7] Elie Ayoub and Nabil Karami (2015), "Review on the charging techniques of a li-ion batery", Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), 2015 Third International Conference on, IEEE, pp 50-55 [8] Jiann-Jong Chen, Fong-Cheng Yang, et al (2009), "A high-efficiency multimode Li–ion batery charger with variable current source and controlling previous-stage supply voltage", IEEE Transactions on Industrial Electronics, vol 56(7), pp 2469-2478 [9] Min Chen and Gabriel A Rincón-Mora (2006), "Accurate, compact, and power-efficient Li-ion batery charger circuit", IEEE Transactions on Circuits and Systems II: Express Briefs, vol 53(11), pp 1180-1184 [10] Lin Chia-Hsiang, Chen Chi-Lin, et al (2008), "Fast charging technique for LiIon batery charger", 2008 15th IEEE International Conference on Electronics, Circuits and Systems, pp 618-621 [11] Bruno Do Valle, Christian T Wentz, and Rahul Sarpeshkar (2011), "An area and power-efficient analog Li-ion batery charger circuit", IEEE transactions on biomedical circuits and systems, vol 5(2), pp 131-137 [12] Yuh-Shyan Hwang, Shu-Chen Wang, et al (2007), "New compact CMOS Liion batery charger using charge-pump technique for portable applications", IEEE Transactions on Circuits and Systems I: Regular Papers, vol 54(4), pp 705-712 [13] Chia-Hsiang Lin, Chun-Yu Hsieh, and Ke-Horng Chen (2010), "A Li-ion batery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging", IEEE Transactions on Circuits and Systems I-Regular Papers, vol 57(2), pp 506-517 [14] Chia-Hsiang Lin, Hong-Wei Huang, and Ke-Horng Chen (2008), "Built-in 105 105 [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] resistance compensation (BRC) technique for fast charging Li-Ion batery charger", Custom Integrated Circuits Conference, 2008 CICC 2008 IEEE, IEEE, pp 33-36 K B Omar, N Soin, et al (2010), "A new charger system approach: The current and voltage control loops", 2010 IEEE International Conference on Semiconductor Electronics (ICSE2010), pp 165-170 Yueming Sun, Xiaobo Wu, and Menglian Zhao (2009), "Li-Ion batery charger with smooth-switch-over four-stage control", Proceedings of the 2009 12th International Symposium on Integrated Circuits, IEEE, pp 49-52 Chia-Chun Tsai, Chin-Yen Lin, et al (2009), "The design of a Li-Ion batery charger based on multimode LDO Technology", Journal of Circuits, Systems, and Computers, vol 18(05), pp 947-963 Chia-Chun Tsai, Chin-Yen Lin, et al (2004), "A multi-mode LDO-based Li- ion batery charger in 0.35um CMOS technology", Circuits and Systems, 2004 Proceedings The 2004 IEEE Asia-Pacific Conference on, IEEE, pp 49-52 Fong-Cheng Yang, Chih-Chiang Chen, et al (2006), "Hysteresis-currentcontrolled buck converter suitable for Li-ion battery charger", Communications, Circuits and Systems Proceedings, 2006 International Conference on, IEEE, pp 2723-2726 Shang-Hsien Yang, Jen-Wei Liu, et al (2011), "A high voltage batery charger with smooth charge mode transition in BCD process", Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, IEEE, pp 813816 Rosario Pagano, Michael Baker, and Russell E Radke (2012), "A 0.18-um Monolithic Li-Ion Battery Charger for Wireless Devices Based on Partial Current Sensing and Adaptive Reference Voltage", IEEE Journal of SolidState Circuits, vol 47(6), pp 1355-1368 R Peng, Y Su, et al (2012), "Robust switch-mode charger with bootstrap detector (BSD) and soft-start embedded in type III compensation (SSEC) technique", 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp 1164-1167 Tsu-Wei Tsai, Ruei-Hong Peng, et al (2012), "Automatic power monitor (APM) in switching charger with smooth transition loop selector (STLS) for high-energy throughput system", Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, IEEE, pp 3182-3186 Shang-Hsien Yang, Jen-Wei Liu, and Chua-Chin Wang (2012), "A single- chip 60-V bulk charger for series Li-ion batteries with smooth charge-mode transition", IEEE Transactions on Circuits and Systems I: Regular Papers, vol 59(7), pp 1588-1597 Judy Amanor-Boadu, Mohamed A Abouzied, et al (2014), "A switched mode Li-ion batery charger with multiple energy harvesting systems simultaneously used as input sources", Circuits and Systems (MWSCAS), 2014 IEEE 57th International Midwest Symposium on, IEEE, pp 330-333 106 106 [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] Jader A De Lima (2014), "A compact and power-efficient CMOS batery charger for implantable devices", Integrated Circuits and Systems Design (SBCCI), 2014 27th Symposium on, IEEE, pp 1-6 Thanh Tien Ha, Do-Young Chung, et al (2014), "A buck DC-DC converter using automatic PFM/PWM mode change for high-efficiency Li-Ion batery charger", SoC Design Conference (ISOCC), 2014 International, IEEE, pp 238-239 Tzu-Chi Huang, Ruei-Hong Peng, et al (2014), "Fast charging and high efficiency switching-based charger with continuous built-in resistance detection and automatic energy deliver control for portable electronics", IEEE Journal of Solid-State Circuits, vol 49(7), pp 1580-1594 Hieu M Nguyen, Lam D Pham, and Trang Hoang (2016), "A novel Li-ion batery charger using multi-mode LDO configuration based on 350 nm HVCMOS", Analog Integrated Circuits and Signal Processing, vol 88(3), pp 505-516 Ruei-Hong Peng, Tsu-Wei Tsai, et al (2013), "Switching-based charger with continuously built-in resistor detector (CBIRD) and analog multiplicationdivision unit (AMDU) for fast charging in Li-ion batery", ESSCIRC (ESSCIRC), 2013 Proceedings of the, IEEE, pp 157-160 C Tsai (2013), "A reduced Li-Ion batery charger for portable applications", 2013 Ninth International Conference on Natural Computation (ICNC), pp 1718-1722 Phu Ho Van Quang, Thanh Tien Ha, and Jong-Wook Lee (2015), "A Fully Integrated Multimode Wireless Power Charger IC With Adaptive Supply Control and Built-In Resistance Compensation", IEEE Trans Industrial Electronics, vol 62(2), pp 1251-1261 Hong-Yi Yang, Tse-Hsu Wu, et al (2013), "An omnipotent Li-ion batery charger with multimode controlled techniques", Power Electronics and Drive Systems (PEDS), 2013 IEEE 10th International Conference on, IEEE, pp 531-534 Young-Ho Jung, Jae-Hyung Jung, et al (2018), "A Fast and Highly-Accurate Batery Charger With Accurate Built-In Resistance Detection", IEEE Transactions on Power Electronics Edward KF Lee (2018), "A Power Efficient LDO-Type Wireless Batery Charger for Biomedical Implants Based on Direct Charging from Regulated Rectifier Current", Circuits and Systems (ISCAS), 2018 IEEE International Symposium on, IEEE, pp 1-4 Pang-Jung Liu and Lin-Hao Chien (2018), "A High-Efficiency Integrated Multimode Batery Charger With an Adaptive Supply Voltage Control Scheme", IEEE Transactions on Power Electronics, vol 33(8), pp 68696876 Pang-Jung Liu and Chia-Hung Yen (2017), "A fast-charging switching-based charger with adaptive hybrid duty cycle control for multiple bateries", IEEE Transactions on Power Electronics, vol 32(3), pp 1975-1983 107 107 [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] Kyoohyun Noh, Minglei Zhang, and Edgar Sánchez-Sinencio (2018), "A Unified Amplifier-Based CC-CV Linear Charger for Energy-Constrained Low-Power Applications", IEEE Transactions on Circuits and Systems II: Express Briefs Jian-Fu Wu, Chia-Ling Wei, and Ying-Zong Juang (2018), "A Monolithic HighVoltage Li-Ion Batery Charger With Sharp Mode Transition and Partial Current Control Technique", IEEE Transactions on Circuits and Systems I: Regular Papers A.S Hameed (2016), "Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications", Springer Singapore I Buchmann (2001), "Bateries in a Portable World Cadex Electronics", Inc J.T Warner (2015), "The Handbook of Lithium-ion Batery Pack Design: Chemistry, Components, Types and Terminology", Elsevier Diego Lisbona and Timothy Snee (2011), "A review of hazards associated with primary lithium and lithium-ion bateries", Process Safety and Environmental Protection, vol 89(6), pp 434-442 PG Balakrishnan, R Ramesh, and T Prem Kumar (2006), "Safety mechanisms in lithium-ion bateries", Journal of Power Sources, vol 155(2), pp 401-414 J Vetter, Petr Novak, et al (2005), "Ageing mechanisms in lithium-ion bateries", Journal of Power Sources, vol 147(1-2), pp 269-281 Christian Schlasza, Peter Ostertag, et al (2014), "Review on the aging mechanisms in Li-ion bateries for electric vehicles based on the FMEA method", Transportation Electrification Conference and Expo (ITEC), 2014 IEEE, IEEE, pp 1-6 B Haran, R White, and BN Popov (2002), "Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II Capacity fade analysis", J Power Sources, vol 112, pp 614-620 DP Abraham, EM Reynolds, et al (2006), "Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells", Journal of the Electrochemical Society, vol 153(8), pp A1610A1616 Thomas Waldmann, Marcel Wilka, et al (2014), "Temperature dependent ageing mechanisms in Lithium-ion bateries–A Post-Mortem study", Journal of Power Sources, vol 262, pp 129-135 How to Prolong Lithium-based Bateries, [Online] Available: https://batteryuniversity.com/learn/article/how_to_prolong_lithium_based _b atteries Todd M Bandhauer, Srinivas Garimella, and Thomas F Fuller (2011), "A critical review of thermal issues in lithium-ion bateries", Journal of the Electrochemical Society, vol 158(3), pp R1-R25 H-P Lin, D Chua, et al (2001), "Low-temperature behavior of Li-ion cells", Electrochemical and Solid-State Letters, vol 4(6), pp A71-A73 108 108 [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] A Senyshyn, MJ Mühlbauer, et al (2015), "Low-temperature performance of Li-ion bateries: The behavior of lithiated graphite", Journal of Power Sources, vol 282, pp 235-240 D Belov and Mo-Hua Yang (2008), "Failure mechanism of Li-ion batery at overcharge conditions", Journal of Solid State Electrochemistry, vol 12(78), pp 885-894 Dmitry Belov and Mo-Hua Yang (2008), "Investigation of the kinetic mechanism in overcharge process for Li-ion batery", Solid State Ionics, vol 179(27-32), pp 1816-1821 Hossein Maleki and Jason N Howard (2006), "Effects of overdischarge on performance and thermal stability of a Li-ion cell", Journal of Power Sources, vol 160(2), pp 1395-1402 Rui Guo, Languang Lu, et al (2016), "Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion bateries", Scientific reports, vol 6, p 30248 Nalin A Chaturvedi, Reinhardt Klein, et al (2010), "Algorithms for advanced batery-management systems", IEEE Control Systems, vol 30(3), pp 49-68 Dennis W Dees, Vincent S Battaglia, and André Bélanger (2002), "Electrochemical modeling of lithium polymer bateries", Journal of Power Sources, vol 110(2), pp 310-320 Kuan-Cheng Chiu, Chi-Hao Lin, et al (2014), "An electrochemical modeling of lithium-ion batery nail penetration", Journal of Power Sources, vol 251, pp 254-263 Peng Rong and Massoud Pedram (2006), "An analytical model for predicting the remaining battery capacity of lithium-ion bateries", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol 14(5), pp 441-451 Parthasarathy M Gomadam, John W Weidner, et al (2002), "Mathematical modeling of lithium-ion and nickel batery systems", Journal of Power Sources, vol 110(2), pp 267-284 Johnny Wehbe and Nabil Karami (2015), "Batery equivalent circuits and brief summary of components value determination of lithium ion: A review", 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), IEEE, pp 4549 Markus Einhorn, Fiorentino Valerio Conte, et al (2013), "Comparison, selection, and parameterization of electrical batery models for automotive applications", IEEE Transactions on Power Electronics, vol 28(3), pp 14291437 Hongwen He, Rui Xiong, and Jinxin Fan (2011), "Evaluation of lithium-ion batery equivalent circuit models for state of charge estimation by an experimental approach", Energies, vol 4(4), pp 582-598 V H Johnson (2002), "Batery performance models in ADVISOR", Journal of Power Sources, vol 110(2), pp 321-329 González-Longatt and Francisco M (2006), "Circuit based batery models: A 109 109 [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] review", Proceedings of 2nd Congreso IberoAmericano De Estudiantes de Ingenieria Electrica, Puerto la Cruz, Venezuela Lijun Gao, Shengyi Liu, and Roger A Dougal (2002), "Dynamic lithium-ion batery model for system simulation", IEEE transactions on components and packaging technologies, vol 25(3), pp 495-505 Stephan Buller, Marc Thele, et al (2005), "Impedance-based simulation models of supercapacitors and Li-ion bateries for power electronic applications", IEEE Transactions on Industry Applications, vol 41(3), pp 742-747 Weilin Luo, Chao Lv, et al (2011), "Study on impedance model of li-ion batery", Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference on, IEEE, pp 1943-1947 Sean Gold (1997), "A PSPICE macromodel for lithium-ion bateries", Battery Conference on Applications and Advances, 1997., Twelfth Annual, IEEE, pp 215-222 Min Chen and Gabriel A Rincon-Mora (2006), "Accurate electrical batery model capable of predicting runtime and IV performance", IEEE transactions on energy conversion, vol 21(2), pp 504-511 Scott Dearborn (2005), "Charging Li-ion bateries for maximum run times", Power Electronics Technology, vol 31(4), pp 40-49 Overcharge/ Overdischarge/Overcurrent Safety Circuits, [Online] Available: https://industrial.panasonic.com/cdbs/wwwdata/pdf/ACA4000/ACA4000PE4.pdf Ala Al-Haj Hussein and Issa Batarseh (2011), "A review of charging algorithms for nickel and lithium batery chargers", IEEE Transactions on Vehicular Technology, vol 60(3), pp 830-838 Peter HL Notten, JHG Op het Veld, and JRG Van Beek (2005), "Boostcharging Li-ion bateries: A challenging new charging concept", Journal of Power Sources, vol 145(1), pp 89-94 Chun-Liang Liu, Shun-Chung Wang, et al (2012), "An optimum fast charging patern search for Li-ion batteries using particle swarm optimization", Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS), 2012 Joint 6th International Conference on, IEEE, pp 727-732 Jia-Wei Huang, Yi-Hua Liu, et al (2009), "Fuzzy-control-based five-step Li- ion batery charger", Power Electronics and Drive Systems, 2009 PEDS 2009 International Conference on, IEEE, pp 1547-1551 Yi-Hwa Liu, Ching-Hsing Hsieh, and Yi-Feng Luo (2011), "Search for an optimal five-step charging patern for Li-ion bateries using consecutive orthogonal arrays", IEEE transactions on energy conversion, vol 26(2), pp 654-661 Yi-Hwa Liu and Yi-Feng Luo (2010), "Search for an optimal rapid-charging patern for Li-ion bateries using the Taguchi approach", IEEE Transactions on Industrial Electronics, vol 57(12), pp 3963-3971 110 110 [81] PE De Jongh and PHL Notten (2002), "Effect of current pulses on lithium intercalation bateries", Solid State Ionics, vol 148(3-4), pp 259-268 [82] Jun Li, Edward Murphy, et al (2001), "The effects of pulse charging on cycling characteristics of commercial lithium-ion bateries", Journal of Power Sources, vol 102(1-2), pp 302-309 [83] Liang-Rui Chen (2007), "A design of an optimal batery pulse charge system by frequency-varied technique", IEEE Transactions on Industrial Electronics, vol 54(1), pp 398-405 [84] Liang-Rui Chen (2009), "Design of duty-varied voltage pulse charger for improving Li-ion batery-charging response", IEEE Transactions on Industrial Electronics, vol 56(2), pp 480-487 [85] Liang-Rui Chen, Shing-Lih Wu, et al (2009), "Detecting of optimal Li-ion batery charging frequency by using AC impedance technique", Industrial Electronics and Applications, 2009 ICIEA 2009 4th IEEE Conference on, IEEE, pp 3378-3381 [86] Liang-Rui Chen, Shing-Lih Wu, et al (2013), "Sinusoidal-ripple-current charging strategy and optimal charging frequency study for Li-ion bateries", IEEE Transactions on Industrial Electronics, vol 60(1), pp 8897 [87] Bora Tar and Ayman Fayed (2016), "An overview of the fundamentals of batery chargers", Circuits and Systems (MWSCAS), 2016 IEEE 59th International Midwest Symposium on, IEEE, pp 1-4 [88] S Ang and A Oliva (2005), "Power-Switching Converters, Second Edition", Taylor & Francis [89] B Choi (2013), "Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs", Wiley [90] Marian K Kazimierczuk (2016), "Pulse-width modulated DC-DC power converters", John Wiley & Sons [91] P.E Allen and D.R Holberg (2012), "CMOS Analog Circuit Design", OUP USA [92] T Ndjountche (2011), "CMOS Analog Integrated Circuits: High-Speed and Power-Efficient Design", Taylor & Francis Group [93] J Mahattanakul and J Chutichatuporn (2005), "Design Procedure for TwoStage CMOS Opamp With Flexible Noise-Power Balancing Scheme", IEEE Transactions on Circuits and Systems I: Regular Papers, vol 52(8), pp 15081514 [94] J Mahattanakul (2005), "Design procedure for two-stage CMOS operational amplifiers employing current buffer", IEEE Transactions on Circuits and Systems II: Express Briefs, vol 52(11), pp 766-770 [95] R.J Baker (2010), "CMOS: Circuit Design, Layout, and Simulation", Wiley [96] Inductors (Coils), [Online] Available: https://product.tdk.com/en/search /inductor/inductor/smd/info?part_no=VLF10045T-220M2R8 [97] John Lee (2015), Basic Calculation of a Buck Converter’s Power Stage, [Online] Available: https://www.richtek.com/en/Design%20Support/Tech 111 [98] [99] [100] [101] [102] [103] [104] [105] nical%20Document/AN041 Multilayer Ceramic Chip Capacitors, [Online] Available: https://product.tdk.com/en/search/capacitor/ceramic/mlcc/info? part_no=C32 25X5R1C226K250AA Robert W Erickson and Dragan Maksimovic (2007), "Fundamentals of power electronics", Springer Science & Business Media J Aguado-Ruiz, A Lopez-Martin, et al (2014), "Power Efficient Class AB OpAmps With High and Symmetrical Slew Rate", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol 22(4), pp 943-947 P J Liu, W S Ye, et al (2012), "A High-Efficiency CMOS DC-DC Converter With 9-us Transient Recovery Time", IEEE Transactions on Circuits and Systems I: Regular Papers, vol 59(3), pp 575-583 A Shebaita and Y Ismail (2009), "Lower power, lower delay design scheme for CMOS tapered buffers", 2009 4th International Design and Test Workshop (IDT), pp 1-5 Brian S Cherkauer and Eby G Friedman (1995), "A unified design methodology for CMOS tapered buffers", IEEE Transactions on Very Large Scale Integration (VLSI) Systems(1), pp 99-111 Siu Man, P K T Mok, et al (2006), "A voltage-mode PWM buck regulator with end-point prediction", IEEE Transactions on Circuits and Systems II: Express Briefs, vol 53(4), pp 294-298 Lu Ming-Xiang, Hwang Bo-Han, et al (2010), "A sub-1V voltage-mode DC- DC buck converter using PWM control technique", 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp 1-4 ... đến hỏng pin thiết bị điện tử, tăng cường trình kết tủa ion lithi bề mặt anôt dẫn đến tổn thất dung lượng pin hình thành ion gây vấn đề ngắn mạch bên pin Li- Ion Vấn đề đặt yêu cầu pin Li- Ion phải... 67 Hình 2.24 Dòng điện điện áp sạc pin Li- Ion 67 Hình 2.25 Hiệu suất công suất mạch sạc pin Li- Ion 68 Hình 3.1 Sơ đồ khối hệ thống mạch sạc pin Li- Ion 72 Hình 3.2 Sơ đồ khối chức... VỀ MẠCH SẠC PIN LI- ION 1.1 Giới thiệu chương 1.2 Sơ lược pin sạc Li- Ion 1.2.1 Giới thiệu chung 1.2.2 Các yếu tố ảnh hưởng đến chất lượng pin Li- Ion 10 1.2.2.1

Ngày đăng: 28/02/2019, 04:47

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w