1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tổng hợp, Nghiên cứu tính chất màng polyme gốc phenyl định hướng ứng dụng làm cảm biến ion kim loại

124 79 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 124
Dung lượng 3,94 MB

Nội dung

1 MỞ ĐẦU Việt Nam đang phải đối mặt với các vấn đề liên quan đến suy giảm chất lượng nước và đất ngày một nghiêm trọng, nguyên nhân chủ yếu là do quá trình đô thị hóa nhanh chóng, sự phát triển các làng nghề, các khu công nghiệp và việc sử dụng tràn lan thuốc bảo vệ thực vật, phân bón, …, đã thải ra một lượng lớn các chất ô nhiễm vô cơ và hữu cơ, trong số đó kim loại nặng được coi là nguy hiểm nhất do có độc tính cao và khả năng tích tụ sinh học. Vấn đề kiểm soát chất lượng nước, phát hiện và định lượng các độc tố ô nhiễm nước đang được các nhà quản lý, khoa học hết sức quan tâm. Các phương pháp xác định, công cụ phân tích cũng được phát triển mạnh mẽ, đặc biệt là lĩnh vực nghiên cứu chế tạo cảm biến hóa học. Mục tiêu của các hướng nghiên cứu chính trong lĩnh vực này là chế tạo được vật liệu cảm biến có độ nhạy và chọn lọc cao, thời gian đáp ứng ngắn, thân thiện môi trường, quy trình chế tạo và phân tích đơn giản, không tốn kém. Cảm biến điện hóa là một trong những ứng viên sáng giá có thể đáp ứng các yêu cầu của quan trắc môi trường hiện nay. Với ưu điểm không đòi hỏi các thiết bị cồng kềnh, đắt tiền, các cảm biến điện hóa có thể cung cấp một quá trình phân tích hiệu quả, dễ thực hiện tại chỗ và dễ tự động hóa. Để nhận biết và định lượng các ion kim loại trong nước ở nồng độ thấp, cực thấp (µg/l, thậm chí ng/l), phương pháp phân tích điện hóa là một trong những phương pháp phân tích thông dụng và chính xác hiện nay [1]. Hiệu quả của các phép phân tích điện hóa chịu ảnh hưởng rất lớn của vật liệu điện cực làm việc [2]. Trong nhiều năm, điện cực thủy ngân nhờ có độ lặp lại cao nên được sử dụng rộng rãi bất chấp độc tính của thủy ngân, những phức tạp của việc sử dụng, bảo quản và thải bỏ. Vì vậy, việc tìm kiếm các vật liệu thay thế nhằm từng bước loại bỏ các vật liệu độc hại trong quá trình phân tích là rất cần thiết. Có nhiều hướng khác nhau trong nghiên cứu biến tính điện cực, trong đó hướng sử dụng màng polyme dẫn điện đang là tâm điểm chú ý trong lĩnh vực này. Polyme dẫn sau khi được phát hiện vào năm 1977 [9] đã nhanh chóng thu hút sự quan tâm của các nhà nghiên cứu chế tạo cảm biến điện hóa, nhờ đặc tính ưu việt kết hợp tính dẫn điện như kim loại với các ưu điểm của polyme. Nhóm vật liệu tiên tiến này đang hứa hẹn triển vọng thay thế các vật liệu cảm biến truyền thống do có các ưu điểm: tính linh hoạt cao, trọng lượng nhẹ, khả năng gia công dễ dàng, tính chọn lọc cao, giá thành hợp lý… [3,4]. Các loại polyme dẫn được nghiên cứu nhiều nhất là polyanilin (PANi), polypyrrol (PPy), polythiophen (PTh), gần đây các dẫn xuất polydiaminonaphthalen (PDAN) cũng được quan tâm nghiên cứu nhờ có các đặc tính ưu việt liên quan đến nhóm amin tự do trong phân tử [5-7]. So với các vật liệu vô cơ, polyme dẫn điện có độ bền cơ học và tính ổn định kém hơn. Để khắc phục các yếu điểm này, gần đây polyme dẫn thường được các nhà khoa học nghiên cứu biến tính hay sử dụng kết hợp với các vật liệu khác tạo thành composit. Trong hơn thập kỷ qua, hướng nghiên cứu chế tạo vật liệu tổ hợp polyme dẫn với ống carbon nano được đặc biệt quan tâm và thu được các kết quả rất khả quan [8]. Từ những phân tích trên đây, tôi tiến hành thực hiện luận án: “Tổng hợp, nghiên cứu tính chất màng polyme gốc phenyl định hướng ứng dụng làm cảm biến ion kim loại” với các mục tiêu và nội dung chính như sau: Mục tiêu nghiên cứu: Chế tạo vật liệu cảm biến dạng màng trên cơ sở một số polyme dẫn gốc phenyl có tính nhạy cao và chọn lọc đối với cation kim loại nặng, định hướng ứng dụng để nhận biết và phân tích vết một số kim loại nặng trong nước.

\ BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CƠNG NGHỆ VŨ HỒNG DUY TỞNG HỢP, NGHIÊN CỨU TÍNH CHẤT MÀNG POLYME GỐC PHENYL ĐỊNH HƯỚNG ỨNG DỤNG LÀM CẢM BIẾN ION KIM LOẠI LUẬN ÁN TIẾN SĨ HÓA HỌC HÀ NỘI - 2019 MỤC LỤC LỜI CẢM ƠN iv DANH MỤC CÁC KÍ HIỆU, CÁC CHỮ VIẾT TẮT i DANH MỤC HÌNH VẼ VÀ ĐỒ THỊ iii DANH MỤC BẢNG .vii MỞ ĐẦU CHƯƠNG TỔNG QUAN 1.1 POLYME DẪN 1.1.1 Giới thiệu polyme dẫn 1.1.2 Phân loại polyme dẫn 1.1.3 Đặc tính dẫn điện trình hoạt hóa 1.1.4 Các phương pháp tổng hợp polyme dẫn 1.1.5 Ứng dụng polyme dẫn làm vật liệu cảm biến .12 1.2 POLYME DẪN GỐC PHENYL 16 1.2.1 Polyanilin .16 1.2.2 Poly(1,8-diaminonaphthalen) poly(1,5-diaminonaphthalen) 19 1.3 CÁC PHƯƠNG PHÁP CHẾ TẠO MÀNG POLYME 21 1.3.1 Phủ nhúng 21 1.3.2 Phương pháp quay phủ ly tâm .22 1.3.3 Phương pháp Langmuir-Blodgett 23 1.3.4 Trùng hợp ngưng tụ pha 24 1.3.5 Phủ nhỏ giọt 24 1.3.6 Kết tủa điện hóa 25 1.4 CÁC PHƯƠNG PHÁP NHẬN BIẾT VÀ XÁC ĐỊNH KIM LOẠI NẶNG .26 1.4.1 Kim loại nặng 26 1.4.2 Các phương pháp phân tích ion kim loại nặng 29 1.4.3 Ứng dụng màng polyme dẫn phân tích kim loại nặng .32 1.5 VẬT LIỆU TỔ HỢP POLYME DẪN - ỐNG CARBON NANO .33 1.5.1 Ống carbon nano 33 1.5.2 Ứng dụng ống carbon nano 34 1.5.3 Vật liệu tổ hợp polyme dẫn - ống carbon nano 35 CHƯƠNG THỰC NGHIỆM VÀ PHƯƠNG PHÁP NGHIÊN CỨU 38 2.1 NGUYÊN LIỆU, HÓA CHẤT 38 2.2 PHƯƠNG PHÁP THỰC NGHIỆM 38 2.2.1 Tổng hợp đặc trưng tính chất màng polyme dẫn gốc phenyl 38 2.2.2 Khảo sát tính nhạy cation kim loại nặng .40 2.2.3 Tổng hợp màng tổ hợp poly(1,5-DAN)/MWCNT ứng dụng phân tích đồng thời Pb(II) Cd(II) .41 2.3 PHƯƠNG PHÁP NGHIÊN CỨU 45 2.3.1 Phương pháp phổ hồng ngoại biến đổi Fourier 45 2.3.2 Phương pháp phổ tán xạ Raman 45 2.3.3 Phương pháp hiển vi điện tử quét 46 2.3.4 Các phương pháp điện hóa 46 CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 50 3.1 TỔNG HỢP VÀ ĐẶC TRƯNG TÍNH CHẤT CỦA POLYANILIN .50 3.1.1 Tổng hợp màng polyanilin 50 3.1.2 Nghiên cứu đặc trưng tính chất màng polyanilin 51 3.1.3 Khảo sát tính nhạy ion kim loại nặng PANi 56 3.2 TỔNG HỢP VÀ ĐẶC TRƯNG TÍNH CHẤT MÀNG POLY(1,8-DAN) 59 3.2.1 Tởng hợp màng poly(1,8-DAN) 59 3.2.2 Nghiên cứu đặc trưng màng poly(1,8-DAN) 60 3.2.3 Nghiên cứu tính nhạy ion kim loại màng poly(1,8-DAN) 66 3.3 TỔNG HỢP VÀ ĐẶC TRƯNG TÍNH CHẤT POLY(1,5-DAN) .70 3.3.1 Tổng hợp màng poly(1,5-DAN) 70 3.3.2 Nghiên cứu đặc trưng màng poly(1,5-DAN) 71 3.3.3 Nghiên cứu tính nhạy ion kim loại nặng màng poly(1,5-DAN) 76 3.4 NGHIÊN CỨU PHÁT TRIỂN MÀNG TỔ HỢP POLY(1,5-DAN)/ MWCNT ỨNG DỤNG PHÂN TÍCH ĐỜNG THỜI Pb(II) VÀ Cd(II) 78 3.4.1 Tổng hợp màng tổ hợp poly(1,5-DAN)/MWCNT 78 3.4.2 Đặc tính điện hóa màng tở hợp poly(1,5-DAN)/MWCNT 80 3.4.3 Đặc tính cấu trúc màng tổ hợp poly(1,5-DAN)/MWCNT 81 3.4.4 Khảo sát tính nhạy ion Pb(II) ion Cd(II) .84 3.4.5 Các yếu tố ảnh hưởng đến tính nhạy ion Pb(II) ion Cd(II) 86 3.4.6 Xây dựng đường chuẩn phân tích đồng thời ion Pb(II) ion Cd(II) .88 3.4.7 Ứng dụng màng tổ hợp poly(1,5-DAN)/MWCNT phân tích ion Cd(II) ion Pb(II) nước 99 KẾT LUẬN 102 ĐIỂM MỚI CỦA LUẬN ÁN 104 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN 105 TÀI LIỆU THAM KHẢO 106 DANH MỤC CÁC KÍ HIỆU, CÁC CHỮ VIẾT TẮT Viết tắt Tiếng Anh Tiếng Việt 1,5-DAN 1,5-diaminonaphthalene 1,8-DAN 1,8-diaminonaphthalene ANi Aniline CE Counter electrode Điện cực đối CNT Carbon nanotubes Ống carbon nano CNT-CP/E Carbon nanotubes - Conducting Polymer/ Electrode Ống carbon nano – polyme dẫn / điện cực CNT/CP/E Carbon nanotubes/ Conducting Polymer/ Electrode Ống carbon nano/polyme dẫn/ điện cực CP/CNT/E Conducting Polymer/ Carbon nanotubes Electrode Polyme dẫn/ ống carbon nano/ điện cực CV Cyclic voltammetry Vơn - ampe vòng FE-SEM Field Emission - Scanning Electron Microscope Hiển vi điện tử quét phát xạ trường FT-IR Fourier Transform Infrared Spectrocopy Phổ hồng ngoại biến đổi Fourier GC Glassy carbon Than thủy tinh HPLC High Performance Liquid Chromatography Phương pháp sắc ký lỏng hiệu cao LOD Limit of detection Giới hạn phát MWCNT Multi-walled carbon nanotubes Ống carbon nano đa vách PANi Polyaniline Poly(1,5- Poly(1,5-diaminonaphthalene/ DAN)/MWCNT/Pt Multi-walled carbon nanotubes/ RE Điện cực platin phủ ống carbon nano đa vách sau Platinium phủ poly(1,5-DAN) Reference Electrode Điện cực so sánh I Saturated Calomel Electrode Điện cực calomen bão hòa Square Wave Anodic Stripping Vơn - ampe hòa tan anode Voltammetry theo kỹ thuật sóng vng SWCNT Sing-walled carbon nanotubes Ống carbon nano đơn lớp SWV Square Wave Voltammetry Vơn - ampe sóng vng WE Working Electrode Điện cực làm việc SCE SWASV II DANH MỤC HÌNH VẼ VÀ ĐỜ THỊ Hình 1.1 Một số loại polyme dẫn điện tử Hình 1.2 Một số loại polyme oxi hóa khử Hình 1.3 Polyme trao đởi ion Hình 1.4 Cơ chế hoạt hóa polypyrrol tạo dạng polaron Hình 1.5 Cơ chế hoạt hóa polypyrrol dạng polaron thành bipolaron Hình 1.6 Sơ đồ mạch polyacetylen hoạt hóa bởi I2 Hình 1.7 Sơ đồ hoạt hóa PANi dạng emeraldin base bằng HCl Hình 1.8 Cơ chế trùng hợp oxi hóa hóa học polypyrrol 10 Hình 1.9 Đường CV (a) điện cực GC/PPy sau ngâm AgNO3 0,1 mM; (b) điện cực GC/PPy; (c) điện cực trần GC sau ngâm AgNO3 0,1 mM 15 Hình 1.10 Đường CV ghi HCl 0,05 M (a) điện cực biến tính PEDOT: PSS (b) điện cực trần sau ngâm dung dịch Pb(NO3)2 mM; so sánh với (c) điện cực biến tính PEDOT: PSS ngâm dung dịch khơng có Pb(NO3)2 16 Hình 1.11 Cấu trúc hóa học anilin 17 Hình 1.12 Phản ứng trùng hợp hóa học PANi 18 Hình 1.13 Cơ chế trùng hợp điện hóa PANi mơi trường axit 19 Hình 1.14 Cấu trúc hóa học (A) 1,8-DAN (B) 1,5-DAN 19 Hình 1.15 Cơ chế phản ứng trùng hợp điện hóa poly(1,8-DAN) 21 Hình 1.16 Nguyên lý phủ nhúng (dip-coating) 22 Hình 1.17 (A) Máy quay phủ ly tâm; (B) Nguyên lý trình phủ màng 23 Hình 1.18 (A, B) Kỹ thuật tạo màng LB;(C) Thiết bị tạo màng LB 23 Hình 1.19 Hình minh họa thiết bị ngưng tụ pha 24 Hình 1.20 Hình minh họa trình phủ nhỏ giọt 24 Hình 1.21 Sơ đồ nguyên lý (A) mạ điện; (B) Trùng hợp điện hóa 25 Hình 1.22 (a) Ống carbon nano đơn vách (b) Ống carbon nano đa vách 34 Hình 1.23 Các đường tạo màng vật liệu tổ hợp polyme dẫn-CNT bề mặt điện cực 35 III Hình 2.1 Điện cực than thủy tinh dùng làm điện cực làm việc 39 Hình 2.2 (a) Cấu tạo (b) ảnh chụp vi điện cực platin tích hợp 41 Hình 2.3 Sơ đồ trình phủ MWCNT lên bề mặt điện cực làm việc 42 Hình 2.4 Phương pháp vơn-ampe vòng 47 Hình 2.5 Đường vơn-ampe vòng trường hợp có chất hoạt động điện hóa phản ứng xảy thuận nghịch 48 Hình 2.6 Quan hệ phụ thuộc E-t phương pháp SWV 49 Hình 3.1 Đường CV tổng hợp PANi dung dịch H2SO4 0,5 M ANi 0,1 M với (A) vòng quét đầu tiên, (B) 15 vòng qt 50 Hình 3.2 Sơ đồ tổng quát phản ứng tổng hợp điện hóa PANi 51 Hình 3.3 Đường CV ghi dung dịch H2SO4 0,1 M màng PANi 52 Hình 3.4 Phổ hồng ngoại FT-IR (A) anilin; (B) màng PANi 53 Hình 3.5 Ảnh FE-SEM màng PANi với độ phóng đại: a)10.000 lần; b)100.000 lần 55 Hình 3.6 Các đường SWV ghi điện cực GC/PANi trước sau ngâm 30 phút dung dịch nước có chứa (a) Ag(I) 10-2 M; (b) Hg(II) 10-2 M; (c) Cd(II) 10-2 M 10-3 M (d) Pb(II) 10-2 M 10-3 M 56 Hình 3.7 (A): Cấu trúc phân tử PANi; (B): Phân bố điện tích bề mặt phân tử PANi 57 Hình 3.8 Cấu hình hình học tạo phức cation: Ag(I); (b) Hg(II); (c) Cd(II) (d) Pb(II); 58 Hình 3.9 Đường cong phân cực điện cực GC dung dịch: (a) HClO4 M; b) HClO4 M 1,8- DAN mM 59 Hình 3.10 Đường CV tổng hợp poly (1,8-DAN) HClO4 1M 1,8-DAN mM 60 Hình 3.11 Đường CV màng poly(1,8-DAN) dung dịch HClO4 0,1 M 61 Hình 3.12 Phổ hồng ngoại (A)1,8-DAN (B) poly(1,8-DAN) 62 Hình 3.13 Cấu trúc phân tử poly(1,8-DAN) 64 Hình 3.14 Sơ đồ trình trùng hợp điện hóa poly(1,8-DAN) 65 Hình 3.15 Ảnh FE- SEM bề mặt màng poly(1,8-DAN) tởng hợp sau chu kỳ (a) chu kỳ (b) quét 66 IV Hình 3.16 Các đường SWV ghi điện cực GC/poly(1,8-DAN) trước sau ngâm 30 phút dung dịch nước có chứa: (a) Cd(II) 10-2 M; (b) Pb(II) 10-2 M; (c) Hg(II) 10-2 M (d) Ag(I) 10-2 M 67 Hình 3.17 (a) Tương tác nhóm -NH2 1,8-DAN; (b) Chiều chuyển dịch điện tử 1,8-DAN; (c) Cấu trúc không gian đoạn mạch poly(1,8-DAN) 68 Hình 3.18 (A) Cấu trúc phân tử poly (1,8-DAN); (B) Phân bố điện tích bề mặt phân tử poly(1,8-DAN) 68 Hình 3.19 Tương tác Ag(I) bên trung tâm Nu1 (a) trung tâm Nu1 Nu2 gần (b) 69 Hình 3.20 Đường tổng hợp poly(1,5-DAN) HClO4 M 1,5-DAN mM 70 Hình 3.21 Đường CV poly(1,5-DAN) dung dịch HClO4 0,1 M 71 Hình 3.22 Phổ hồng ngoại (A) 1,5-DAN (B) poly(1,5-DAN) 72 Hình 3.23: Cấu trúc phân tử poly(1,5-DAN) 74 Hình 3.24 Sơ đồ q trình trùng hợp điện hóa poly(1,5-DAN) 75 Hình 3.25 Ảnh FE-SEM màng poly(1,5-DAN) sau chu kỳ quét (a) 10 chu kỳ quét (b) 76 Hình 3.26 Các đường SWV ghi điện cực GC/poly(1,5-DAN) trước sau ngâm 30 phút dung dịch nước có chứa: (a) Pb(II) 10-3 M; (b) Cd(II) 10-3 M; (c) Ag(I) 10-2 M (d) Hg(II) 10-2 M 77 Hình 3.27 (A) Đường CV tổng hợp poly(1,5-DAN) điện cực MWCNT/Pt; (B) Đường CV vòng thứ tởng hợp poly(1,5-DAN) Pt (a) MWCNT/Pt (b) 79 Hình 3.28 Đường CV dung dịch đệm acetat 0,1M poly(1,5-DAN)/ MWCNT/Pt MWCNT/Pt 80 Hình 3.29 Đường SWV dung dịch đệm acetat 0,1M poly(1,5-DAN)/ MWCNT/Pt 81 Hình 3.30 Phổ Raman MWCNT (a), poly(1,5-DAN)/MWCNT tổng hợp với chu kỳ (b), 10 chu kỳ (c) 25 chu kỳ (d) poly(1,5-DAN) (e) 82 Hình 3.31 Ảnh FE-SEM của: a) MWCNT; b) poly(1,5-DAN); c) poly(1,5DAN)/ MWCNT tởng hợp 10 vòng d) poly(1,5-DAN)/MWCNT tởng hợp 25 vòng 83 V Hình 3.32 Đường SWV phân tích Cd(II) Pb(II) ở nồng độ 10-5 M điện cực Pt, MWCNT/Pt poly(1,5-DAN)/MWCNT/Pt 85 Hình 3.33 Sự ảnh hưởng số chu kỳ tổng hợp màng poly(1,5-DAN) đến cường độ dòng hồ tan Cd Pb 86 Hình 3.34 Ảnh hưởng thời gian làm giàu tới khả phát ion Pb(II) ion Cd(II) màng poly(1,5-DAN)/MWCNT/Pt 87 Hình 3.35 Kết khảo sát ảnh hưởng làm giàu tới khả phát ion Cd(II) ion Pb(II) màng poly(1,5-DAN)/MWCNT/Pt 88 Hình 3.36 Các đường SWASV poly(1,5-DAN)/MWCNT phân tích xác định ion Cd(II) Pb(II) ở nồng độ khác 89 Hình 3.37 Đường chuẩn xác định ion Cd(II) 93 Hình 3.38 Đường chuẩn xác định ion Pb(II) 95 Hình 3.39 Ảnh hưởng ion tới kết phân tích Cd(II) (A) Pb(II) (B) 98 VI hưởng mạnh tới tín hiệu, với nồng độ gấp lần làm tăng cường độ pic lên cỡ 20% 3.4.7 Ứng dụng màng tổ hợp poly(1,5-DAN)/MWCNT phân tích ion Cd(II) và ion Pb(II) nước Nước sông Nhuệ lấy mẫu bảo quản mẫu theo quy định kỹ thuật quan trắc môi trường Bộ tài nguyên môi trường Vị trí lấy mẫu nước chân cầu vượt đại lộ Thăng Long - Mỹ Đình - Hà Nội Đoạn sông tiếp nhận nguồn nước thải sinh hoạt, nước mưa, nước thải công nghiệp khu dân cư, nhà máy nằm dọc bên bờ từ Thụy Phương qua Cầu Diễn, Mỹ Đình Tại phòng thí nghiệm, nước thải lọc qua giấy lọc chuyên dụng có d = 0,24 μm để loại bỏ tạp chất lơ lửng Sau pha với dung dịch đệm acetat 0,1M (pH = 4,5) theo tỷ lệ thể tích mẫu : dung dịch đệm 1: Do mẫu nước sơng thực tế có hàm lượng Cd(II) Pb(II) thấp phân tích không phát (theo phương pháp AAS), nên áp dụng phương pháp thêm chuẩn để phân tích Nồng độ ion Cd(II) Pb(II) thêm vào 40 70 µgL-1 Kết phép đo tính toán giá trị thể bảng 3.10 99 Bảng 3.10 Kết phân tích ion Cd(II) ion Pb(II) mẫu nước sông Nhuệ theo phương pháp SWASV, AAS tính toán độ lệch chuẩn, độ lệch chuẩn tương đối Kết phân tích Cd(II) Chỉ số Kết phân tích Pb(II) Phương pháp Phương pháp Phương pháp Phương pháp SWASV AAS SWASV AAS A1 A2 A1 A2 B1 B2 B1 B2 X1 43,5 69,1 41,2 70,4 40,4 74,6 42,4 71,2 X2 43,6 68,8 39,6 68,2 38,3 74,4 39,8 70,7 X3 41,8 67,2 40,8 70,8 40,6 72,1 41,5 71,1 X4 43,5 67,4 41,2 70,7 37,8 73,9 41,8 68,8 X5 41,6 68,8 39,8 68,3 39,5 72,3 39,8 71,3 X6 41,7 67,5 39,3 68,5 38,3 74,7 40,6 69,4 X7 43,8 68,7 41,4 67,8 37,2 74,8 41,3 71,2 X8 41,5 68,9 40,7 70,6 38,1 72,5 40,6 71,4 ∑ Xi 341,0 546,4 324 555,3 310,2 589,3 327,8 565,1 ∑ (Xi2) 14542,8 37323,4 13126,7 38556,9 12038,8 43418,8 13437,7 39924,0 Xtb 42,6 68,3 40,5 69,4 38,8 73,7 41,0 70,6 SD 1,0 0,8 0,8 1,3 1,2 1,2 0,9 1,0 RSD 2,5 1,2 2,0 1,9 3,2 1,6 2,3 1,4 A1= 40 µgL-1, A2= 70 µgL-1 nồng độ Cd(II) chất thêm chuẩn; B1= 40 µgL-1, B2= 70 µgL-1 nồng độ Pb(II) chất thêm chuẩn; X1 X8: kết xác định xác định ion Cd(II) Pb(II) ở phép đo thứ ÷ SD: Độ lệch chuẩn; RSD: Độ lệch chuẩn tương đối Kết phân tích bảng 3.10 cho thấy cảm biến poly(1,5DAN)/MWCNT/Pt ít bị ảnh hưởng bởi thành phần có mẫu, kết cũng 100 tương đồng với kết phân tích AAS Độ lệch chuẩn tương đối RSD (tính cho phép đo với ion) cho thấy độ chụm kết ≤ 2,5% với Cd(II) Pb(II) có độ chụm ≤ 3,2% 101 KẾT LUẬN Đã tởng hợp điện hóa màng polyme gốc phenyl: polyanilin (PANi), poly(1,8diaminonaphthalen) (poly(1,8-DAN)) poly(1,5-diaminonaphthalen) (poly(1,5DAN)), bằng phương pháp quét đa chu kỳ khảo sát tính nhạy với số ion kim loại nặng, kết sau: - PANi tổng hợp môi trường nước có chứa ANi 0,1M chất điện ly H2SO4 0,5M Các kết phân tích chứng tỏ hình thành màng PANi bề mặt điện cực xốp Màng PANi tởng hợp có khả tạo phức với ion Cd(II) Pb(II), tương tác tạo phức yếu với ion Hg(II) không tạo phức với ion Ag(I) - Poly(1,8-DAN) tổng hợp môi trường nước có chứa 1,8-DAN 5mM chất điện ly HClO4 1M Kết phân tích hồng ngoại cho thấy q trình trùng hợp diễn thành công, nhiên kết đo điện hóa (CV) chứng tỏ màng poly(1,8-DAN) có hoạt tính điện hóa thấp nhiều so với màng PANi Màng poly(1,8-DAN) tạo phức tốt với ion Hg(II) Ag(I), tạo phức yếu với ion Cd(II) Pb(II) - Tương tự poly(1,8-DAN), màng poly(1,5-DAN) trùng hợp môi trường nước sử dụng HClO4 1M làm chất điện ly Kết đo CV cho thấy q trình trùng hợp điện hóa poly(1,5-DAN) diễn dễ dàng nhiều so với poly(1,8-DAN), hoạt tính điện hóa cao ổn định Màng poly(1,5-DAN) tạo phức tốt với ion Cd(II) Pb(II), nhiên không tạo phức với ion Ag(I) Hg(II) Đã nghiên cứu tổng hợp màng tổ hợp poly(1,5-DAN) với ống carbon nano đa vách (MWCNT) vi điện cực tích hợp platin: lớp MWCNT phủ trước đế Pt poly(1,5-DAN) trùng hợp điện hóa phủ lên MWCNT Các kết phân tích phở tán xạ Raman kính hiển vi điện tử quét chứng tỏ q trình tởng hợp diễn thành công, khảo sát CV cho thấy MWCNT có tác dụng tăng đáng kể hoạt tính điện hóa màng poly(1,5-DAN) Đã nghiên cứu khả phân tích đồng thời Pb(II) Cd(II) vi điện cực poly(1,5-DAN)/MWCNT/Pt dung dịch nước bằng phương pháp vôn-ampe hòa tan anode theo kỹ thuật sóng vng (SWASV) Kết khảo sát đưa điều kiện tổng hợp màng tối ưu chu kỳ quét thế, điều kiện phân tích tốt ở làm giàu - 102 1,2V(SCE) thời gian làm giàu 420 giây Đường chuẩn phân tích đồng thời ion Pb(II) Cd(II) có dạng tuyến tính khoảng nồng độ từ µgL-1 đến 150 µgL-1, hệ số hồi quy đạt 0,989 Cd(II) Pb(II) Màng tở hợp poly(1,5DAN)/MWCNT/Pt có độ nhạy Pb(II) 0,519 nALµg-1, Cd(II) 0,496 nALµg-1 Giới hạn phát Pb(II) Cd(II) tương ứng 2,1 3,2 µgL-1 Sự có mặt ion Na+, Ca2+, Zn2+, Fe2+, Al3+, Cu2+, Cl-, Br-, SO42- khơng ảnh hưởng tới tín hiệu phân tích Cd(II) Pb(II), riêng ion Bi3+ với nồng độ lớp gấp lần gia tăng tín hiệu lên cỡ 20% Điện cực poly(1,5-DAN)/MWCNT/Pt thử nghiệm phân tích đồng thời Cd(II) Pb(II) mẫu nước thực tế (nước sông Nhuệ) bằng phương pháp thêm chuẩn đối chứng với phương pháp AAS Kết cho thấy độ lệch chuẩn phép đo Cd(II) ≤ 2,5% Pb(II) ≤ 3,2% 103 ĐIỂM MỚI CỦA LUẬN ÁN Các polyme dẫn điện gốc phenyl: polyanilin, poly(1,8-diaminonaphthalen) poly(1,5-diaminonaphthalen) có lực với cation kim loại nặng thông qua tương tác “cho-nhận” với nguyên tử nitơ giàu electron, nhiên mức độ tương tác khác nhau: PANi poly(1,5-DAN) hấp phụ mạnh ion Cd(II), Pb(II), không hấp phụ Ag(I) Hg(II); poly(1,8-DAN) hấp phụ tốt ion Hg(II) Ag(I), hấp phụ yếu ion Cd(II) Pb(II) Điều tạo lên tính chọn lọc polyme dẫn áp dụng chế tạo cảm biến kim loại Vi điện cực tích hợp Pt phủ màng tở hợp poly(1,5-DAN)/MWCNT có khả phát triển thành cảm biến xác định đồng thời Cd(II) Pb(II) nước, với giới hạn phát 2,1µgL-1 Pb(II) 3,2 µgL-1 Cd(II), độ nhạy Pb(II) 0,519 nALµg-1 với Cd(II) 0,496 nALµg-1, đồng thời chịu ảnh hưởng ion khác 104 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN Vu, H.D.; Nguyen, L.H.; Nguyen, T.D.; Nguyen, H.B.; Nguyen, T.L.; Tran, D.L Anodic stripping voltammetric determination of Cd2+ and Pb2+ using interpenetrated MWCNT/P1,5-DAN as an enhanced sensing interface Ionics, 2015, 21, p 571-578 Nguyen Le Huy, Duong Thi Hanh, Vu Hoang Duy, Nguyen Tuan Dung Electrosynthesis of poly(1,8-diaminonaphthalene) thin film for silver(I) ion determination Journal of Science and Technology (Technical University), 2012, 87, p 23-26 Nguyễn Tuấn Dung, Vũ Hoàng Duy, Đăng Thị Thu Huyền, Nguyễn Văn Tú, Nguyễn Văn Chúc, Nguyễn Hải Bình, Trần Đại Lâm, Nguyễn Xuân Phúc, Thái Hoàng Chế tạo và nghiên cứu tính chất màng tở hợp dạng đa lớp graphe/poly(1,5DAN) Tạp chí Khoa học Công nghệ, 2014, 52 (1), trang 115-122 Nguyen Tuan Dung, Vu Hoang Duy, Nguyen Thanh My, Hoang Van Chinh, Nguyen Le Huy, Tran Dai Lam Preparation of poly(1,5-diaminonaphthalene) modified electrode for cadmium determination Vietnam Journal of Chemistry, 2012, 50(6B), p.234-238 105 TÀI LIỆU THAM KHẢO A.P Achterberg, C Braungardt Stripping voltammetry for determination of trace metal speciation and in-situ measurements of trace metal distributions in marine waters Anal Chim Acta, 1999, 400, p 381-397 J Wang, Analytical Electrochemistry, Wiley-VCH, 2006 M.D Imisides, R John, P.J Riley, G.G Wallace The use of electropolymerization to produce new sensing surfaces: A review emphasizing electrode position of heteroaromatic compounds Electroanalysis, 1991, 3(9), p 879-889 Xiang Li, Yonghua Wang, XinYang, Jianmin Chen, Hongbo Fu, Tiantao Cheng, Yonghua Wang Conducting polymers in environmental analysis TrAC Trends in Analytical Chemistry, 2012, 39, p 163-179 M.C Pham, M Oulahyane, M Mostefai, P.C Lacaze Electrosynthesis and in situ Multiple Internal Reflection FTIR spectroscopic (MIRFTIRS) study of poly( 1,5diaminonaphthalene) Synthetic Metals, 1997, 84(1-3), p 411-412 M Tagowska, B Palys, M Mazur, M Skompska, K Jackowska In situ deposition of poly(1,8-diaminonaphtalene): from thin films to nanometr-sized structure Electrochimica Acta, 2005, 50(12), p 2363-2370 J C Vidal, E Garcia-Ruiz, J Espuelas, T Aramendia, J R Castillo Comparison of biosensors based on entrapment of cholesterol oxidase and cholesterol esterase in electropolymerized films of polypyrrole and diaminonaphtalene derivatives for amperometric determination of cholesterol Anal Bioanal Chem 2003, 377(2), p 273-280 Madalina M Barsan, M Emilia Ghica, Christopher M.A Brett Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review Analytica Chimica Acta, 2015, 881, p.1-23 Hideki Shirakawa, J Edwin Louis, G Alan MacDiarmid, K Chwan Chiang, J Alan Heeger Synthesis of electrically conducting organic polymers: halogen derivatives 106 of polyacetylene, (CH) Journal of the Chemical Society, Chemical Communications, 1977, 16, p 578-580 10 György Inzelt Conducting Polymers, A New Era in Electrochemistry VerlagSpringer press, 2008 11 J.L Bredas, G.B Street Polarons, Bipolarons, and Solitons in Conducting Polymers Acc Chem Pres 1985, 18, p 309-315 12 Alan G MacDiarmid Synthetic Metals: A Novel Role for Organic Polymers (Nobel Lecture) Angew Chem Int Ed 2001, 40, p 2581 - 2590 13 D Kmar and R C Sharma Advances in conductive polymers Eur Polym J 1998, 34(8), p 1053-1060 14 Bharati Yeole, Tanushree Sen, Dharmesh Hansora, Satyendra Mishra Electrical and Gas Sensing Behaviour of Polypyrrole/silver Sulphide Nanocomposites American Journal of Sensor Technology, 2017, 4(1), p 10-20 15 Milica M Gvozdenović, Branimir Z Jugović, Jasmina S Stevanović, Branimir N Grgur Electrochemical synthesis of electroconducting polymers Hem Ind., 2014, 68 (6), p 673-684 16 Phan Quốc Phơ, Giáo trình cảm biến, NXB Khoa học Kỹ thuật, 2001 17 H Bai, G Shi, Gas Sensors Based on Conducting Polymers Sensors, 2007, 7(3), p 267-307 18 Nguyen Tuan Dung, Nguyen Thanh My, Ho Truong Giang, Nguyen Ngoc Toan, Reisberg S., Piro B., Pham Minh Chau, Design of interpenetrated network MWCNT/poly(1,5-DAN) on interdigital electrode: Toward NO2 gas sensing Talanta, 2013, 115, p 713-717 19 U Lange, N.V Roznyatovskaya, V.M Mirsky, Conducting polymers in chemical sensors and arrays Analytica Chimica Acta, 2008, 614(1), p 1-26 20 Z Jin, Y Su, Y Duan, An improved optical pH sensor based on polyaniline Sensors and Actuators B: Chemical, 2000, 71(1–2), p 118-122 21 Chul Soon Park, Changsoo Lee, and Oh Seok Kwon Conducting Polymer Based Nanobiosensors Polymers 2016, 8, 249, p 1-18 22 Fortier G1, Brassard E, Bélanger D Optimization of a polypyrrole glucose oxidase biosensor Biosens Bioelectron, 1990, 5(6), p 473-90 107 23 B Saoudi, N Jammul, M.-L Abel, M.M Chehimi, G Dodin, DNA adsorption onto conducting polypyrrole Synthetic Metals, 1997, 87(2), p 97-103 24 March Gregory, Nguyen Tuan Dung, and Piro Benoit Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis Biosensors, 2015, 5, p 241-275 25 Fa-Yi Song, Kwok-Keung Shiu, Preconcentration and electroanalysis of silver species at polypyrrole film modified glassy carbon electrodes, Journal of Electroanalytical Chemistry, 2001, 498, p 161–170 26 N.G Yasri, A J Halabi, G Istamboulie, T Noguer Chronoamperometric determination of lead ions using PEDOT: PSS modified carbon electrodes Talanta, 2011, 85, p 2528– 2533 27 T A Skotheim Handbook of Conducting Polymers Second Edition Taylor & Francis press 1997 28 J Stejskal, R G Gilbert Polyaniline: Preparation of a conducting polymer Pure Appl Chem., 2002, 74(5), p 857–867 29 Kerileng M Molapo, Peter M Ndangili, Rachel F Ajayi, Gcineka Mbambisa, Stephen M Mailu, Njagi Njomo, Milua Masikini, Priscilla Baker and Emmanuel I Iwuoha Electronics of Conjugated Polymers (I): Polyaniline Int J Electrochem Sci., 2012, 7, p 11859 – 11875 30 Lide, D.R., G.W.A Milne Handbook of Data on Organic Compounds Volume I 3rd ed CRC Press, Inc Boca Raton, FL 1994, 4, p 3504 31 Xin-Gui Li, Mei-Rong Huang, Sheng-Xian Li Facile synthesis of poly(1,8diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization Acta Materialia, 2004, 52, p 5363–5374 32 J W Lee, D S Park, Y B Shim, S M Park Electrochemical characterizaion of poly (1,8-diaminonaphthalene); A functionalized polymer Journal of the Electrochemical Society, 1992, 13(12), p 3507-3514 33 K Jackowska, M Skompska, E Przyhska Electra-oxidation of 1,5 and 1,8 diaminonaphthalene: an RDE study Journal of Electroanalytical Chemistry, 1996, 418, p 35-39 34 M C Pham, M Oulahyne, M Mostefai, M.M Chehimi Multiple internal reflection FT-IR spectroscopy (MIRFTIRS) study of the electrochemical synthesis 108 and redox process of poly (1,5-diaminonaphthalene) Synthetic Metals, 1998, 93(2), p 89-96 35 Nguyễn Tuấn Dung, Phùng Như Bách, Đặng Lan Anh, Tô Thị Xuân Hằng Tổng hợp điện hóa màng poly(1,8-diaminonaphthalen) môi trường nước Tạp chí khoa học công nghệ, 2008, 46(6), trang 97-101 36 C J Brinker, G C Frye, A J Hurd and C S Ashley Fundamentals of dolgle dip coating Thin Solid Films, 1991, 201, p 97-108 37 S Brady, K T Lau, W Megill, G.G Wallace, D Diamond “The development and characterisation of conducting polymeric-based sensing devices” Synth Met., 2005, 154, p 25-28 38 Ramón Gómez Aguilar, Jaime Ortiz López Low cost instrumentation for spincoating deposition of thin films in an undergraduate laboratory Lat Am J Phys Educ., 2011, 5(2), p 368-373 39 N Osvaldo, Jr Oliveira Langmuir-Blodgett Films - Properties and Possible Applicat ions Brazjljan Journal of Physks, 1992, 22(2), p 60-69 40 Krishna Seshan Handbook of thin-film deposition process and technicques, principles, methods, equipment and applications nd Edition, William Andrew Publishing, 2002 41 H.G.O Sandberg, T.G Backlund, R Osterbacka, S Jussila, T Makeba, H Stubb Applications of an all-polymer solution-processed high-performance transitor Synthetic Metals, 2005, 155, p 662-665 42 Tetsuya Osaka, Shinichi Komaba, and Toshiyuki Momma Chapter 16, Conductive polymers: electroplating of organic films Modern Electroplating, Fifth Edition Edited by Mordechay Schlesinger and Milan Paunovic, John Wiley & Sons, Inc Copyright, 2010, p 421-432 43 B T Paul, G Y Clement, K P Anita, and J S Dwayne Heavy Metals Toxicity and the Environment, NIH Public Access, 2012, 101, p 133–164 44 WHO Environmental Health Criteria 135: Cadmium- Environmental Aspects World Health Organization, Geneva, 1992 45 Tobias Alfvén Cadmium Exposure and Distal Forearm Fracture Journal of Bone and Mineral Research, 2004,19(6) 109 46 WHO Environmental Health Criteria 85: Lead Environmental Aspects, World Health Organization, Geneva, 1985 47 WHO Environmental Health Criteria 44: Argentum World Health Organization, Geneva, 1991 48 WHO Environmental Health Criteria 118: mercury World Health Organization, Geneva, 1991 49 Phạm Luận, Phương pháp phân tích phổ nguyên tử, NXB ĐHQG Hà Nội, 2006 50 C F Harrington, R Clough, L R Drennan-Harris, S J Hill, J.F Tyson Atomic spectrometry update, Elemental speciation J Anal At Spectrom 2011, 26, p 1561–1595 51 Dương Quang Phùng Một số phương pháp phân tích điện hóa NXB Đại học Sư phạm, 2006 52 Y Zhang, S.B Adeloju Coupling of non-selective adsorption with selective elution for novel in-line separation and detection of cadmium by vapour generation atomic absorption spectrometry Talanta, 2015, 137, p 148–155 53 J Koksal, V Synek, P Janos Extraction-spectrometric determination of lead in high-purity aluminium salts Talanta, 2002, 58, p 325–530 54 David Harvey Modern analytical chemistry McGraw-Hill Higher Education, 2000 55 Từ Văn Mạc, Trần Thị Sáu “Xác định lượng vết kim loại bia phương pháp cực phổ” Tạp chí phân tích Hố, Lý Sinh học, 2000, 3(4) 56 Lê Lan Anh, Lê Trường Giang, Đỗ Việt Anh Vũ Đức Lợi “Phân tích kim loại nặng lương thực, thực phẩm phương pháp Von-Ampe hòa tan điện cực màng thủy ngân” Tạp chí phân tích Hóa, Lý sinh học, 1998, 3(2), 21-24 57 Mónica Cecilia Vargas Mamani, Luiz Manoel Aleixo, Mơnica Ferreira de Abreu Susanne Rath Simultaneous determination of cadmium and lead in medicinal plants by anodic stripping voltammetry Journal of Pharmaceutical and Biomedical Analysis, May 2005, 37(4), p 709-713 58 Z Wang, E Liu, X Zhao Glassy carbon electrode modified by conductive polyaniline coating for determination of trace lead and cadmium ions in acetate buffer solution Thin Solid Films, 2011, 519(15), p 5285-5289 110 59 M.S Won, J.H Yoon, Y B Shim Determination of Selenium with a Poly(1,8diaminonaphthalene)-Modified Electrode Electroanalysis, 2005, 17, p 1952-1958 60 M Endo, Y.A Kim, T Hayashi, M.Terrones, M.S Dresselhaus “Carbon Nanotubes and Other Carbon Materials” Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition, Taylor & Francis, 2009, p 691 - 706 61 Sumio Iijima Carbon nanotubes: past, present, and future Physica B, 2002, 323, p 1-5 62 Punetha Deep Vinay, Rana Sravendra, Yooc Jin Hye, Chaurasia Alok, T James, Jr McLeskey, Ramasamy Sekkarapatti Madeshwaran, Sahoo Gopal Nanda, Choc Whan Jae Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and grapheme Progress in Polymer Science, 2017, 67, p 1-47 63 Şükriye Ulubay Karabiberoğlu, ầar Ceylan Koỗak and Zekerya Dursun Chapter 15, Carbon Nanotube-Conducting Polymer Composites as Electrode Material in electroanalytical Applications Carbon Nanotubes - Current Progress of their Polymer Composites InTech Published, 2016 64 Y Yao, L Zhang, Y Wen, Z Wang, H Zhang, D Hu, J Xu, X Duan Voltammetric determination of catechin using single-walled carbon nanotubes/ poly(hydroxymethylated-3,4-ethylenedioxythiophene) composite modified electrode Ionics, 2015, 21, p 2927–2936 65 S Shahrokhian, E Asadian Electrochemical determination of L-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron Journal of Electroanalytical Chemistry, 2009, 636, p 40–46 66 V Serafín, L Agüí, P đez-Sedon, JM Pingarrón Electrochemical immunosensor for the determination of insulin-like growth factor-1 using electrodes modified with carbon nanotubes-poly(pyrrole propionic acid) hybrids, Biosensors and Bioelectronics, 2014, 52, p 98–104 67 M C Aguirre, B L Rivas, C P Farfal Poly(3-methyltiophene)-multi walled carbon nanotubes composite electrodes Procedia Materials Science, 2015, 8, p 251–260 111 68 S Korkut, B Keskinler, E Erhan An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives Talanta, 2008, 76, p 1147–1152 69 Nguyễn Lê Huy, Nguyễn Tuấn Dung, Nguyễn Hải Bình, Trần Đại Lâm Xác định chì (Pb2+) phương pháp von-ampe hòa tan anot vi điện cực platin phủ màng nanocomposite polyanilin-ống nano cacbon Tạp chí Hóa học, 2011, 49 (2ABC), tr 357-360 70 Nguyen Tuan Dung, Tran Dai Lam, Nguyen Le Huy, Nguyen Hai Binh, Nguyen Van Hieu Modified interdigitated arrays by novel poly(1,8- diaminonaphthalene)/carbon nanotubes composite for selective detection of mercury (II) Talanta, 2011 46(13), p 2445-2450 71 Z Wang, E Liu, D Gu, Y Wang Glassy carbon electrode coated withpolyaniline–functionalized carbon nanotubes for detection of tracelead in acetate solution Thin Solid Films, 2011, 519, p 5280–5284 72 A Kumar, A M Pharhad Electrochemical synthesis and characterization of chloride doped polyaniline Bull Mater Sci., 2003, 26(3), p 329-334 73 Nguyễn Hữu Đĩnh Ứng dụng một số phương pháp phổ nghiên cứu cấu trúc phân tử Nhà xuất giáo dục, 1999 74 M Piotr Wojciechowski, Wiktor Zierkiewicz, Danuta Michalska, Pavel Hobza Electronic structures, vibrational spectra, and revised assignment of aniline and its radical cation: Theoretical study J chem phys 2003, 18, p 10900-10911 75 J.L Camelet, J.C Lacroix, T Dung Nguyen, S Aeiyach, M.C Pham, J Petitjean, P.C Lacaze Anilin electropolymerization on platinum and mild steel from neutral aqueous media Journal of electroanalytical Chemistry, 2000, 485, p 13-20 76 G Umadevi, V Ponnusamy, M Paramsivam and A.Elango, Effect of D.C Voltages Using HCl for the Synthesis and Characterization of Polyaniline Portugaliae Electrochimica Acta, 2008, 26, p 461-467 77 Trần Thị Đà, Nguyễn Hữu Đĩnh Phức chất, phương pháp tổng hợp và nghiên cứu cấu trúc NXB Khoa học Kỹ thuật Hà Nội, 2006 112 78 A Nasalska and M Skompska Removal of toxic chromate ions by the films of poly(1,8-diaminonaphthalene) Journal of Applied Electrochemistry, 2003, 33, p 113–119 79 M Edward, K Arnett, and G Venkatasubramaniam Stabilization of the Monoanion of 1,8-diaminonaphthalene by Intramolecular hydrogen bonding A Novel case of amide ion homoconjugation in a superbase aolution J Am Chem Soc, 1982, 104, p.325-326 80 S Costa, E Borowiak-Palen, M Kruszyn’ska, A Bachmatiuk, R.J Kalen’czuk Characterization of carbon nanotubes by Raman spectroscopy Materials SciencePoland, 2008, 26(2), p 433-441 81 Tuan Dung Nguyen, Thi Thu Huyen Dang, Hoang Thai, Le Huy Nguyen, Dai Lam Tran, B Piro, Minh Chau Pham One-step Electrosynthesis of Poly(1,5diaminonaphtalen)/ Graphen Nanocomposite as Platform for Lead detection in water Electroanalysis, 2016, 28, p 1907-1913 113 ... phenyl có tính nhạy cao chọn lọc cation kim loại nặng, định hướng ứng dụng để nhận biết phân tích vết số kim loại nặng nước Nội dung nghiên cứu: - Tởng hợp điện hóa màng polyme dẫn gốc phenyl polyanilin,... màng polyme gốc phenyl định hướng ứng dụng làm cảm biến ion kim loại” với mục tiêu nội dung chính sau: Mục tiêu nghiên cứu: Chế tạo vật liệu cảm biến dạng màng sở số polyme dẫn gốc phenyl. .. sóng điện từ ), ngồi ứng dụng kỹ thuật phát quang, chống ăn mòn kim loại [10] Vì luận án tập trung vào hướng nghiên cứu ứng dụng polyme dẫn làm vật liệu cảm biến Cảm biến linh kiện vật lý hay

Ngày đăng: 17/01/2019, 10:59

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w