a, Xác định vị trí của điẻm D để tứ giác BHCD là hình bình hành.. Giả sử đã tìm đợc điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành... của đờng tròn tâm O thì tứ giác BHCD là
Trang 1K
F E
D
C B
1 1
1
2
2 2 3
x x x
x
Với x 2;1 .a, Ruý gọn biểu thức A
.b , Tính giá trị của biểu thức khi cho x= 6 2 2
c Tìm giá trị của x để A=3
2
4 ) (
3 )
y x
y x y
2
2 3
x x x
<0
Câu3 Cho phơng trình (2m-1)x2-2mx+1=0
Xác định m để phơng trình trên có nghiệm thuộc khoảng (-1,0)
Câu 4 Cho nửa đờng tròn tâm O , đờng kính BC Điểm A thuộc nửa đờng tròn đó
D-ng hình vuôD-ng ABCD thuộc nửa mặt phẳD-ng bờ AB, khôD-ng chứa đỉnh C Gọi Flà giao
điểm của Aevà nửa đờng tròn (O) Gọi Klà giao điểm của CFvà ED
a chứng minh rằng 4 điểm E,B,F,K nằm trên một đờng tròn
b Tam giác BKC là tam giác gì ? Vì sao ?
2 2 4
2
4 ) (
3 )
y x
y x y
2
1
y x
2
4
y x
y
x
(2)Giải hệ (1) ta đợc x=3, y=2
= m2-2m+1= (m-1)20 mọi m=> pt có nghiệm với mọi m
ta thấy nghiệm x=1 không thuộc (-1,0)
với m 1/2 pt còn có nghiệm x=
1 2
=
1 2
0 1 1 2
0 1 2
2
m m
m
=>m<0 Vậy Pt có nghiệm trong khoảng (-1,0) khi và chỉ khi m<0
Trang 2Câu 4:
a Ta có KEB= 900
mặt khác BFC= 900( góc nội tiếp chắn nữa đờng tròn)
do CF kéo dài cắt ED tại D
=> BFK= 900 => E,F thuộc đờng tròn đờng kính BK
hay 4 điểm E,F,B,K thuộc đờng tròn đờng kính BK
b BCF= BAF
Mà BAF= BAE=450=> BCF= 450
Ta có BKF= BEF
Mà BEF= BEA=450(EA là đờng chéo của hình vuông ABED)=> BKF=450
Vì BKC= BCK= 450=> tam giác BCK vuông cân tại B
x
x x x
x
x x x x
x x
Bài 4: Cho tam giác có các góc nhọn ABC nội tiếp đờng tròn tâm O H là trực tâm
của tam giác D là một điểm trên cung BC không chứa điểm A
a, Xác định vị trí của điẻm D để tứ giác BHCD là hình bình hành
b, Gọi P và Q lần lợt là các điểm đối xứng của điểm D qua các đờng thẳng AB
và AC Chứng minh rằng 3 điểm P; H; Q thẳng hàng
c, Tìm vị trí của điểm D để PQ có độ dài lớn nhất
Bài 5: Cho hai số dơng x; y thoả mãn: x + y 1
Tìm giá trị nhỏ nhất của: A =
xy y x
501 1
2
Đáp án Bài 1: (2 điểm) ĐK: x 0 ;x 1
: 1
1 (
1 2
x
b P =
1
2 1 1
x
Để P nguyên thì
Trang 3) ( 1 2
1
9 3
2
1
0 0
1
1
4 2
1
1
Loai x
x
x x
x
x x
x
x x
Vậy với x= 0 ; 4 ; 9 thì P có giá trị nguyên
Bài 2: Để phơng trình có hai nghiệm âm thì:
0 6
0 6
4 1
2
2
1
2 2
1
2 2
m x
x
m m
x
x
m m
m
3 2
0 ) 3 )(
2
(
0 25
0 1 50
) 7 3
3 ( 5
2 1
2 2
m m
m m
m m
trình : ct2 + bt + a =0 cũng có hai nghiệm dơng phân biệt t1 ; t2 t1 =
a Giả sử đã tìm đợc điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành
Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên
CH AB và BHAC => BD AB và CDAC
Do đó: ABD = 900 và ACD = 900
Vậy AD là đờng kính của đờng tròn tâm O
Ngợc lại nếu D là đầu đờng kính AD
H
O P
Q
D
C B
A
Trang 4của đờng tròn tâm O thì
tứ giác BHCD là hình bình hành
b) Vì P đối xứng với D qua AB nên APB = ADB
nhng ADB =ACB nhng ADB = ACB
Do đó: APB = ACB Mặt khác:
AHB + ACB = 1800 => APB + AHB = 1800
Tứ giác APBH nội tiếp đợc đờng tròn nên PAB = PHB
Mà PAB = DAB do đó: PHB = DAB
Chứng minh tơng tự ta có: CHQ = DAC
Vậy PHQ = PHB + BHC + CHQ = BAC + BHC = 1800
Ba điểm P; H; Q thẳng hàng
c) Ta thấy APQ là tam giác cân đỉnh A
Có AP = AQ = AD và PAQ = 2BAC không đổi nên cạnh đáy PQ
đạt giá trị lớn nhất AP và AQ là lớn nhất hay AD là lớn nhất
D là đầu đờng kính kẻ từ A của đờng tròn tâm O
y x
y y
y x
x P
) )
1 )(
(
a) Tìm điều kiện của x và y để P xác định Rút gọn P
b) Tìm x,y nguyên thỏa mãn phơng trình P = 2
Bài 2: Cho parabol (P) : y = -x2 và đờng thẳng (d) có hệ số góc m đi qua điểm M(-1 ;-2)
a) Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt
b) Xác định m để A,B nằm về hai phía của trục tung
1 1
1
9
zx yz
xy
z y
x
z y
a) Chứng minh các tam giác BAN và MCN cân
Đáp án
Bài 1: a) Điều kiện để P xác định là :; x 0 ; y 0 ; y 1 ; x y 0
Trang 5y y
x
Ta cã: 1 + y 1 x 1 1 0 x 4 x = 0; 1; 2; 3 ; 4
Thay vµo ta cãc¸c cÆp gi¸ trÞ (4; 0) vµ (2 ; 2) tho¶ m·n
Bµi 2: a) §êng th¼ng (d) cã hÖ sè gãc m vµ ®i qua ®iÓm M(-1 ; -2) Nªn ph¬ng tr×nh
b) A vµ B n»m vÒ hai phÝa cña trôc tung ph¬ng tr×nh : x2 + mx + m – 2 = 0 cã
hai nghiÖm tr¸i dÊu m – 2 < 0 m < 2
) 2 ( 1
1 1
1
1 9
xz yz
xy
z y
x
z y
Trang 6z z y x xy
(
0 1
y
x
z y x xyz
xy z
zy zx
y
x
z y x z xy
2) Một hình trụ có chiều cao gấp đôi đờng kính đáy đựng đầy nớc, nhúng chìmvào bình một hình cầu khi lấy ra mực nớc trong bình còn lại
3
2 bình Tỉ số giữa bánkính hình trụ và bán kính hình cầu là A.2 ; B.3 2 ; C 3 3; D một kết quả khác
Bìa2: 1) Giải phơng trình: 2x4 - 11 x3 + 19x2 - 11 x + 2 = 0
2) Cho x + y = 1 (x > 0; y > 0) Tìm giá trị lớn nhất của A = x + y
Bài 3: 1) Tìm các số nguyên a, b, c sao cho đa thức : (x + a)(x - 4) - 7
Phân tích thành thừa số đợc : (x + b).(x + c)
Trang 7M D
C
B
A
x
2) Cho tam giác nhọn xây, B, C lần lợt là các điểm cố định trên tia Ax, Ay sao
cho AB < AC, điểm M di động trong góc xAy sao cho
MB
MA
= 2 1
Xác định vị trí điểm M để MB + 2 MC đạt giá trị nhỏ nhất
2 1
Bài3 Câu 1Với mọi x ta có (x + a)(x - 4) - 7 = (x + b)(x + c)
Nên với x = 4 thì - 7 = (4 + b)(4 + c)
Có 2 trờng hợp: 4 + b = 1 và 4 + b = 7
4 + c = - 7 4 + c = - 1Trờng hợp thứ nhất cho b = - 3, c = - 11, a = - 10
Ta có (x - 10)(x - 4) - 7 = (x - 3)(x - 11)Trờng hợp thứ hai cho b = 3, c = - 5, a = 2
MA
AD
= 2
1 Xét tam giác AMB và tam giác ADM có MâB (chung)
Do đó Δ AMB ~ Δ ADM => MD MB = MA AD = 2
=> MD = 2MD (0,25 điểm)
Xét ba điểm M, D, C : MD + MC > DC (không đổi)
Do đó MB + 2MC = 2(MD + MC) > 2DC
Trang 8K O
Dấu "=" xảy ra <=> M thuộc đoạn thẳng DC
Giá trị nhỏ nhất của MB + 2 MC là 2 DC
* Cách dựng điểm M
- Dựng đờng tròn tâm A bán kính
2
1 AB
- Dựng D trên tia Ax sao cho AD =
Bài 4: a) Dựng (I, IA) cắt AD tại M cắt tia AC tại N
Tính giá trị của biểu thức :A x 2007 y2007 z2007
Bài 2) Cho biểu thức : M x2 5x y 2 xy 4y 2014
Với giá trị nào của x, y thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó
Bài 4 Cho đờng tròn tâm O đờng kính AB bán kính R Tiếp tuyến tại điểm M bbất
kỳ trên đờng tròn (O) cắt các tiếp tuyến tại A và B lần lợt tại C và D
a.Chứng minh : AC BD = R2
b.Tìm vị trí của điểm M để chu vi tam giác COD là nhỏ nhất
Bài 5.Cho a, b là các số thực dơng Chứng minh rằng :
Trang 9Các tia OC và OD là phân giác của hai góc AOM và MOB nên OC OD
Tam giác COD vuông đỉnh O, OM là đờng cao thuộc cạnh huyền CD nên :
d
c
m
b a
Trang 10Dấu = xảy ra MH1 = OM MO M là điểm chính giữa của cung AB
Bài 6 (1 điểm) Vẽ đờng tròn tâm O ngoại tiếp ABC
Gọi E là giao điểm của AD và (O)
2
x
x f
7 2 ( ) 7 2 )(
3 (
) 4 )(
2 ( ) 2 (
y x y
x
y x y
1 1
1
x
x x x
x x
x x
với x > 0 và x 1a) Rút gọn A
b) Tìm giá trị của x để A = 3
Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB
Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC
a) Chứng minh rằng PC cắt AH tại trung điểm E của AH
d
e
cb
a
Trang 1110 2 10
)
(
x
x x
x x
f
c)
) 2 )(
2 (
2 4
) (
x x
x f
Víi x < 2 suy ra x - 2 < 0 suy ra
1 1
1
x
x x x
x x
x x
) 1 ( : 1
1 )
1 )(
1
(
) 1 )(
1
(
x
x x
x x x
x x
x
x x
1 1
1
x
x x x x
x x
1 1
x x
1
: 1
EH
MÆt kh¸c, do PO // AC (cïng vu«ng gãc víi AB)
E A P
Trang 12=> AHC POB
Do đó:
OB
CH PB
2 (
2PB
AH.CB 2PB
2 2
2 2 2
2 2
2 2
d
R d 2.R 4R
) R 4(d
R d 8R
(2R) 4PB
4R.2R.PB CB
4.PB
4R.CB.PB AH
3x
2 1 m x
x
2 1
2 m x
x
2 1
2 1 2 1
7 7m 4 7
4m - 13 3
8m - 26
7 7m x
7 4m - 13 x
1 1
8m - 26
7 7m 4 7
4m - 13
Trang 13b/ Cho a, b, c là các số thực thõa mãn :
0 0
a b
Tìm giá trị lớn nhất và giá trị bé nhất của Q = 6 a + 7 b + 2006 c
Câu 4: Cho ABC cân tại A với AB > BC Điểm D di động trên cạnh AB, ( D không trùng với A, B) Gọi (O) là đờng tròn ngoại tiếp BCD Tiếp tuyến của (O) tại C và D cắt nhau ở K
a/ Chứng minh tứ giác ADCK nội tiếp
b/ Tứ giác ABCK là hình gì? Vì sao?
c/ Xác định vị trí điểm D sao cho tứ giác ABCK là hình bình hành
Trang 14Dựng tia Cy sao cho BCy BAC Khi đó, D là giao điểm của AB và Cy.
Với giả thiết AB > BC thì BCA > BAC > BDC
x x
2 2
Là một số tự nhiên
b Cho biểu thức: P =
2 2
2 1
z y
yz
y x
xy
x
Biết x.y.z = 4 , tính
P
Câu 2:Cho các điểm A(-2;0) ; B(0;4) ; C(1;1) ; D(-3;2)
a Chứng minh 3 điểm A, B ,D thẳng hàng; 3 điểm A, B, C không thẳng hàng
b Tính diện tích tam giác ABC
Câu 4 Cho đờng tròn (O;R) và một điểm A sao cho OA = R 2 Vẽ các tiếp tuyến
AB, AC với đờng tròn Một góc xOy = 450 cắt đoạn thẳng AB và AC lần lợt tại D
O
K
D
C B
A
Trang 15A = x x x x x
x x
x x
x x
x
) 1 ).(
1 (
1
2 2
(
2 2
z
z x
xy
xy x
xy
x
(1đ)
P 1 vì P > 0
Câu 2: a.Đờng thẳng đi qua 2 điểm A và B có dạng y = ax + b
Điểm A(-2;0) và B(0;4) thuộc đờng thẳng AB nên b = 4; a = 2
AB2 = AC2 + BC2 ABC vuông tại C
Vậy SABC = 1/2AC.BC = 10 10 5
3 2
3
2R
Đề 9
Câu 1: Cho hàm số f(x) = 2 4 4
x x
B
MA
O
CD
E
Trang 16
x
x f
7 2 ( ) 7 2 )(
3 (
) 4 )(
2 ( ) 2 (
y x y
x
y x y
1 1
1
x
x x x
x x
x x
với x > 0 và x 1a) Rút gọn A
2) Tìm giá trị của x để A = 3
Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB
Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC
a) Chứng minh rằng PC cắt AH tại trung điểm E của AH
2
10 2 10
)
(
x
x x
x x
f
c)
) 2 )(
2 (
2 4
) (
x x
x f
Với x < 2 suy ra x - 2 < 0 suy ra
0
21 6 7 2
2 1 7 6 2
8 4 2 2
) 3 )(
7 2 ( ) 7 2 )(
3 (
) 4 )(
2 ( ) 2 (
y x
y x
x y xy x
y xy
x y xy x xy
y x y
x
y x y
1 1
1
x
x x x
x x
x x
) 1 ( : 1
1 )
1 )(
1 (
) 1 )(
1 (
x
x x
x x x
x x
x
x x x
Trang 171 1
1
x
x x x x
x x
x x
=
1
: 1
1 1
x x x
=
1
: 1
x
=
x
x x
EH
Mặt khác, do PO // AC (cùng vuông góc với AB)
=> POB = ACB (hai góc đồng vị)
=> AHC POB
Do đó:
OB
CH PB
2 (
2PB
AH.CB 2PB
2 2
2 2 2
2 2
2 2
d
R d 2.R 4R
) R 4(d
R d 8R
(2R) 4PB
4R.2R.PB CB
4.PB
4R.CB.PB AH
Trang 182 1 m x
x
2 1
2 m x
x
2 1
2 1 2 1
7 7m 4 7
4m - 13 3
8m - 26
7 7m x
7 4m - 13 x
1 1
8m - 26
7 7m 4 7
4m - 13
1
9 7
1
99 97
1
B = 35 + 335 + 3335 + +
3 99
35
Câu 4 : Cho tam giác ABC nội tiếp đờng tròn (O), I là trung điểm của BC, M là một điểm
trên đoạn CI ( M khác C và I ) Đờng thẳng AM cắt (O) tại D, tiếp tuyến của đờng tròn ngoại tiếp tam giác AIM tại M cắt BD và DC tại P và Q.
a) Chứng minh DM.AI= MP.IB
1
3 4
2
Tìm điều kiện để biểu thức có nghĩa, rút gọn biểu thức.
đáp án Câu 1 :
1) A =
5 3
1
+
7 5
1
9 7
1
99 97
35
3333
số =
=33 +2 +333+2 +3333+2+ + 333 33+2
= 2.99 + ( 33+333+3333+ +333 33)
Trang 195 , y =17
20 (2®)
Trang 20P =
x
x x
x
x x
) 3 )(
1 (
Đề 11
Câu 1 : a Rút gọn biểu thức
2 2
1
1 1
100
1 99
1 1
3
1 2
1 1 2
1 1
a Chứng minh rằng pt luôn luôn có nghiệm với m
b Gọi x1, x2 là hai nghiệm của pt Tìm GTLN, GTNN của bt
2
3 2
2 1
2 2
2 1
2 1
x
x x P
Câu 3 : Cho x 1 , y 1 Chứng minh.
xy y
x
2 1
1 1
1
2 2
Câu 4 Cho đờng tròn tâm o và dây AB M là điểm chuyển động trên đờng tròn,
từM kẻ MH AB (H AB) Gọi E và F lần lợt là hình chiếu vuông góc của H trên
MA và MB Qua M kẻ đờng thẳng vuông góc với è cắt dây AB tại D
1 Chứng minh rằng đờng thẳng MD luôn đi qua 1 điểm cố định khi M thay đổitrên đờng tròn
2 Chứng minh
BH
AD BD
AH MB
Câu 1 a Bình phơng 2 vế
1
1 2
a a
1 100
1
1 1 1
m x
x
m x
x
2
1 2
P (1) Tìm đk đẻ pt (1) có nghiệm theo ẩn
Trang 211 1
2 2
1
1 2
m GTLN
y x y xy
x
x y x
.
.
2
2 1
MB h HF
MA h HE BH
AH MB
b a
1
2 1
a) Tìm điều kiện xác định của D và rút gọn Db) Tính giá trị của D với a =
3 2
2
x2- mx +
3 2
2
m2 + 4m - 1 = 0 (1)a) Giải phơng trình (1) với m = -1
b) Tìm m để phơng trình (1) có 2 nghiệm thoã mãn 1 2
2 1
1 1
x x x
Cos bc
2
(Cho Sin2 2SinCos)
M
o E'
E A
F F' B I
D H
Trang 22b a
I
C B
A
2
2
Câu 4: Cho đờng tròn (O) đờng kính AB và một điểm N di động trên một nửa đờng
tròn sao cho N A N B.Vễ vào trong đờng tròn hình vuông ANMP
a) Chứng minh rằng đờng thẳng NP luôn đi qua điểm cố định Q
b) Gọi I là tâm đờng tròn nội tiếp tam giác NAB Chứng minh tứ giác ABMI nộitiếp
c) Chứng minh đờng thẳng MP luôn đi qua một điểm cố định
Câu 5: Cho x,y,z; xy + yz + zx = 0 và x + y + z = -1
Hãy tính giá trị của:
ab b
2
3 2 2
10 1
2 8
2 3 4
0 1
4 2
1
2 1 2
m m
m m
0 0
) 1 )(
( 1
1
2 1
2 1 2
1 2 1 2 1 2
x x x
x x x x
19 4
cSin AI
SABI
2
2
bSin AI
SAIC
Trang 231 2
1
2 1
F
I
Q P
N
M
B A
S
c b
bcCos c
b Sin
bcSin
AI
c b AISin
) ( 2
) ( 2
Tứ giác ABMI nội tiếp
c) Trên tia đối của QB lấy điểm F sao cho QF = QB, F cố định
Tam giác ABF có: AQ = QB = QF
45 ˆ 45
z y
xyz xyz
b) Xác định điểm M trên trục hoành để tam giác MAB cân tại M
Bài 3 : Tìm tất cả các số tự nhiên m để phơng trình ẩn x sau:
x2 - m2x + m + 1 = 0
có nghiệm nguyên
Bài 4 : Cho tam giác ABC Phân giác AD (D BC) vẽ đờng tròn tâm O qua A và D
đồng thời tiếp xúc với BC tại D Đờng tròn này cắt AB và AC lần lợt tại E và F.Chứng minh
Trang 24x3 + y3 x2 + y2 x + y 2
Trang 25§¸p ¸n Bµi 1:
a) §iÒu kiÖn x tháa m·n
x x x x
x x
A
B
C D
Trang 27Câu 2: Xác định các giá trị của tham số m để phơng trình
x2-(m+5)x-m+6 =0
Có 2 nghiệm x1 và x2 thoã mãn một trong 2 điều kiện sau:
a/ Nghiệm này lớn hơn nghiệm kia một đơn vị
a/ Chứng minh rằng 5 điểm E, P, Q, F và C cùng nằm trên một đờng tròn
b/ Chứng minh rằng: SAEF=2SAQP
c/ Kẻ trung trực của cạnh CD cắt AE tại M tính số đo góc MAB biết CPD=CM
h ớng dẫn
Câu 1: a/ Biểu thức A xác định khi x≠2 và x>1
vậy với x = 5 thì A nhận giá trị nguyên bằng 1
Câu 2: Ta có ∆x = (m+5) 2 -4(-m+6) = m 2 +14m+1≥0 để phơng trìnhcó hai nghiệmphânbiệt khi vàchỉ khi m≤ -7-4 3 và m≥-7+4 3 (*)
a/ Giả sử x2>x1 ta có hệ x2-x1=1 (1)
x1+x2=m+5 (2)
x1x2 =-m+6 (3)
Giải hệ tađợc m=0 và m=-14 thoã mãn (*)
b/ Theo giả thiết ta có: 2x1+3x2 =13(1’)
Trang 281 1
Q
P M
F
E
B A
Q, P, C cùng nằm trên đờng tròn đờng kinh EF
b/ Từ câu a suy ra ∆AQE vuông cân
S = ( 2 )2 hay SAEF = 2SAQP
c/ Để thấy CPMD nội tiếp, MC=MD và APD=CPD
x x
1 2 6 5
9 2
a Tìm điều kiện của x để M có nghĩa và rút gọn M
z
1 = 4Chứng ming rằng: x y z
2
Bài 4: Cho hình vuông ABCD Kẻ tia Ax, Ay sao cho x ˆ A y = 450
Tia Ax cắt CB và BD lần lợt tại E và P, tia Ay cắt CD và BD lần lợt tại F và Q
a Chứng minh 5 điểm E; P; Q; F; C cùng nằm trên một đờng tròn
Trang 29
c b a
ac a
bc c
ac
đáp án Bài 1:M =
x
x x
x x
1 2 6 5
9 2
a.ĐK x 0 ;x 4 ;x 9 0,5đ
2 3
2 1
2 3 3
9 2
x x
x x
x x
M =
1 2
3
2 1
x
x x
16 4
4 16
4 16
15 5
1
3 5
1
5 3
1 5
M b.
x
x x
x x
x x
c M =
3
4 1 3
4 3 3
x x
3
6 2
y x y x
Hệ PT này vô nghiệm Hoặc
3
6 2
y x y x
y x
Hoặc x 2y 8
Hệ PT vô nghiệm
Trang 30Vậy cấp số x, y nguyên dơng cần tìm là (x, y) = (4, 1)
b ta có /A/ = /-A/ A A
Nên /x - 2005/ + / x - 2006/ = / x - 2005/ + / 2008 - x/
3 / 3 / / 2008
/ 2007 /
0 / 2006 /
y x y
x
Bài 3
a Trớc hết ta chứng minh bất đẳng thức phụ
b Với mọi a, b thuộc R: x, y > 0 ta có (*)
2 2
2
y x
b a y
b x
(ay - bx)2 0 (**) bất đẳng thức (**) đúng với mọi a, b, và x,y > 0
Dấu (=) xảy ra khi ay = bx hay a b
Trang 31B x
x x
B
2006
2006 2006
2 2006 2006
2005 2006
2005 2006
2
2 2
2 2
x x
à
2
2 2 2
APQ
APQ AEE AEF
Lại có góc MPD = góc CPD (do BD là trung trực của AC)
góc MCD = góc MDC (do M thuộc trung trực của DC)
à góc CPD = gócMDC = góc CMD = gócMCD à tam giác MDC đều à góc CMD