Sở giáo dục và đào tạo HảI dơng Kì thi tuyển sinh lớp 10 THPT Năm học 2008-2009 Môn thi : Toán Thời gian làm bài: 120 phút, không kể thời gian giao đềNgày 26 tháng 6 năm 2008 (buổi chiều) Đềthi gồm : 01 trang Cõu I: (3 im) 1) Gii cỏc phng trỡnh sau: a) 5.x 45 0 = b) x(x + 2) 5 = 0 2) Cho hm s y = f(x) = 2 x 2 a) Tớnh f(-1) b) im ( ) M 2;1 cú nm trờn th hm s khụng ? Vỡ sao ? Cõu II: (2 im) 1) Rỳt gn biu thc P = 4 a 1 a 11 . a a 2 a 2 + ữ ữ ữ + vi a > 0 v a 4. 2. Cho phơng trình (ẩn x): x 2 2x 2m = 0. Tìm m để phơng trình có 2 nghiệm phân biệt x 1 , x 2 thoả mãn: (1 + x 1 2 )(1 + x 2 2 ) = 5. Cõu III: (1 im) Tng s cụng nhõn ca hai i sn xut l 125 ngi. Sau khi iu 13 ngi t i th nht sang i th hai thỡ s cụng nhõn ca i th nht bng 2 3 s cụng nhõn ca i th hai. Tớnh s cụng nhõn ca mi i lỳc u. Cõu IV: (3 im) Cho ng trũn tõm O. Ly im A ngoi ng trũn (O), ng thng AO ct ng trũn (O) ti 2 im B, C (AB < AC). Qua A v ng thng khụng i qua O ct ng trũn (O) ti hai im phõn bit D, E (AD < AE). ng thng vuụng gúc vi AB ti A ct ng thng CE ti F. 1) Chng minh t giỏc ABEF ni tip. 2) Gi M l giao im th hai ca ng thng FB vi ng trũn (O). Chng minh DM AC. 3) Chng minh CE.CF + AD.AE = AC 2 . Cõu V: (1 im) Cho biu thc : B = (4x 5 + 4x 4 5x 3 + 5x 2) 2 + 2008. Tớnh giỏ tr ca B khi x = 1 2 1 . 2 2 1 + _______________________________________________________________________________________________________ Đềthi chính thức -1- Giải Câu I: 1) a) 5.x 45 0 5.x 45 x 45 : 5 x 3.− = ⇔ = ⇔ = ⇔ = b) x(x + 2) – 5 = 0 ⇔ x 2 + 2x – 5 = 0 ∆ ’ = 1 + 5 = 6 ⇒ ' 6∆ = . Phương trình có hai nghiệm phân biệt : x 1,2 = 1 6− ± . 2) a) Ta có f(-1) = 2 ( 1) 1 2 2 − = . b) Điểm ( ) M 2;1 có nằm trên đồ thị hàm số y = f(x) = 2 x 2 . Vì ( ) ( ) 2 2 f 2 1 2 = = . Câu II: 1) Rút gọn: P = 4 a 1 a 11 . a a 2 a 2 − + − − ÷ ÷ ÷ + − = ( ) ( ) ( ) ( ) ( ) ( ) a 1 a 2 a 1 a 2 a 4 . a a 2 a 2 − − − + + − − + = ( ) ( ) a 3 a 2 a 3 a 2 a 4 . a a 4 − + − + + − − = 6 a 6 a a − − = . 2) ĐK: ∆ ’ > 0 ⇔ 1 + 2m > 0 ⇔ m > 1 2 − . Theo đề bài : ( ) ( ) ( ) 2 2 2 2 2 1 2 1 2 1 2 1 x 1 x 5 1 x x x x 5+ + = ⇔ + + + = ⇔ ( ) ( ) 2 2 1 2 1 2 1 2 1 x x x x 2x x 5+ + + − = . Theo Vi-ét : x 1 + x 2 = 2 ; x 1 .x 2 = -2m. ⇒ 1 + 4m 2 + 4 + 4m = 5 ⇔ 4m 2 + 4m = 0 ⇔ 4m(m + 1) = 0 ⇔ m = 0 hoặc m = -1. Đối chiếu với ĐK m = -1 (loại), m = 0 (t/m). Vậy m = 0. Câu III: Gọi số công nhân của đội thứ nhất là x (người). ĐK: x nguyên, 125 > x > 13. Số công nhân của đội thứ hai là 125 – x (người). Sau khi điều 13 người sang đội thứ haithì số công nhân của đội thứ nhất còn lại là x – 13 (người) Đội thứ hai khi đó có số công nhân là 125 – x + 13 = 138 – x (người). Theo bài ra ta có phương trình : x – 13 = 2 3 (138 – x) ⇔ 3x – 39 = 276 – 2x ⇔ 5x = 315 ⇔ x = 63 (thoả mãn). Vậy đội thứ nhất có 63 người. Đội thứ hai có 125 – 63 = 62 (người). Câu IV: _______________________________________________________________________________________________________ -2- M F E D B C O A 3) Xét hai tam giác ACF và ECB có góc C chung , µ µ 0 A E 90= = . Do đó hai tam giác ACF và ECB đồng dạng ⇒ AC EC CE.CF AC.CB CF CB = ⇒ = (1). Tương tự ∆ ABD và ∆ AEC đồng dạng (vì có · BAD chung, µ · · 0 C ADB 180 BDE= = − ). ⇒ AB AE AD.AE AC.AB AD AC = ⇒ = (2). Từ (1) và (2) ⇒ AD.AE + CE.CF = AC.AB + AC.CB = AC(AB + CB) = AC 2 . Câu V: Ta có x = ( ) ( ) ( ) 2 2 11 2 11 2 1 2 2 2 2 1 2 1 2 1 − − − = = + + − . ⇒ x 2 = 3 2 2 4 − ; x 3 = x.x 2 = 5 2 7 8 − ; x 4 = (x 2 ) 2 = 17 12 2 16 − ; x 5 = x.x 4 = 29 2 41 32 − . Xét 4x 5 + 4x 4 – 5x 3 + 5x – 2 = 4. 29 2 41 32 − + 4. 17 12 2 16 − - 5. 5 2 7 8 − + 5. 2 1 2 − - 2 = 29 2 41 34 24 2 25 2 35 20 2 20 16 8 − + − − + + − − = -1. Vậy B = (4x 5 + 4x 4 – 5x 3 + 5x – 2) 2 + 2008 = (-1) 2 + 2008 = 1 + 2008 = 2009. _______________________________________________________________________________________________________ -3- 1) Ta có · 0 FAB 90= (Vì FA ⊥ AB). · 0 BEC 90= (góc nội tiếp chắn nửa đường tròn (O)) ⇒ · 0 BEF 90= ⇒ · · 0 FAB FEB 180+ = . Vậy tứ giác ABEF nội tiếp (vì có tổng hai góc đối bằng 180 0 ). 2) Vì tứ giác ABEF nội tiếp nên · · 1 AFB AEB 2 = = sđ » AB . Trong đường tròn (O) ta có · · 1 AEB BMD 2 = = sđ » BD . Do đó · · AFB BMD= . Mà hai góc này ở vị trí so le trong nên AF // DM. Mặt khác AF ⊥ AC nên DM ⊥ AC. . 0 ⇔ 1 + 2m > 0 ⇔ m > 1 2 − . Theo đề bài : ( ) ( ) ( ) 2 2 2 2 2 1 2 1 2 1 2 1 x 1 x 5 1 x x x x 5+ + = ⇔ + + + = ⇔ ( ) ( ) 2 2 1 2 1 2 1 2 1 x x. 2 1 1 2 1 1 2 1 2 2 2 2 1 2 1 2 1 − − − = = + + − . ⇒ x 2 = 3 2 2 4 − ; x 3 = x.x 2 = 5 2 7 8 − ; x 4 = (x 2 ) 2 = 17 12 2 16 − ; x 5 = x.x 4 = 29 2 41