1. Trang chủ
  2. » Khoa Học Tự Nhiên

Các dạng bài tập dao động cơ có đáp án

24 7,5K 11
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 1,12 MB

Nội dung

1. Phương trình dao động của một vật là: x = 6cos(4pt + 6 p ) (cm), với x tính bằng cm, t tính bằng s. Xác định li độ, vận tốc và gia tốc của vật khi t = 0,25 s. 2. Một vật nhỏ khối lượng 100 g dao động điều hòa trên quỹ đạo thẳng dài 20 cm với tần số góc 6 rad/s. Tính vận tốc cực đại và gia tốc cực đại của vật. 3. Một vật dao động điều hoà trên quỹ đạo dài 40 cm. Khi ở vị trí có li độ x = 10 cm vật có vận tốc 20p 3 cm/s. Tính vận tốc và gia tốc cực đại của vật.

I. DAO ĐỘNG ( Phần dành cho giáo viên_ đã đáp số) Mã số: daodongco_11072011 I.1. Tìm các đại lượng đặc trưng trong dao động điều hòa. 1. Phương trình dao động của một vật là: x = 6cos(4πt + 6 π ) (cm), với x tính bằng cm, t tính bằng s. Xác định li độ, vận tốc và gia tốc của vật khi t = 0,25 s. 2. Một vật nhỏ khối lượng 100 g dao động điều hòa trên quỹ đạo thẳng dài 20 cm với tần số góc 6 rad/s. Tính vận tốc cực đại và gia tốc cực đại của vật. 3. Một vật dao động điều hoà trên quỹ đạo dài 40 cm. Khi ở vị trí li độ x = 10 cm vật vận tốc 20π 3 cm/s. Tính vận tốc và gia tốc cực đại của vật. 4. Một chất điểm dao động điều hoà với chu kì 0,314 s và biên độ 8 cm. Tính vận tốc của chất điểm khi nó đi qua vị trí cân bằng và khi nó đi qua vị trí li độ 5 cm. 5. Một chất điểm dao động theo phương trình: x = 2,5cos10t (cm). Vào thời điểm nào thì pha dao động đạt giá trị 3 π ? Lúc ấy li độ, vận tốc, gia tốc của vật bằng bao nhiêu? 6. Một vật dao động điều hòa với phương trình: x = 5cos(4πt + π) (cm). Vật đó đi qua vị trí cân bằng theo chiều dương vào những thời điểm nào? Khi đó độ lớn của vận tốc bằng bao nhiêu? 7. Một vật nhỏ khối lượng m = 50 g, dao động điều hòa với phương trình: x = 20cos(10 πt + 2 π ) (cm). Xác định độ lớn và chiều của các véc tơ vận tốc, gia tốc và lực kéo về tại thời điểm t = 0,75T. 8. Một vật dao động điều hòa theo phương ngang với biên độ 2 cm và với chu kì 0,2 s. Tính độ lớn của gia tốc của vật khi nó vận tốc 10 10 cm/s. 9. Một vật dao động điều hòa với phương trình: x = 20cos(10πt + 2 π ) (cm). Xác định thời điểm đầu tiên vật đi qua vị trí li độ x = 5 cm theo chiều ngược chiều với chiều dương kể từ thời điểm t = 0. 10. Một vật dao động điều hòa với phương trình: x = 4cos(10πt - 3 π ) (cm). Xác định thời điểm gần nhất vận tốc của vật bằng 20π 3 cm/s và đang tăng kể từ lúc t = 0. Đáp số và hướng dẫn giải: 1. Khi t = 0,25 s thì x = 6cos(4π.0,25 + 6 π ) = 6cos 6 7 π = - 3 3 (cm); v = - 6.4πsin(4πt + 6 π ) = - 6.4πsin 6 7 π = 37,8 (cm/s); a = - ω 2 x = - (4π) 2 . 3 3 = - 820,5 (cm/s 2 ). 2. Ta có: A = 2 L = 2 20 = 10 (cm) = 0,1 (m); v max = ωA = 0,6 m/s; a max = ω 2 A = 3,6 m/s 2 . 3. Ta có: A = 2 L = 2 40 = 20 (cm); ω = 22 xA v − = 2π rad/s; v max = ωA = 2πA = 40π cm/s; a max = ω 2 A = 800 cm/s 2 . 4. Ta có: ω = 314,0 14,3.22 = T π = 20 (rad/s). Khi x = 0 thì v = ± ωA = ±160 cm/s. Khi x = 5 cm thì v = ± ω 22 xA − = ± 125 cm/s. 5. Ta có: 10t = 3 π  t = 30 π (s). Khi đó x = Acos 3 π = 1,25 (cm); v = - ωAsin 3 π = - 21,65 (cm/s); a = - ω 2 x = - 125 cm/s 2 . 6. Khi đi qua vị trí cân bằng thì x = 0  cos(4πt + π) = 0 = cos(± 2 π ). Vì v > 0 nên 4πt + π = - 2 π + 2kπ  t = - 3 8 + 0,5k với k ∈ Z. Khi đó |v| = v max = ωA = 62,8 cm/s. 7. Khi t = 0,75T = 0,75.2 π ω = 0,15 s thì x = 20cos(10π.0,15 + 2 π ) = 20.cos2π = 20 cm; v = - ωAsin2π = 0; a = - ω 2 x = - 200 m/s 2 ; F = - kx = - mω 2 x = - 10 N; a và F đều giá trị âm nên gia tốc và lực kéo về đều hướng ngược với chiều dương của trục tọa độ. 8. Ta có: ω = 2 T π = 10π rad/s; A 2 = x 2 + 2 2 v ω = 2 2 2 4 v a ω ω +  |a| = 4 2 2 2 A v ω ω − = 10 m/s 2 . 9. Ta có: x = 5 = 20cos(10πt + 2 π )  cos(10πt + 2 π ) = 0,25 = cos(±0,42π). Vì v < 0 nên 10πt + 2 π = 0,42π + 2kπ  t = - 0,008 + 0,2k; với k ∈ Z. Nghiệm dương nhỏ nhất trong họ nghiệm này (ứng với k = 1) là 0,192 s. 10. Ta có: v = x’ = - 40πsin(10πt - 3 π ) = 40πcos(10πt + 6 π ) = 20π 3  cos(10πt + 6 π ) = 3 2 = cos(± 6 π ). Vì v đang tăng nên: 10πt + 6 π = - 6 π + 2kπ  t = - 1 30 + 0,2k. Với k ∈ Z. Nghiệm dương nhỏ nhất trong họ nghiệm này là t = 6 1 s. I.2. Các bài toán liên quan đến đường đi, vận tốc và gia tốc của vật dao động điều hòa. 1. Một chất điểm dao động với phương trình: x = 4cos(5πt + 2 π ) (cm). Tính quãng đường mà chất điểm đi được sau thời gian t = 2,15 s kể từ lúc t = 0. 2. Một chất điểm dao động điều hòa với chu kì T = 0,2 s, biên độ A = 4 cm. Tính vận tốc trung bình của vật trong khoảng thời gian ngắn nhất khi đi từ vị trí li độ x = A đến vị trí li độ x = - 2 A . 3. Một chất điểm dao động theo phương trình x = 2,5cos10t (cm). Tính vận tốc trung bình của dao động trong thời gian 8 1 chu kì kể từ lúc vật li độ x = 0 và kể từ lúc vật li độ x = A. 4. Vật dao động điều hòa theo phương trình: x = 2cos(10πt - 3 π ) cm. Tính vận tốc trung bình của vật trong 1,1 giây đầu tiên. 5. Một vật dao động điều hòa theo phương trình: x = 5cos(2πt - 4 π ) cm. Tính vận tốc trung bình trong khoảng thời gian từ t 1 = 1 s đến t 2 = 4,825 s. 6. Vật dao động điều hòa theo phương trình: x = 12cos(10πt - 3 π ) cm. Tính quãng đường dài nhất và ngắn nhất mà vật đi được trong 1 4 chu kỳ. 7. Một chất điểm dao động điều hòa với chu kì T và biên độ 10 cm. Biết trong một chu kì, khoảng thời gian để chất điểm vận tốc không vượt quá 20π 3 cm/s là 2 3 T . Xác định chu kì dao động của chất điểm. 8. Một chất điểm dao động điều hòa với chu kì T và biên độ 8 cm. Biết trong một chu kì, khoảng thời gian để chất điểm vận tốc không nhỏ hơn 40π 3 cm/s là 3 T . Xác định chu kì dao động của chất điểm. 9. Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 5 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc độ lớn gia tốc không vượt quá 100 cm/s 2 là 3 T . Lấy π 2 = 10. Xác định tần số dao động của vật. 10. Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 4 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc độ lớn gia tốc không nhỏ hơn 500 2 cm/s 2 là 2 T . Lấy π 2 = 10. Xác định tần số dao động của vật. Đáp số và hướng dẫn giải: 1. Ta có: T = ω π 2 = 0,4 s ; T t = 5,375 = 5 + 0,25 + 0,125  t = 5T + 4 T + 8 T . Lúc t = 0 vật ở vị trí cân bằng; sau 5 chu kì vật đi được quãng đường 20A và trở về vị trí cân bằng, sau 4 1 chu kì kể từ vị trí cân bằng vật đi được quãng đường A và đến vị trí biên, sau 8 1 chu kì kể từ vị trí biên vật đi được quãng đường: A - Acos 4 π = A - A 2 2 . Vậy quãng đường vật đi được trong thời gian t là s = A(22 - 2 2 ) = 85,17 cm. 2. Khoảng thời gian ngắn nhất vật đi từ vị trí biên x = A đến vị trí cân bằng x = 0 là 4 T ; khoảng thời gian ngắn nhất vật đi từ vị trí cân bằng x = 0 đến vị trí li độ x = 2 A − là 3 4 T = 12 T ; vậy t = 4 T + 12 T = 3 T . Quãng đường đi được trong thời gian đó là s = A + 2 A = 2 3A  Tốc độ trung bình v tb = t s = T A 2 9 = 90 cm/s. 3. Ta có: T = ω π 2 = 0,2π s; ∆t = 8 T = 0,0785 s. Trong 8 1 chu kỳ, góc quay trên giãn đồ là 4 π . Quãng đường đi được tính từ lúc x = 0 là ∆s = Acos 4 π = 1,7678 cm, nên trong trường hợp này v tb = 0785,0 7678,1 = ∆ ∆ t s = 22,5 (cm/s). Quãng đường đi được từ lúc x = A là ∆s = A - Acos 4 π = 0,7232 cm, nên trong trường hợp này v tb = 0785,0 7232,0 = ∆ ∆ t s = 9,3 (cm/s). 4. Ta có: T = ω π 2 = 0,2 s; ∆t = 1,1 = 5.0,2 + 2 2,0 = 5T + 2 T  Quãng đường vật đi được là : S = 5.4A + 2 A = 22A = 44 cm  Vận tốc trung bình: v tb = t S ∆ = 40 cm/s. 5. T = ω π 2 = 1 s; ∆t = t 2 – t 1 = 3,625 = 3T + 2 T + 8 T . Tại thời điểm t 1 = 1 s vật ở vị trí li độ x 1 = 2,5 2 cm; sau 3,5 chu kì vật đi được quãng đường 14 A = 70 cm và đến vị trí li độ - 2,5 2 cm; trong 8 1 chu kì tiếp theo kể từ vị trí li độ - 2,5 2 cm vật đi đến vị trí li độ x 2 = - 5 cm nên đi được quãng đường 5 – 2,5 2 = 1,46 (cm). Vậy quãng đường vật đi được từ thời điểm t 1 đến thời điểm t 2 là ∆S = 71, 46 cm  v tb = t S ∆ ∆ = 19,7 cm/s. 6. Vật độ lớn vận tốc lớn nhất khi ở vị trí cân bằng nên quãng đường dài nhất vật đi được trong 1 4 chu kỳ là S max = 2Acos 4 π = 16,97 cm. Vật độ lớn vận tốc nhỏ nhất khi ở vị trí biên nên quãng đường ngắn nhất vật đi được trong 1 4 chu kỳ là S min = 2A(1 - cos 4 π ) = 7,03 cm. 7. Trong quá trình dao động điều hòa, vận tốc độ lớn càng nhỏ khi càng gần vị trí biên, nên trong 1 chu kì vật vận tốc không vượt quá 20π 3 cm/s là 2 3 T thì trong 1 4 chu kỳ kể từ vị trí biên vật vận tốc không vượt quá 20π 3 cm/s là 6 T . Sau khoảng thời gian 6 T kể từ vị trí biên vật |x| = Acos 3 π = 5 cm  ω = 22 xA v − = 4π rad/s  T = ω π 2 = 0,5 s. 8. Trong quá trình dao động điều hòa, vận tốc độ lớn càng lớn khi càng gần vị trí cân bằng, nên trong 1 chu kì vật vận tốc không nhỏ hơn 40π 3 cm/s là 3 T thì trong 1 4 chu kỳ kể từ vị trí cân bằng vật vận tốc không nhỏ hơn 40π 3 cm/s là 12 T . Sau khoảng thời gian 12 T kể từ vị trí cân bằng vật |x| = Asin 6 π = 4 cm  ω = 22 xA v − = 10π rad/s  T = ω π 2 = 0,2 s. 9. Trong quá trình vật dao động điều hòa, gia tốc của vật độ lớn càng nhỏ khi càng gần vị trí cân bằng. Trong một chu kì, khoảng thời gian để vật nhỏ của con lắc độ lớn gia tốc không vượt quá 100 cm/s 2 là 3 T thì trong một phần tư chu kì tính từ vị trí cân bằng, khoảng thời gian để vật nhỏ của con lắc độ lớn gia tốc không vượt quá 100 cm/s 2 là 12 T . Sau khoảng thời gian 12 T kể từ vị trí cân bằng vật |x| = Acos 6 π = 2 A = 2,5 cm. Khi đó |a| = ω 2 |x| = 100 cm/s 2  ω = || || x a = 2 10 = 2π  f = π ω 2 = 1 Hz. 10. Trong quá trình vật dao động điều hòa, gia tốc của vật độ lớn càng lớn khi càng gần vị trí biên. Trong một chu kì, khoảng thời gian để vật nhỏ của con lắc độ lớn gia tốc không nhỏ hơn 500 2 cm/s 2 là 2 T thì trong một phần tư chu kì tính từ vị trí biên, khoảng thời gian để vật nhỏ của con lắc độ lớn gia tốc không nhỏ hơn 500 2 cm/s 2 là 8 T . Sau khoảng thời gian 8 T kể từ vị trí biên vật |x| = Acos 4 π = 2 A = 2 2 cm. Khi đó |a| = ω 2 |x| = 500 2 cm/s 2  ω = || || x a = 5 10 = 5π  f = π ω 2 = 2,5 Hz. I.3. Viết phương trình dao động của vật dao động, của các con lắc lò xo và con lắc đơn. 1. Một con lắc lò xo thẳng đứng gồm một vật khối lượng 100 g và lò xo khối lượng không đáng kể, độ cứng 40 N/m. Kéo vật nặng theo phương thẳng đứng xuống phía dưới cách vị trí cân bằng một đoạn 5 cm và thả nhẹ cho vật dao động điều hoà. Chọn trục Ox thẳng đứng, gốc O trùng với vị trí cân bằng; chiều dương là chiều vật bắt đầu chuyển động; gốc thời gian là lúc thả vật. Lấy g = 10 m/s 2 . Viết phương trình dao động của vật. 2. Một con lắc lò xo gồm vật năng khối lượng m = 400 g, lò xo khối lượng không đáng kể, độ cứng k = 40 N/m. Kéo vật nặng ra cách vị trí cân bằng 4 cm và thả nhẹ. Chọn chiều dương cùng chiều với chiều kéo, gốc thời gian lúc thả vật. Viết phương trình dao động của vật nặng. 3. Một con lắc lò xo khối lượng m = 50 g, dao động điều hòa trên trục Ox với chu kì T = 0,2 s và chiều dài quỹ đạo là L = 40 cm. Viết phương trình dao động của con lắc. Chọn gốc thời gian lúc con lắc qua vị trí cân bằng theo chiều âm. 4. Một con lắc lò xo treo thẳng đứng gồm một vật nặng khối lượng m gắn vào lò xo khối lượng không đáng kể, độ cứng k = 100 N/m. Chọn trục toạ độ thẳng đứng, gốc toạ độ tại vị trí cân bằng, chiều dương từ trên xuống. Kéo vật nặng xuống phía dưới, cách vị trí cân bằng 5 2 cm và truyền cho nó vận tốc 20π 2 cm/s theo chiều từ trên xuống thì vật nặng dao động điều hoà với tần số 2 Hz. Chọn gốc thời gian lúc vật bắt đầu dao động. Cho g = 10 m/s 2 , π 2 = 10. Viết phương trình dao động của vật nặng. 5. Một con lắc lò xo gồm một lò xo nhẹ độ cứng k và một vật nhỏ khối lượng m = 100 g, được treo thẳng đứng vào một giá cố định. Tại vị trí cân bằng O của vật, lò xo giãn 2,5 cm. Kéo vật dọc theo trục của lò xo xuống dưới cách O một đoạn 2 cm rồi truyền cho nó vận tốc 40 3 cm/s theo phương thẳng đứng hướng xuống dưới. Chọn trục toạ độ Ox theo phương thẳng đứng, gốc tại O, chiều dương hướng lên trên; gốc thời gian là lúc vật bắt đầu dao động. Lấy g = 10 m/s 2 . Viết phương trình dao động của vật nặng. * Đáp số và hướng dẫn giải: 1. Ta có: ω = m k = 20 rad/s; A = 2 2 2 2 2 0 2 0 20 0 )5( +−=+ ω v x = 5(cm); cosϕ = 5 5 0 − = A x = - 1 = cosπ  ϕ = π. Vậy x = 5cos(20t + π) (cm). 2. Ta có: ω = m k = 10 rad/s; A = 2 2 2 2 2 0 2 0 10 0 4 +=+ ω v x = 4 (cm); cosϕ = 4 4 0 = A x = 1 = cos0  ϕ = 0. Vậy x = 4cos20t (cm). 3. Ta có: ω = T π 2 = 10π rad/s; A = 2 L = 20 cm; cosϕ = A x 0 = 0 = cos(± 2 π ); vì v < 0  ϕ = 2 π . Vậy: x = 20cos(10πt + 2 π ) (cm). 4. Ta có: ω = 2πf = 4π rad/s; m = 2 ω k = 0,625 kg; A = 2 2 0 2 0 ω v x + = 10 cm; cosϕ = A x 0 = cos(± 4 π ); vì v > 0 nên ϕ = - 4 π . Vậy: x = 10cos(4πt - 4 π ) (cm). 5. Ta có: ω = 0 l g ∆ = 20 rad/s; A = 2 2 0 2 0 ω v x + = 4 cm; cosϕ = A x 0 = 4 2− = cos(± 3 2 π ); vì v < 0 nên ϕ = 3 2 π . Vậy: x = 4cos(20t + 3 2 π ) (cm). I.4. Các bài toán liên quan đến thế năng, động năng và năng của con lắc lò xo. Bài tập minh họa: 1. Một con lắc lò xo biên độ dao động 5 cm, vận tốc cực đại 1 m/s và năng 1 J. Tính độ cứng của lò xo, khối lượng của vật nặng và tần số dao động của con lắc. 2. Một con lắc lò xo độ cứng k = 150 N/m và năng lượng dao động là W = 0,12 J. Khi con lắc li độ là 2 cm thì vận tốc của nó là 1 m/s. Tính biên độ và chu kỳ dao động của con lắc. 3. Một con lắc lò xo khối lượng m = 50 g, dao động điều hòa trên trục Ox với chu kì T = 0,2 s và chiều dài quỹ đạo là L = 40 cm. Tính độ cứng lò xo và năng của con lắc. 4. Một con lắc lò xo treo thẳng đứng gồm một vật nặng khối lượng m gắn vào lò xo khối lượng không đáng kể, độ cứng k = 100 N/m. Kéo vật nặng xuống về phía dưới, cách vị trí cân bằng 5 2 cm và truyền cho nó vận tốc 20π 2 cm/s thì vật nặng dao động điều hoà với tần số 2 Hz. Cho g = 10 m/s 2 , π 2 = 10. Tính khối lượng của vật nặng và năng của con lắc. 5. Một con lắc lò xo dao động điều hòa. Biết lò xo độ cứng 36 N/m và vật nhỏ khối lượng 100 g. Lấy π 2 = 10. Xác định chu kì và tần số biến thiên tuần hoàn của động năng của con lắc. 6. Một con lắc lò xo khối lượng vật nhỏ là 50 g. Con lắc dao động điều hòa theo phương trình: x = Acosωt. Cứ sau khoảng thời gian 0,05 s thì động năng và thế năng của vật lại bằng nhau. Lấy π 2 = 10. Tính độ cứng của lò xo. 7. Một con lắc lò xo gồm lò xo nhẹ và vật nhỏ dao động điều hòa theo phương ngang với tần số góc 10 rad/s. Biết rằng khi động năng và thế năng của vật bằng nhau thì vận tốc của vật độ lớn bằng 0,6 m/s. Xác định biên độ dao động của con lắc. 8. Một vật nhỏ dao động điều hòa theo phương trình: x = 10cos(4πt - 3 π ) cm. Xác định vị trí và vận tốc của vật khi động năng bằng 3 lần thế năng. 9. Một con lắc lò xo dao động điều hòa với tần số góc ω = 10 rad/s và biên độ A = 6 cm. Xác định vị trí và tính độ lớn của vận tốc khi thế năng bằng 2 lần động năng. 10. Con lắc lò xo gồm vật nhỏ khối lượng m = 400 g và lò xo độ cứng k. Kích thích cho vật dao động điều hòa với năng W = 25 mJ. Khi vật đi qua li độ - 1 cm thì vật vận tốc - 25 cm/s. Xác định độ cứng của lò xo và biên độ của dao động. * Đáp số và hướng dẫn giải: 1. Ta có: W = 2 1 kA 2  k = 2 2 A W = 800 N/m; W = 2 1 mv 2 max  m = 2 max 2 v W = 2 kg; ω = m k = 20 rad/s; f = π ω 2 = 3,2 Hz. 2. Ta có: W = 2 1 kA 2  A = k W2 = 0,04 m = 4 cm. ω = 22 xA v − = 28,87 rad/s; T = ω π 2 = 0,22 s. 3. Ta có: ω = T π 2 = 10π rad/s; k = mω 2 = 50 N/m; A = 2 L = 20 cm; W = 2 1 kA 2 = 1 J. 4. Ta có: ω = 2πf = 4π rad/s; m = 2 ω k = 0,625 kg; A = 2 2 0 2 0 ω v x + = 10 cm; W = 2 1 kA 2 = 0,5 J. 5. Tần số góc và chu kỳ của dao động: ω = m k = 6π rad/s; T = ω π 2 = 3 1 s. Chu kỳ và tần số biến thiên tuần hoàn của động năng: T’ = 2 T = 6 1 s; f’ = ' 1 T = 6 Hz. 6. Trong một chu kỳ 4 lần động năng và thế năng bằng nhau do đó khoảng thời gian liên tiếp giữa hai lần động năng và thế năng bằng nhau là 4 T  T = 4.0,05 = 0,2 (s); ω = T π 2 = 10π rad/s; k = ω 2 m = 50 N/m. 7. Khi động năng bằng thế năng ta có: W = 2W đ hay 2 1 mω 2 A 2 = 2. 2 1 mv 2  A = 2 ω v = 0,06 2 m = 6 2 cm. 8. Ta có: W = W t + W đ = W t + 3W t = 4W t  2 1 kA 2 = 4. 2 1 kx 2  x = ± 4 1 A = ± 5cm. v = ±ω 22 xA − = ± 108,8 cm/s. 9. Ta có: W = W t + W đ = W t + 2 1 W t = 2 3 W t  2 1 kA 2 = 2 3 . 2 1 kx 2  x = ± 3 2 A = ± 4,9 cm. |v| = ω 22 xA − = 34,6 cm/s. 10. Ta có: W = 2 1 kA 2 = 2 1 k(x 2 + 2 2 ω v ) = 2 1 k(x 2 + k mv 2 ) = 2 1 (kx 2 + mv 2 )  k = 2 2 2 x mvW − = 250 N/m. I.5. Con lắc lò xo treo thẳng đứng và con lắc lò xo đặt trên mặt phẵng nghiêng. 1. Một con lắc lò xo gồm một quả nặng khối lượng 100 g, lò xo độ cứng 100 N/m, khối lượng không đáng kể treo thẳng đứng. Cho con lắc dao động với biên độ 5 cm. Lấy g = 10 m/s 2 ; π 2 = 10. Xác định tần số và tính lực đàn hồi cực đại, lực đàn hồi cực tiểu của lò xo trong quá trình quả nặng dao động. 2. Một con lắc lò xo treo thẳng đứng, đầu dưới một vật m dao động với biên độ 10 cm và tần số 1 Hz. Tính tỉ số giữa lực đàn hồi cực tiểu và lực đàn hồi cực đại của lò xo trong quá trình dao động. Lấy g = 10 m/s 2 . 3. Một con lắc lò xo treo thẳng đứng vật nặng khối lượng 100 g. Kích thích cho con lắc dao động theo phương thẳng đứng thì thấy con lắc dao động điều hòa với tần số 2,5 Hz và trong quá trình vật dao động, chiều dài của lò xo thay đổi từ l 1 = 20 cm đến l 2 = 24 cm. Xác định chiều dài tự nhiên của lò xo và tính lực đàn hồi cực đại, cực tiểu của lò xo trong quá trình dao động. Lấy π 2 = 10 và g = 10 m/s 2 . 4. Một con lắc lò xo treo thẳng đứng dao động điều hòa với chu kì 0,4 s; biên độ 6 cm. Khi ở vị trí cân bằng, lò xo dài 44 cm. Lấy g = π 2 (m/s 2 ). Xác định chiều dài cực đại, chiều dài cực tiểu của lò xo trong quá trình dao động. 5. Một con lắc lò xo treo thẳng đứng gồm lò xo chiều dài tự nhiên 20 cm, độ cứng 100 N/m, vật nặng khối lượng 400 g. Kéo vật nặng xuống phía dưới cách vị trí cân bằng 6 cm rồi thả nhẹ cho con lắc dao động điều hòa. Lấy g = π 2 (m/s 2 ). Xác định độ lớn của lực đàn hồi của lò xo khi vật ở các vị trí cao nhất và thấp nhất của quỹ đạo. 6. Một con lắc lò xo gồm quả cầu khối lượng 100 g gắn vào lò xo khối lượng không đáng kể độ cứng 50 N/m và độ dài tự nhiên 12 cm. Con lắc được đặt trên mặt phẵng nghiêng một góc α so với mặt phẵng ngang khi đó lò xo dài 11 cm. Bỏ qua ma sát. Lấy g = 10 m/s 2 . Tính góc α. 7. Một con lắc lò xo đặt trên mặt phẵng nghiêng góc α = 30 0 so với mặt phẵng nằm ngang. Ở vị trí cân bằng lò xo giãn một đoạn 5 cm. Kích thích cho vật dao động thì nó sẽ dao động điều hòa với vận tốc cực đại 40 cm/s. Chọn trục tọa độ trùng với phương dao động của vật, gốc tọa độ tại vị trí cân bằng, gốc thời gian khi vật đi qua vị trí cân bằng theo chiều dương. Viết phương trình dao động của vật. Lấy g = 10 m/s 2 . 8. Một con lắc lò xo gồm vật nặng khối lượng m = 500 g, lò xo độ cứng k = 100 N/m, hệ được đặt trên mặt phẵng nghiêng một góc α = 45 0 so với mặt phẵng nằm ngang, giá cố định ở phía trên. Nâng vật lên đến vị trí mà lò xo không bị biến dạng rồi thả nhẹ. Bỏ qua ma sát. Lấy g = 10 m/s 2 . Chọn trục tọa độ trùng với phương dao động của vật, gốc tọa độ tại vị trí cân bằng, chiều dương hướng xuống dưới, gốc thời gian lúc thả vật. Viết phương trình dao động của vật. * Đáp số và hướng dẫn giải: 1. Ta có: ω = m k = 10π rad/s; T = ω π 2 = 0,2 s; f = T 1 = 5 Hz; W = 2 1 kA 2 = 0,125 J; ∆l 0 = k mg = 0,01 m = 1 cm; F max = k(∆l 0 + A) = 6 N; F min = 0 vì A > ∆l 0 . 2. ω = 2πf = 0 l g ∆  ∆l 0 = 22 4 f g π = 0,25 m = 25 cm; F max = k(∆l 0 +A). ∆l 0 > A  F min = k(∆l 0 - A)  )( )( 0 0 max min Alk Alk F F +∆ −∆ = = 7 3 . 3. Ta có: 2A = l 2 – l 1  A = 2 12 ll − = 2 cm; ω = 2πf = 5π rad/s; ∆l 0 = 2 ω g = 0,04 m = 4 cm; l 1 = l min = l 0 + ∆l 0 – A  l 0 = l 1 - ∆l 0 + A = 18 cm; k = mω 2 = 25 N/m; F max = k(∆l 0 + A) = 1,5 N; ∆l 0 > A nên F min = k(∆l 0 - A) = 0,5 N. 4. Ta có: ω = T π 2 = 5π rad/s; ∆l 0 = 2 ω g = 0,04 m = 4 cm; l min = l 0 + ∆l 0 – A = 42 cm; l max = l 0 + ∆l 0 + A = 54 cm. 5. Ta có: ω = m k = 5π rad/s; ∆l 0 = 2 ω g = 0,04 m = 4 cm; A = 6 cm = 0,06 m. Khi ở vị trí cao nhất lò xo chiều dài: l min = l 0 + ∆l 0 – A = 18 cm, nên độ biến dạng |∆l| = |l min – l 0 | = 2 cm = 0,02 m  |F cn | = k|∆l| = 2 N. Khi ở vị trí thấp nhất lực đàn hồi đạt giá trị cực đại: |F tn | = F max = k(∆l 0 + A) = 10 N. 6. Ta có: ∆l 0 = l 0 – l = 1 cm = 0,01 m; mgsinα = k∆l 0  sinα = mg lk 0 ∆ = 2 1  α = 30 0 . 7. Ta có: ω = 0 sin l g ∆ α = 10 rad/s; A = ω max v = 4 cm; cosϕ = A x 0 = 0 = cos(± 2 π ); vì v 0 > 0 nên ϕ = - 2 π rad. Vậy: x = 4cos(10t - 2 π ) (cm). 8. Ta có: ω = m k = 10 2 rad/s; ∆l 0 = k mg α sin = 0,025 2 m = 2,5 2 cm; A = ∆l 0 = 2,5 2 cm; cosϕ = A x 0 = A A − = - 1 = cosπ  ϕ = π rad. Vậy: x = 2,5 2 cos(10 2 t + π) (cm). I.6. Tìm các đại lượng trong dao động của con lắc đơn. 1. Tại nơi gia tốc trọng trường 9,8 m/s 2 , con lắc đơn dao động điều hoà với chu kì 7 2 π s. Tính chiều dài, tần số và tần số góc của dao động của con lắc. 2. Ở cùng một nơi trên Trái Đất con lắc đơn chiều dài l 1 dao động với chu kỳ T 1 = 2 s, chiều dài l 2 dao động với chu kỳ T 2 = 1,5 s. Tính chu kỳ dao động của con lắc đơn chiều dài l 1 + l 2 và con lắc đơn chiều dài l 1 – l 2 . 3. Khi con lắc đơn chiều dài l 1 , l 2 (l 1 > l 2 ) chu kỳ dao động tương ứng là T 1 , T 2 tại nơi gia tốc trọng trường g = 10 m/s 2 . Biết tại nơi đó, con lắc đơn chiều dài l 1 + l 2 chu kỳ dao động là 2,7; con lắc đơn chiều dài l 1 - l 2 chu kỳ dao động là 0,9 s. Tính T 1 , T 2 và l 1 , l 2 . 4. Trong cùng một khoảng thời gian và ở cùng một nơi trên Trái Đất một con lắc đơn thực hiện được 60 dao động. Tăng chiều dài của nó thêm 44 cm thì trong khoảng thời gian đó, con lắc thực hiện được 50 dao động. Tính chiều dài và chu kỳ dao động ban đầu của con lắc. 5. Tại nơi gia tốc trọng trường g = 9,8 m/s 2 , một con lắc đơn và một con lắc lò xo dao động điều hòa với cùng tần số. Biết con lắc đơn chiều dài 49 cm, lò xo độ cứng 10 N/m. Tính khối lượng vật nhỏ của con lắc lò xo. 6. Tại nơi gia tốc trọng trường g, một con lắc đơn dao động điều hòa với biên độ góc α 0 nhỏ (α 0 < 10 0 ). Lấy mốc thế năng ở vị trí cân bằng. Xác định vị trí (li độ góc α) mà ở đó thế năng bằng động năng trong các trường hợp: a) Con lắc chuyển động nhanh dần theo chiều dương về vị trí cân bằng. b) Con lắc chuyển động chậm dần theo chiều dương về phía vị trí biên. 7. Một con lắc đơn gồm một quả cầu nhỏ khối lượng m = 100 g, treo vào đầu sợi dây dài l = 50 cm, ở một nơi gia tốc trọng trường g = 10 m/s 2 . Bỏ qua mọi ma sát. Con lắc dao động điều hòa với biên độ góc α 0 = 10 0 = 0,1745 rad. Chọn gốc thế năng tại vị trí cân bằng. Tính thế năng, động năng, vận tốc và sức căng của sợi dây tại: a) Vị trí biên. b) Vị trí cân bằng. * Đáp số và hướng dẫn giải: 1. Ta có: T = 2π g l  l = 2 2 4 π gT = 0,2 m; f = T 1 = 1,1 Hz; ω = T π 2 = 7 rad/s. 2. Ta có: T 2 + = 4π 2 g ll 21 + = T 2 1 + T 2 2  T + = 2 2 2 1 TT + = 2,5 s; T - = 2 2 2 1 TT − = 1,32 s. 3. Ta có: T 2 + = 4π 2 g ll 21 + = T 2 1 + T 2 2 (1); T 2 + = 4π 2 g ll 21 − = T 2 1 - T 2 2 (2) Từ (1) và (2)  T 1 = 2 22 −+ +TT = 2 s; T 2 = 2 22 −+ −TT = 1,8 s; l 1 = 2 2 1 4 π gT = 1 m; l 2 = 2 2 2 4 π gT = 0,81 m. 4. Ta có: ∆t = 60.2π g l = 50.2π g l 44,0+  36l = 25(l + 0,44)  l = 1 m; T = 2π g l = 2 s. 5. Ta có: m k l g =  m = g kl. = 500 g. 6. Khi W đ = W t thì W = 2W t  2 1 mlα 2 0 = 2 2 1 mlα 2  α = ± 2 0 α . a) Con lắc chuyển động nhanh dần theo chiều dương từ vị trí biên α = - α 0 đến vị trí cân bằng α = 0 thì v tăng  α = - 2 0 α . b) Con lắc chuyển động chậm dần theo chiều dương từ vị trí cân bằng α = 0 đến vị trí biên α = α 0 thì v giảm  α = 2 0 α . 7. a) Tại vị trí biên: W t = W = 2 1 mgl 2 0 α = 0,0076 J; W đ = 0; v = 0; T = mg(1 - 2 2 o α ) = 0,985 N. b) Tại vị trí cân bằng: W t = 0; W đ = W = 0,0076 J; v = m W d 2 = 0,39 m/s; T = mg(1 + α 2 0 ) = 1,03 N. I.7. Lập phương trình dao động của con lắc đơn 1. Một con lắc đơn chiều dài l = 16 cm. Kéo con lắc lệch khỏi vị trí cân bằng một góc 9 0 rồi thả nhẹ. Bỏ qua mọi ma sát, lấy g = 10 m/s 2 , π 2 = 10. Chọn gốc thời gian lúc thả vật, chiều dương cùng chiều với chiều chuyển động ban đầu của vật. Viết phương trình dao động theo li độ góc tính ra rad. 2. Một con lắc đơn dao động điều hòa với chu kì T = 2 s. Lấy g = 10 m/s 2 , π 2 = 10. Viết phương trình dao động của con lắc theo li độ dài. Biết rằng tại thời điểm ban đầu vật li độ góc α = 0,05 rad và vận tốc v = - 15,7 cm/s. 3. Một con lắc đơn chiều dài l = 20 cm. Tại thời điểm t = 0, từ vị trí cân bằng con lắc được truyền vận tốc 14 cm/s theo chiều dương của trục tọa độ. Lấy g = 9,8 m/s 2 . Viết phương trình dao động của con lắc theo li độ dài. 4. Một con lắc đơn đang nằm yên tại vị trí cân bằng, truyền cho nó một vận tốc v 0 = 40 cm/s theo phương ngang thì con lắc đơn dao động điều hòa. Biết rằng tại vị trí li độ góc α = 0,1 3 rad thì nó vận tốc v = 20 cm/s. Lấy g = 10 m/s 2 . Chọn gốc thời gian là lúc truyền vận tốc cho vật, chiều dương cùng chiều với vận tốc ban đầu. Viết phương trình dao động của con lắc theo li độ dài. 5. Một con lắc đơn dao động điều hòa với chu kì T = 5 π s. Biết rằng ở thời điểm ban đầu con lắc ở vị trí biên, biên độ góc α 0 với cosα 0 = 0,98. Lấy g = 10 m/s 2 . Viết phương trình dao động của con lắc theo li độ góc. Hướng dẫn và đáp số 1. Ta có: ω = l g = 2,5π rad/s; α 0 = 9 0 = 0,157 rad; cosϕ = 0 0 0 α α α α − = = - 1 = cosπ  ϕ = π. Vậy: α = 0,157cos(2,5π + π) (rad). 2. Ta có: ω = T π 2 = π; l = 2 ω g = 1 m = 100 cm; S 0 = 2 2 2 )( ω α v l + = 5 2 cm; cosϕ = 0 S l α = 2 1 = cos(± 4 π ); vì v < 0 nên ϕ = 4 π . Vậy: s = 5 2 cos(πt + 4 π ) (cm). 3. Ta có: ω = l g = 7 rad/s; S 0 = ω v = 2 cm; cosϕ = 0 S s = 0 = cos(± 2 π ); vì v > 0 nên ϕ = - 2 π . Vậy: s = 2cos(7t - 2 π ) (cm). 4. Ta S 2 0 = 2 2 0 ω v = s 2 + 2 2 ω v = α 2 l 2 + 2 2 ω v = 4 22 ω α g + 2 2 ω v  ω = 22 0 vv g − α = 5 rad/s; S 0 = ω 0 v = 8 cm; cosϕ = 0 S s = 0 = cos(± 2 π ); vì v > 0 nên ϕ = - 2 π . Vậy: s = 8cos(5t - 2 π ) (cm). 5. Ta có: ω = T π 2 = 10 rad/s; cosα 0 = 0,98 = cos11,48 0  α 0 = 11,48 0 = 0,2 rad; cosϕ = 0 α α = 0 0 α α = 1 = cos0  ϕ = 0. Vậy: α = 0,2cos10t (rad). 8 . Sự phụ thuộc của chu kì dao động của con lắc đơn vào độ cao và nhiệt độ. Sự nhanh chậm của đồng hồ quả lắc sử dụng con lắc đơn. 1. Trên mặt đất nơi gia tốc trọng trường g = 10 m/s 2 . Một con lắc đơn dao động với chu kỳ T = 0,5 s. Tính chiều dài của con lắc. Nếu đem con lắc này lên độ cao 5 km thì nó dao động với chu kỳ bằng bao nhiêu (lấy đến 5 chử số thập phân). Cho bán kính Trái Đất là R = 6400 km. 2. Người ta đưa một con lắc đơn từ mặt đất lên độ cao h = 10 km. Phải giảm độ dài của nó đi bao nhiêu % để chu kì dao động của nó không thay đổi. Biết bán kính Trái Đất R = 6400 km. 3. Một con lắc đơn dao động tại điểm A nhiệt độ 25 0 C và tại địa điểm B nhiệt độ 10 0 C với cùng một chu kì. Hỏi so với gia tốc trong trường tại A thì gia tốc trọng trường tại B tăng hay giảm bao nhiêu %? Cho hệ số nở dài của dây treo con lắc là α = 4.10 -5 K -1 . 4. Một con lắc đồng hồ thể coi là con lắc đơn. Đồng hồ chạy đúng ở mực ngang mặt biển. Khi đưa đồng hồ lên đỉnh núi cao 4000 m thì đồng hồ chạy nhanh hay chạy chậm và nhanh chậm bao lâu trong một ngày đêm? Biết bán kính Trái Đất R = 6400 km. Coi nhiệt độ không đổi. 5. Quả lắc đồng hồ thể xem là một con lắc đơn dao động tại một nơi gia tốc trọng trường g = 9,8 m/s 2 . Ở nhiệt độ 15 0 C đồng hồ chạy đúng và chu kì dao động của con lắc là T = 2 s. Nếu nhiệt độ tăng lên đến 25 0 C thì đồng hồ chạy nhanh hay chậm bao lâu trong một ngày đêm. Cho hệ số nở dài của thanh treo con lắc α = 4.10 -5 K -1 . 6. Con lắc của một đồng hồ quả lắc được coi như một con lắc đơn. Khi ở trên mặt đất với nhiệt độ t = 27 0 C thì đồng hồ chạy đúng. Hỏi khi đưa đồng hồ này lên độ cao 1 km so với mặt đất thì thì nhiệt độ phải là bao nhiêu để đồng hồ vẫn chạy đúng? Biết bán kính Trái đất là R = 6400 km và hệ sô nở dài của thanh treo con lắc là α = 1,5.10 -5 K -1 . * Đáp số và hướng dẫn giải: 1. Ta có: l = 2 2 4 π gT = 0,063 m; T h = T R hR + = 0,50039 s. 2. Ta có: T = 2π g l = 2π ' ' g l => l’ = g g' l = )( hR R + 2 l = 0,997l. Vậy phải giảm độ dài của con lắc 0,003l, tức là 0,3% độ dài của nó. 3. Ta có: T A = 2π A A g l = 2π A BAB g ttl ))(1( −+ α = T B = 2π B B g l  g B = g A (1 + α(t A – t B ) = 1,0006g A . Vậy gia tốc trọng trường tại B tăng 0,06% so với gia tốc trọng trường tại A. 4. Ta có: T h = R hR + T = 1,000625T > T nên đồng hồ chạy chậm. Thời gian chậm trong một ngày đêm: ∆t = h h T TT )(86400 − = 54 s. 5. Ta có: T’ = T )'(1 tt −+ α = 1,0002T > T nên đồng hồ chạy chậm. Thời gian chậm trong một ngày đêm là: ∆t = ' )'(86400 T TT − = 17,3 s. 6. Để đồng hồ vẫn chạy đúng thì chu kỳ của con lắc ở độ cao h và ở trên mặt đất phải bằng nhau hay: 2π g l = 2π h h g ttl ))(1( −+ α  t h = t - α g g h − 1 = t - α 2 1       + − hR R = 6,2 0 C. 9. Con lắc đơn chịu thêm các lực khác ngoài trọng lực. 1. Một con lắc đơn treo trong thang máy ở nơi gia tốc trọng trường 10 m/s 2 . Khi thang máy đứng yên con lắc dao động với chu kì 2 s. Tính chu kì dao động của con lắc trong các trường hợp: a) Thang máy đi lên nhanh dần đều với gia tốc 2 m/s 2 . b) Thang máy đi lên chậm dần đều với gia tốc 5 m/s 2 . c) Thang máy đi xuống nhanh dần đều với gia tốc 4 m/s 2 . d) Thang máy đi xuống chậm dần đều với gia tốc 6 m/s 2 . 2. Một con lắc đơn chiều dài dây treo 50 cm và vật nhỏ khối lượng 0,01 kg mang điện tích q = + 5.10 -6 C, được coi là điện tích điểm. Con lắc dao động điều hòa trong điện trường đều mà vectơ cường độ điện trường độ lớn E = 10 4 V/m và hướng thẳng đứng xuống dưới. Lấy g = 10 m/s 2 , π = 3,14. Xác định chu kì dao động của con lắc. 3. Treo con lắc đơn vào trần một ôtô tại nơi gia tốc trọng trường g = 9,8 m/s 2 . Khi ôtô đứng yên thì chu kì dao động điều hòa của con lắc là 2 s. Tính chu kì dao động của con lắc khi ôtô chuyển động thẳng nhanh dần đều trên đường nằm ngang với gia tốc 3 m/s 2 . 4. Một con lắc đơn chu kì dao động T = 2 s. Nếu treo con lắc đơn vào trần một toa xe đang chuyển động nhanh dần đều trên mặt đường nằm ngang thì thấy rằng ở vị trí cân bằng mới, dây treo con lắc hợp với phương thẳng đứng một góc α = 30 0 . Cho g = 10 m/s 2 . Tìm gia tốc của toa xe và chu kì dao động mới của con lắc. 5. Một con lắc đơn gồm quả cầu khối lượng riêng D = 4.10 3 kg/m 3 . khi đặt trong không khí nó dao động với chu kì T = 1,5 s. Lấy g = 9,8 m/s 2 . Tính chu kì dao động của con lắc khi nó dao động trong nước. Biết khối lượng riêng của nước là D n = 1 kg/l. * Đáp số và hướng dẫn giải: 1. Khi thang máy đứng yên hoặc chuyển động thẳng đều: T = 2π g l . a) Khi thang máy đi lên nhanh dần đều → a hướng lên, lực quán tính F m a → → = − hướng xuống, gia tốc rơi tự do biểu kiến g’ = g + a nên T’ = 2π ag l +  T’ = T ag g + = 1,83 s. b) Thang máy đi lên chậm dần đều: T’ = T ag g − = 2,83 s. c) Thang máy đi xuống nhanh dần đều: T’ = T ag g − = 2,58 s. d) Thang máy đi xuống chậm dần đều: T’ = T ag g + = 1,58 s. 2. Vật nhỏ mang điện tích dương nên chịu tác dụng của lực điện trường → F hướng từ trên xuống (cùng chiều với véc tơ cường độ điện trường → E ). Vì → F ↑↑ → E ↑↑ → P  P’ = P + F  gia tốc rơi tự do biểu kiến là g’ = g + m Eq || = 15 m/s 2 . Chu kì dao động của con lắc đơn trong điện trường là T’ = 2π 'g l ≈ 1,15 s. 3. Trọng lực biểu kiến tác dụng lên vật: → 'P = → P + → qt F ; → qt F = - m → a  → 'g = → g - → a ; vì → g ⊥ → a  g’ = 22 ag + ≈ 10,25 m/s 2 . Khi ôtô đứng yên: T = 2π g l ; khi ôtô chuyển động gia tốc: T’ = 2π 'g l  T T' = 'g g  T’ = T 'g g = 1,956 s. 4. Ta có: tanα = P F qt = g a  a = gtanα = 5,77 m/s 2 . Vì → a ⊥ → g  g’ = 22 ga + = 11,55 m/s 2 . T’ = T 'g g = 1,86 s. 5. Ta có: D n = 1 kg/l = 10 3 kg/m 3 . Ở trong nước quả cầu chịu tác dụng của một lực đẩy Acsimet → a F hướng lên độ lớn F a = D n .V.g = D D n g nên sẽ gia tốc rơi tự do biểu kiến g’ = g - D D n g = 7,35 m/s 2  T’ = T 'g g = 1,73 s. 10. Dao động tắt dần, dao động cưởng bức, cộng hưởng. * Các công thức: + Hệ dao động cưởng bức sẽ cộng hưởng khi tần số f của lực cưởng bức bằng tần số riêng f 0 hệ dao động. + Trong dao động tắt dần phần năng giảm đi đúng bằng công của lực ma sát nên với con lắc lò xo dao động tắt dần với biên độ ban đầu A, hệ số ma sát µ ta có: Quảng đường vật đi được đến lúc dừng lại: S = g A mg kA µ ω µ 22 222 = . Độ giảm biên độ sau mỗi chu kì: ∆A = k mg µ 4 = 2 4 ω µ g . Số dao động thực hiện được: N = mg A mg Ak A A µ ω µ 44 2 == ∆ . Vận tốc cực đại của vật đạt được khi thả nhẹ cho vật dao động từ vị trí biên ban đầu A: v max = gA k gm m kA µ µ 2 222 −+ . * Phương pháp giải: Để tìm một số đại lượng liên quan đến dao động tắt dần, dao động cưởng bức và sự cộng hưởng ta viết biểu thức liên quan đến các đại lượng đã biết và đại lượng cần tìm từ đó suy ra và tính đại lượng cần tìm. * Bài tập minh họa: 1. Một con lắc lò xo dao động tắt dần. Cứ sau mỗi chu kì, biên độ của nó giảm 0,5%. Hỏi năng lượng dao động của con lắc bị mất đi sau mỗi dao động toàn phần là bao nhiêu % ? 2. Một con lắc lò xo đang dao động tắt dần. năng ban đầu của nó là 5 J. Sau ba chu kì dao động thì biên độ của nó giảm đi 20%. Xác định phần năng chuyển hóa thành nhiệt năng trung bình trong mỗi chu kì. 3. Một con lắc lò xo gồm viên bi nhỏ khối lượng m và lò xo khối lượng không đáng kể độ cứng 160 N/m. Con lắc dao động cưởng bức dưới tác dụng của ngoại lực tuần hoàn tần số f. Biết biên độ của ngoại lực tuần hoàn không đổi. Khi thay đổi f thì biên độ dao động của viên bi thay đổi và khi f = 2π Hz thì biên độ dao động của viên bi đạt cực đại. Tính khối lượng của viên bi. 4. Một tàu hỏa chạy trên một đường ray, cứ cách khoảng 6,4 m trên đường ray lại một rãnh nhỏ giữa chổ nối các thanh ray. Chu kì dao động riêng của khung tàu trên các lò xo giảm xóc là 1,6 s. Tàu bị xóc mạnh nhất khi chạy với tốc độ bằng bao nhiêu? 5. Một con lắc lò xo gồm vật nhỏ khối lượng 0,02 kg và lò xo độ cứng 1 N/m. Vật nhỏ được đặt trên giá đỡ cố định nằm ngang dọc theo trục lò xo. Hệ số ma sát trượt giữa giá đỡ và vật nhỏ là 0,1. Ban đầu giữ vật ở vị trí lò xo bị nén 10 cm rồi buông nhẹ để con lắc dao động tắt dần. Lấy g = 10 m/s 2 . Tính vận tốc cực đại mà vật đạt được trong quá trình dao động. 6. Một con lắc lò xo gồm vật nhỏ khối lượng 0,2 kg và lò xo độ cứng 20 N/m. Vật nhỏ được đặt trên giá đỡ cố định nằm ngang dọc theo trục lò xo. Hệ số ma sát trượt giữa giá đỡ và vật nhỏ là 0,01. Từ vị trí lò xo không bị biến dạng, truyền cho vật vận tốc ban đầu 1 m/s thì thấy con lắc dao động tắt dần trong giới hạn đàn hồi của lò xo. Lấy g = 10 m/s 2 . Tính độ lớn của lực đàn hồi cực đại của lò xo trong quá trình dao động. * Đáp số và hướng dẫn giải: 1. Ta có: A A A AA ' 1 ' −= − = 0,05  A A' = 0,995. 2 ''       = A A W W = 0,995 2 = 0,99 = 99%, do đó phần năng lượng của con lắc mất đi sau mỗi dao động toàn phần là 1%. 2. Ta có: W = 2 1 kA 2 . Sau 3 chu kỳ biên độ dao động của con lắc giảm 20% nên biên độ còn lại: A’ = 0,8A, năng lúc đó: W’ = 2 1 kA’ 2 = 2 1 k(0,8A)2 = 0,64. 2 1 kA 2 = 0,64.W. Phần năng chuyển hóa thành nhiệt năng trong ba chu kỳ: ∆W = W - W’ = 0,36.W = 1,8 J. Phần năng chuyển hóa thành nhiệt năng trong 1 chu kỳ: W ∆ = 3 W ∆ = 0,6 J. 3. Biên độ của dao động cưởng bức đạt cực đại khi tần số của lực cưởng bức bằng tần số riêng của con lắc: f = f 0 = m k π 2 1  m = 22 4 f k π = 0,1 kg = 100 g. 4. Tàu bị xóc mạnh nhất khi chu kì kích thích của ngoại lực bằng chu kỳ riêng của khung tàu: T = T 0 = v L  v = 0 T L = 4 m/s = 14,4 km/h. 5. Chọn trục tọa độ Ox trùng với trục của lò xo, gốc tọa độ O (cũng là gốc thế năng) tại vị trí lò xo không biến dạng, chiều dương là chiều chuyển động của con lắc lúc mới buông tay. Vật đạt tốc độ lớn nhất trong 4 1 chu kì đầu tiên. Gọi x là li độ của vị trí vật đạt tốc độ cực đại (x < 0). Theo định luật bảo toàn năng lượng: W 0 = W đmax + W t + |A ms |; với W 0 = 2 1 k∆l 2 0 ; W đmax = 2 1 mv 2 ; W t = 2 1 kx 2 ; |A ms | = µmg(∆l 0 - |x|) = µmg(∆l 0 + x); ta có: 2 1 k∆l 2 0 = 2 1 mv 2 + 2 1 kx 2 + µmg(∆l 0 + x)  v 2 = m k ∆l 2 0 - m k x 2 - 2µmg(∆l 0 + x) = - m k x 2 - 2µgx + m k ∆l 2 0 - 2µg∆l 0 . Ta thấy v 2 đạt cực đại khi x = - a b 2 = - m k g 2 2 − − µ = - k mg µ = - 1 10.02,0.1,0 = - 0,02 (m) = - 2 (cm). Khi đó v max = )(2)( 0 22 0 xlgxl m k +∆−−∆ µ = 32,0 = 0,4 2 (m/s) = 40 2 (cm/s). 6. Chọn trục tọa độ Ox trùng với trục của lò xo, gốc tọa độ O (cũng là gốc thế năng) tại vị trí lò xo không biến dạng, chiều dương là chiều chuyển động ban đầu của con lắc. Độ lớn của lực đàn hồi của lò xo đạt giá trị cực đại trong 4 1 chu kì đầu tiên, khi đó vật ở vị trí biên. Theo định luật bảo toàn năng lượng ta có: W đ0 = W tmax + |A ms | hay 2 1 mv 2 0 = 2 1 kA 2 max + µmgA max  2 max A m k + 2µgA max - v 2 0 = 0. Thay số: 100A 2 max + 0,2A max – 1 = 0  A max = 0,099 m  F max = kA max = 1,98 N. 11. Tổng hợp các dao động điều hoà cùng phương cùng tần số. * Bài tập minh họa: 1. Hai dao động điều hoà cùng phương cùng tần số f = 10 Hz, biên độ lần lượt là 100 mm và 173 mm, dao động thứ hai trể pha 2 π so với dao động thứ nhất. Biết pha ban đầu của dao động thứ nhất bằng 4 π . Viết các phương trình dao động thành phần và phương trình dao động tổng hợp. 2. Một vật tham gia đồng thời hai dao động: x 1 = 3cos(5πt + 3 π ) (cm) và x 2 = 3 3 cos(5πt + 6 π ) (cm). Tìm phương trình dao động tổng hợp. . I.4. Các bài toán liên quan đến thế năng, động năng và cơ năng của con lắc lò xo. Bài tập minh họa: 1. Một con lắc lò xo có biên độ dao động 5 cm, có vận. I. DAO ĐỘNG CƠ ( Phần dành cho giáo viên_ đã có đáp số) Mã số: daodongco_11072011 I.1. Tìm các đại lượng đặc trưng trong dao động điều hòa.

Ngày đăng: 16/08/2013, 20:22

TỪ KHÓA LIÊN QUAN

w