Tài liệu phân loại và phương pháp giải các dạng bài tập dao động cơ do thầy Nguyễn Thành Long biên soạn. Tài liệu này rất tốt dành cho các bạn đang ôn thi đại học. Hi vọng tài liệu này có thể giúp các bạn học và ôn thi thật tốt.
PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ HỌC CHUYÊN ĐỀ 1: XÁC ĐỊNH CÁC ĐẠI LƯỢNG ĐẶC TRƯNG CHO DAO ĐỘNG ĐIỀU HỊA Loại 1: Tìm A, ,T, f, , (t ) - Nếu cho trước phương trình dao động yêu cầu tìm đại lượng đặc trưng ta giả sử phương trình dao động có dạng x Acos t sau đồng theo t đại lượng đặc trưng + Tìm biểu thức vận tốc + Tìm biểu thức gia tốc 2 t - Tìm T f thông qua mối quan hệ T T f f N - Tìm A L + Nếu đề cho chiều dài quỹ đạo L A + Nếu đề cho li độ x ứng với vận tốc v áp dụng cơng thức A2 x v2 v2 A x2 2 v2 a2 v2 a2 A 2 2 4 F + Nếu đề cho lực hồi phục cực đại A max k v + Nếu đề cho vận tốc cực đại A max amax + Nếu đề cho gia tốc cực đại A S + Nếu cho quãng đường chu kì A S + Nếu cho quãng đường nửa chu kì A - Tìm v + Nếu đề cho x, v, A ω A x2 + Nếu đề cho vận tốc gia tốc A2 + Nếu đề cho A, vmax, amax ω v max A a max A a max v max a (a x trái dấu) x Chú ý: Dao động điều hịa có phương trình đặc biệt: + Nếu đề cho x a ω Dao động có phương trình đặc biệt: - x = a Acos(t + ) với a = const Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - Biên độ A, tần số góc , pha ban đầu x toạ độ, x0 = Acos(t + ) li độ Toạ độ vị trí cân x = a, toạ độ vị trí biên x = a A Vận tốc v = x’ = x0 ’, gia tốc a = v’ = x” = x0” v Hệ thức độc lập: a = -2 x0 A2 x0 ( ) - x = a Acos (t + ) cos 2t 2 A A Hạ bậc ta có x a A a cos 2t 2 2 A m1 Ta biên độ A’ = ; tần số góc ’ = 2, pha ban đầu 2 m2 Một số ý điều kiện biên độ k m1 k m2 Hình a Vật m1 đặt vật m2 dao động điều hoà theo phương thẳng đứng (Hình 1) Để m1 ln nằm n m2 trình dao động thì: Hình g (m m2 ) g AMax k b Vật m1 m2 gắn vào hai đầu lò xo đặt thẳng đứng, m1 dao động điều hồ (Hình 2) Để m2 ln nằm n mặt sàn trình m1 dao động thì: (m m2 ) g AMax k c Vật m1 đặt vật m2 dao động điều hoà theo phương ngang Hệ số ma sát m1 m2 µ, bỏ qua ma sát m2 mặt sàn (Hình 3) m1 Để m1 khơng trượt m2 trình dao động thì: k (m m2 ) g g m2 AMax k Hình Con lắc quay + Tạo nên mặt nón có nửa góc đỉnh , P Fđh Fht + Nếu lị xo nằm ngang Fđh Fht + Vận tốc quay (vòng/s) N 2 g l cos + Vận tốc quay tối thiểu để lắc tách rời khỏi trục quay N 2 g l Chứng minh: a Tìm vận tốc vật thời điểm mà vật có li độ x x A cos( t ) , v A sin( t ) Ta có: v A2 sin ( t ) ( A2 A2 cos ( t )) ( A2 x ) v ( A2 x ) Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - Và: v ( A2 x ) Và: v ( A2 x ) k ( A x2 ) m E Et m Ed 2m v ( A2 x ) A2 ( A2 x ) x2 max vmax A2 A A v2 v2 v2 A2 x A2 x A x 2 b Liên hệ vận tốc lớn gia tốc lớn nhất: Ta có: vmax A; amax A Và: v ( A2 x ) - Chu kì T: amax A 2 T vmax A v max A2 A amax A c Số lần dao động chu kì: - Trong thời gian T giây vật dao động n = lần - Biên độ A: - Trong thời gian t giây vật dao động n t t f lần T Bài tập tự luận: Bài 1: Một vật dao động điều hịa theo phương trình x 0,05cos10πt (m) Hãy xác định a Biên độ, chu kì, tần số vật b Tốc độ cực đại gia tốc cực đại c Pha dao động li độ vật thời điểm t = 0,5 s Bài 2: Một chất điểm có khối lượng m = 200g, dao động điều hịa với phương trình x 4cos10t (cm) 2π a Tính vận tốc chất điểm pha dao động b Tính giá trị cực đại lực hồi phục tác dụng lên chất điểm c Tính vận tốc chất điểm lực tác dụng lên chất điểm có độ lớn 0,4 N Bài 3: Một vật dao động điều hòa xung quanh vị trí cân bằng, dọc theo trục x’Ox có ly độ thỏa mãn phương 2π π trình: x 3cos 5πt 3cos 5πt (cm) 6 a Tìm biên độ pha ban đầu dao động b Tính vận tốc vật dao động vị trí có li độ x = cm Bài 4: Một vật dao động điều hòa, vật có li độ x1 cm vận tốc vật v1 40 cm/s, vật qua vị trí cân vận tốc vật v 50 cm/s a Tính tần số góc biên độ dao động vật b Tìm li độ vật vận tốc vật v3 30 cm/s π Bài 5: Một vật dao động điều hịa có phương trình x 5cos πt (cm).Vận tốc vật vật qua vị trí có 3 li độ x = cm bao nhiêu? Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - Bài 6: Hệ dao động hồ gồm cầu lị xo Gia tốc cực đại vận tốc cực đại cầu amax = 18m/s2 vmax = 3m/s Xác định tần số biên độ dao động hệ Bài 7: Trong phút vật nặng vào đầu lò xo thực 40 chu kì dao động với biên độ cm Tìm giá trị lớn vận tốc gia tốc Đáp số: v max 0,34 m/s a max 1,4 m/s2 Loại 2: Tính x, v, a,Wt,Wđ, Fhp thời điểm t hay ứng với pha cho Cách 1: Thay t vào phương trình : x A cos( t ) v A sin( t ) x, v, a t a Aco s( t ) Cách 2: sử dụng công thức : A2 x v12 v2 x1 A2 12 2 v12 v1 A2 x12 2 Khi biết trước pha dao động thời điểm t ta thay vào biểu thức Chú ý: - Khi v 0; a 0; Fph : Vận tốc, gia tốc, lực phục hồi chiều với chiều dương trục toạ độ A2 x - Khi v 0; a 0; Fph : Vận tốc, gia tốc, lực phục hồi ngược chiều với chiều dương trục toạ độ - Nếu xác định li độ x, ta xác định gia tốc, lực phục hồi theo biểu thức sau : a x Fph k x m. x Bài tập tự luận: π Bài 1: Phương trình dao động điều hịa vật x 5cos πt (cm) 2 a Xác định biên độ, tần số góc, chu kì tần số dao động b Xác định pha dao động thời điểm t 0,25 s , từ suy li độ x thời điểm π Bài 2: Một vật dao động điều hịa theo phương trình x 4cos 2πt (cm) 6 a Lập biểu thức tính vận tốc tức thời gia tốc tức thời vật, coi π 10 b Tính vận gia tốc thời điểm t 0,5 s Hãy cho biết hướng chuyển động vật lúc Loại 3: Bài tốn tìm li độ, vận tốc dao động sau (trước) thời điểm t khoảng thời gian Δt Biết thời điểm t vật có li độ x = x0 Các bước giải tốn tìm li độ, vận tốc dao động sau (trước) thời điểm t khoảng thời gian t – Biết thời điểm t vật có li độ x x0 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - – Từ phương trình dao động điều hồ : x = Acos(t + φ) cho x x0 – Lấy nghiệm : t + φ = với ứng với x giảm (vật chuyển động theo chiều âm v < 0) t + φ = – ứng với x tăng (vật chuyển động theo chiều dương) – Li độ vận tốc dao động sau (trước) thời điểm t giây : x Acos( t ) x Acos( t ) v A sin(t ) v A sin(t ) Bài tập tự luận: π Bài 1: Một vật dao động điều hịa với phương trình x 10 cos 4πt (cm) 8 a Biết li độ vật thời điểm t 4cm Xác định li độ vật sau 0,25s b Biết li độ vật thời điểm t - 6cm Xác định li độ vật sau 0,125s c Biết li độ vật thời điểm t 5cm Xác định li độ vật sau 0,3125s 5π Bài 2: Một chất điểm dao động điều hồ theo phương trình x 10 cos 2πt (cm) Tại thời điểm t vật có li độ x cm chuyển động theo chiều dương thời điểm t1 t 1,5 s, vật có li độ Đs: – cm BÀI TẬP TRẮC NGHIỆM THEO TỪNG DẠNG Dạng 1: Tìm biên độ a Đối với vật (chất điểm) Câu 1: Một vật dao động điều hòa với 10 rad/s Khi vận tốc vật 20cm/s gia tốc m/s Tính biên độ dao động vật A 20 cm B 16cm C 8cm D 4cm Câu 2: Một chất điểm dao động điều hịa Khi qua vị trí cân bằng, tốc độ chất điểm 40cm/s, vị trí biên gia tốc có độ lớn 200cm/s2 Biên độ dao động chất điểm là: A 0,1m B 8cm C 5cm D 0,8m Câu 3: Một chất điểm dao động điều hồ với chu kì T s Khi vật cách vị trí cân 3cm có vận tốc 40cm/s Biên độ dao động vật là: A 3cm B 4cm C 5cm D 6cm Câu 4: Biết gia tốc cực đại vận tốc cực đại dao động điều hoà a0 v0 Biên độ dao động v2 a0 A A B A C A D A a v0 a0 v0 a 0v0 Câu 5: Một điểm M chuyển động với tốc độ 0,60m/s đường trịn có đường kính 0,40m Hình chiếu điểm M lên đường kính đường tròn dao động điều hòa với biên độ tần số góc A A = 0,40m = 3,0rad/s B A = 0,20m = 3,0rad/s C A = 0,40m = 1,5rad/s D A = 0,20m = 1,5rad/s Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - b Đối với hệ chất điểm Câu 1: ( ĐH - 2008) Một lắc lò xo gồm lị xo có độ cứng 20 N/m viên bi có khối lượng 0,2 kg dao động điều hịa Tại thời điểm t, vận tốc gia tốc viên bi 20 cm/s m/s2 Biên độ dao động viên bi A 16cm B cm C cm D 10 cm Câu 3: Một lắc lò xo treo thẳng đứng gồm lị xo có độ cứng k = 100N/m, đầu lò xo gắn vào điểm cố định, đầu gắn vào vật có khối lượng m = 100g Khi vật dao động điều hịa vận tốc cực đại mà vật đạt 62,8(cm/s) Biên độ dao động vật nhận giá trị A cm B cm C 3,6cm D 62,8cm Câu 4: Một lắc lò xo dao động nằm ngang gồm lị xo nhẹ có độ cứng k = 100(N/m), đầu lò xo gắn vào vật m = 1kg Kéo vật khỏi VTCB đoạn x0 = 10cm truyền cho vật vận tốc ban đầu v0 = –2,4m/s để hệ dao động điều hoà Bỏ qua ma sát Biên độ dao động hệ nhận giá trị A 0,26m B 0,24m C 0,58m D 4,17m Một số dạng khác: Câu 1: Một vật nhỏ khối lượng m = 200g treo vào sợi dây AB không dãn treo vào lò xo Chọn gốc tọa độ vị trí cân bằng, chiều (+) hướng xuống, vật m dao động điều hồ với phương trình với phương trình x = Asin(10t) cm Biết dây AB chịu lực kéo tối đa Tmax = 3N Lấy g = 10m/s2 Để dây AB căng mà không đứt biên độ dao động A phải thoả mãn A 5cm A 10cm B A 10cm C A 10cm D A 5cm Câu 2: Dưới tác dụng lực có dạng f = -0,8.cos(5t- ) N, vật có khối lượng 400g dao động điều hoà Biên độ dao động vật A 32cm B 20cm C 12cm D 8cm Câu 3: Một lắc lò xo treo thẳng đứng dao động điều hoà với chu kỳ T, biên độ A Khi vật qua vị trí cân người ta giữ cố định điểm lị xo lại Bắt đầu từ thời điểm vật dao động điều hoà với biên độ là: A A A B 2A C D A 2 Câu 4: Con lắc nằm ngang có độ cứng k,khối lượng M dao động mặt phẳng ngang nhẵn với biên độ A Khi vật nặng qua vị trí cân có vật khối lượng m rơi thẳng đứng xuống gắn chặt vào Biên độ dao động lắc sau M M m M A A/ = A B A/ = A C A/ = A D A/ = A M m M M m Câu 5: Con lắc lò xo nằm ngang có độ cứng k, khối lượng M.Trên M đặt vạt m, hệ số ma sát M m Điều kiện biên độ dao động để m không rời khỏi m Mg ( M m) g Mg ( M m) g A A B A C A D A k k k k Câu 6: Con lắc lò xo có k = 40N/m , M = 400g đứng yên mặt phẳng nằm ngang nhẵn Một vật khối lượng m =100g bay theo phương ngang với vận tốc v0 = 1m/s đến va chạm hoàn toàn đàn hồi với M Chu kỳ biên độ vật M sau va chạm là: Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - s A = cm B.T = s A = 5cm 5 C T = s A = 4cm D T = s A = 5cm Câu 7: Một vật khối lợng M treo trần nhà sợi dây nhẹ khơng dãn Phía dới vật M có gắn lị xo nhẹ độ cứng k, đầu lại lò xo gắn vật m Biên độ dao động thẳng đứng m tối đa dây treo chưa bị chùng mg M (M m) g Mg m (M 2m) g A ; B ; C ; D ; k k k k Câu 8: Một lị xo có khối lượng khơng đáng kể, đầu gắn vào điểm M cố định, đầu lại gắn vật nhỏ m = 1kg Vật m dao động điều hồ theo phương ngang với phương trình x = Acos(10t)m Biết điểm M chịu lực kéo tối đa 2N Để lị xo khơng bị tuột khỏi điểm M biên độ dao động thoả điều kiện A A 2cm B < A 20cm C < A 2cm D A 20cm Câu 9: Cho vật hình trụ, khối lượng m = 400g, diện tích đáy S = 50 m2, nước, trục hình trụ có phương thẳng đứng Ấn hình trụ chìm vào nước cho vật bị lệch khỏi vị trí cân đoạn x theo phương thẳng đứng thả Tính chu kỳ dao động điều hòa khối gỗ A T = 1,6 s B T = 1,2 s C T = 0,80 s D T = 0,56 s Câu 10: Một vật nhỏ khối lượng m = 200g treo vào sợi dây AB khơng dãn treo vào lị xo Chọn gốc tọa độ vị trí cân bằng, chiều (+) hướng xuống, vật m dao động điều hoà với phương trình x = Acos(10t) cm Lấy g = 10 (m/s2) Biết dây AB chịu lực kéo tối đa N biên độ dao động A phải thoả mãn điều kiện để dây AB căng mà không đứt A 0 0: vật CĐ nhanh dần a.v < : vật CĐ chậm dần - chuyển động thẳng nhanh dần a chiều với v - chuyển động thẳng chậm dần a ngược chiều với v Câu 1: Một vật dao động điều hoà có tần số 2Hz, biên độ 4cm Ở thời điểm vật chuyển động theo chiều âm qua vị trí có li độ 2cm sau thời điểm 1/12 s vật chuyển động theo: A chiều âm qua vị trí có li độ 2 3cm B chiều âm qua vị trí cân C chiều dương qua vị trí có li độ -2cm D chiều âm qua vị trí có li độ -2cm Câu 2: Một dao động điều hịa có biểu thức gia tốc a = 10π2cos( cm/s2 Trong nhận định sau đây, nhận định nhất? A Lúc t = 0, vật dao động qua vị trí cân theo chiều dương B Lúc t = 0, vật dao động qua vị trí cân theo chiều âm C Lúc t = 0, vật biên dương D Lúc t = 0, vật biên Câu 3: Một vật dao động điều hịa có phương trình x 4cos(10 t )cm Vào thời điểm t = vật đâu di chuyển theo chiều nào, vận tốc bao nhiêu? A x = 2cm, v 20 3cm / s , theo chiều âm B x = 2cm, v 20 3cm / s , theo chiều dương C x 2 3cm , v 20 cm / s , theo chiều dương D x 3cm , v 20 cm / s , theo chiều dương Câu 4:Vật dao động điều hồ có gia tốc biến đổi theo phương trình a cos(10t )(m / s ) Ở thời điểm ban đầu (t = 0s) vật ly độ: A -2,5 cm B cm C 2,5 cm D -5 cm Câu 5: Một vật dao động điều hồ theo phương trình x cos 6 t cm Vận tốc vật đạt giá trị 12π 6 cm/s vật qua ly độ A -2 cm B 2cm C cm D +2 cm Câu 6: Tại thời điểm vật thực dao động điều hòa với vận tốc vận tốc cực đại, lúc li độ vật bao nhiêu? A A A A * B C D A 2 Câu 7: Một chất điểm dao động điều hịa có phương trình vận tốc v = 4cos2t (cm/s) Gốc tọa độ vị trí cân Mốc thời gian chọn vào lúc chất điểm có li độ vận tốc là: A x = -2 cm, v = B x = 0, v = 4 cm/s C x = cm, v = D x = 0, v = -4 cm/s Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com 10 PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠAOTRANGTB.COM - 109 Câu 11: Một vật thực đồng thời hai dao động điều hoà phương, tần số f = Hz , biên độ A1 = A2 = cm có độ lệch pha rađ Lấy 10 Khi vật có vận tốc v = 40 cm/s, gia tốc vật A 2m / s B 16 2m / s C 32 2m / s D 2m / s Câu 12: Một vật thực đồng thời hai dao động điều hịa phương, chu kì T s, có biên độ 3cm 7cm Vận tốc vật qua vị trí cân có giá trị đây? A 30cm/s B 45cm/s C.15cm/s D.5cm/s Dạng : Tính pha ban đầu dao động thành phần pha dao động tổng hợp Câu 1: Một vật thực hai dao động điều hòa phương, tần số, theo phương trình x1 4sin( t )cm x2 cos( t )cm Biên độ dao động tổng hợp đạt giá trị nhỏ A rad B rad C rad D rad 2 Câu 2: Một vật thực hai dao động điều hòa phương, tần số có phương trình x1 sin t (cm) x cost (cm) Biên độ dao động tổng hợp đạt giá trị lớn A / rad B rad C / rad D rad Câu 3: ( ĐH – 2008 ) Cho hai dao động điều hòa phương, tần số, biên độ có pha ban đầu Pha ban đầu dao động tổng hợp hai dao động A rad B rad C rad D rad 12 Giải: Cách 1: sin sin Sử dụng máy tính ta rad Vì A1 A2 A nên ta có tan 12 1 cos cos Cách 2: t t x x1 x2 A1cos t A2 cos t A cos cos A cos 3 6 12 12 rad 12 Câu 4: Hai dao động điều hoà phương, tần số Biết hai dao động có pha ban đầu 2 / / có biên độ A1 A2 (với A1 = A2) Pha ban đầu dao động tổng hợp A / rad B / rad C / rad D 2 / rad Câu 5: Hai dao động điều hòa có phương trình x1 5cos 2 t cm x2 2cos 3 t cm 6 Chọn câu trả lời A Dao động sớm pha dao động B Dao động sớm pha dao động C Dao động trễ pha dao động D Dao động trễ pha dao động Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠAOTRANGTB.COM - 110 Câu 6: Hai chất điểm dao động điều hoà dọc theo hai đường thẳng song song với trục Ox, cạnh nhau, với biên độ tần số Vị trí cân chúng xem trùng (cùng toạ độ) Biết ngang qua nhau, hai chất điểm chuyển động ngược chiều có độ lớn li độ nửa biên độ Hiệu pha hai dao động giá trị sau đây: 2 A rad B rad C rad D rad 3 Câu 7: Một vật tham gia đồng thời hai dao động điều hoà phương, tần số có dạng sau x1 = 2cos(4t + 1) cm, x2 = 2cos(4t + 2) cm (t tính giây) với 2 - 1 Biết phương trình dao động tổng hợp x = 2cos(4t + /6) cm Hãy xác định 1 A -/6 B /2 C /6 D -/3 Câu 8: Khi tổng hợp hai dao động điều hồ phương tần số có biên độ thành phần 4cm cm biên độ tổng hợp 8cm Hai dao động thành phần A vng pha với B pha với C lệch pha D lệch pha Câu 9: Một chất điểm thực đồng thời hai dao động điều hòa phương x = 6cos(10t + /4)cm, x = 3cos(10t + )cm Biết biên độ dao động tổng hợp 3cm, có giá trị A -3 /4 B /4 C - /4 D /4 Câu 10: Một chất điểm dao động điều hồ có phương trình dao động: x = cos( t + /12) với x = cos( t + ) x = 5cos( t + /6 ), thì: A = /3 B = /2 C = /4 D = / Câu 11: Một chất điểm thực dao động tổng hợp hai dao động điều hồ phương có phương trình dao động x = x + x = 3 cos(10t + )cm Với x = cos(10t )cm x = 3cos(10t - /3) cm, thì: A = /3 B = - /6 C = /6 D = - /3 Câu 12:Một vật tham gia đồng thời hai dao động kết hợp Hai dao động thành phần dao động tổng hợp có biên độ Độ lệch pha hai dao động thành phần là: 2 A B C D 3 Dạng 4: Viết phương trình dao động tổng hợp Câu 1: Dao động tổng hợp hai dao động điều hồ phương có phương trình x1 = cos(10πt + ) cm x2 = cos(10πt - ) cm , có phương trình: A x = cos(10πt - ) cm B x = cos(10πt - ) cm 6 C x = cos(10πt + ) cm D x = 8cos(10πt + ) cm 12 12 Câu 2: Hai dao động điều hồ có phương tần số f = 50Hz, có biên độ 2a a, pha ban đầu /3 Phương trình dao động tổng hợp phương trình sau đây: A x a cos 100 t B x 3a cos 100 t 2 2 C x a cos 100 t D x 3a cos 100 t 3 3 Câu 3: Một vật thực đồng thời ba dao động điều hoà phương, tần số có phương trình x1 = cos(5t - /4) cm, x2 = 4cos(5t + /2) cm x3 = 5cos(5t + ) cm Phương trình dao động tổng hợp vật là: Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com 10 PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠAOTRANGTB.COM - 111 A x = cos(5t + /4) cm B x = cos(5t + 5/4) cm C x = cos(5t + ) cm D x = cos(5t-/2) cm Câu 4: Một vật thực đồng thời dao động điều hòa phương tần số có phương trình: x1 = 3sin(t + ) cm; x2 = 3cost (cm); x3 = 2sin(t + ) cm x4 = 2cost (cm) Hãy xác định phương trình dao động tổng hợp vật A x 5cos πt π/2 cm B x 2cos πt π/2 cm C x 5cosπt π/2 cm D x 5cosπt π/4 cm Câu 5: (ĐH – 2010) Dao động tổng hợp hai dao động điều hòa phương, tần số có phương 5 trình li độ x 3cos( t ) (cm) Biết dao động thứ có phương trình li độ x1 5cos( t ) (cm) 6 Dao động thứ hai có phương trình li độ A x2 8cos( t ) (cm) B x2 cos( t ) (cm) 6 M1 5 5 C x2 2cos( t ) (cm) D x2 8cos( t ) (cm) 6 O x Giải: Biểu diễn dao động điều hòa x, x1 vector quay 5 M Dễ thấy rằng: A = A2 - A1 A2 = 8cm 1 = đáp án D M2 Câu 6: Hai dao động điều hòa phương, chu kỳ T = 2s Dao động có li độ t = biên độ 1cm Dao động có biên độ cm t = vật qua VTCB theo chiều âm Phương trình dao động tổng hợp A x 3cos(2 t+ ) B x 3cos(2 t+ ) C x 2cos( t+ ) D x 2cos( t+ ) Câu 7: Một vật thực đồng thời hai dao động phương có phương trình : x1 3cos10 t(cm) x2 4sin10 t(cm) Nhận định sau khơng đúng? A Khi x1 4 cm x2 B Khi x2 cm x1 cm C Khi x1 cm x2 D Khi x1 x2 4 cm Câu 8: Một vật thực đồng thời ba dao động điều hồ phương, tần số có phương trình x1 = 2cos(3t - 2/3) cm; x2 = 2cos3t cm x3 = -23cos(3t) cm Phương trình dao động tổng hợp vật là: A x = 2cos(3t + /6)cm B x = 2cos(3t + /3)cm C x =3cos(3t + )cm D x = 2cos(3t-/6)cm Câu 9: Một vật thực đồng thời dao động điều hoà phương, tần số có phương trình: x1 = 3cos(ωt + /2) cm, x2 = cos(ωt + ) cm Phương trình dao động tổng hợp A x = 2cos(ωt - /3) cm B x = 2cos(ωt + 2/3)cm C x = 2cos(ωt + 5/6) cm D x = 2cos(ωt - /6) cm A A2 A2 A A cos 2cm 2 2 sin 1.sin HD : A sin 1 A2 sin 2 3 tan A1 cos 1 A2 cos cos 1.cos Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com 11 PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠAOTRANGTB.COM - 112 Câu 10: Một vật thực đồng thời dao động điều hồ phương, tần số có phương trình: x1 = 3cos(ωt - /2) cm, x2 = cos(ωt) cm Phương trình dao động tổng hợp: A x = 2cos(ωt - /3) cm B x = 2cos(ωt + 2/3)cm C x = 2cos(ωt + 5/6) cm D x = 2cos(ωt - /6) cm A A2 A2 A A cos 2cm 2 2 sin 1.sin HD : A sin 1 A2 sin 3 tan A1co s 1 A2 co s cos 1.cos Câu 11: Một vật đồng thời tham gia dao động phương có phương trình dao động x1 3cos 2t / cm , x 4cos 2t / cm x 8cos 2t / cm Giá trị vận tốc cực đại vật pha ban đầu dao động tổng hợp là: A 16π (cm/s) (rad) B 12π (cm/s) (rad) 6 C 12π (cm/s) (rad) D 16π (cm/s) (rad) Câu 12: Một vật tham gia đồng thời vào hai dao động điều hồ phương có phương trình x1 = 5cos(10πt) cm x2 Biểu thức x2 nào? phương trình dao động tổng hợp x = 5cos(10πt + π/3) cm A x2 = 5cos(10πt - π/3) cm B x2 = 7,07cos(10πt - 5π/6) cm C x2 = 7,07cos(10πt + π/6) cm D x2 = 5cos(10πt + 2π/3) cm Câu 13: Hai dao động điều hòa (1) (2) phương, tần số biên độ A = 4cm Tại thời điểm đó, dao động (1) có li độ x = 3cm, chuyển động ngược chiều dương, dao động (2) qua vị trí cân theo chiều dương Lúc đó, dao động tổng hợp hai dao động có li độ chuyển động theo hướng nào? A x = 8cm chuyển động ngược chiều dương B x = chuyển động ngược chiều dương C x = 3cm chuyển động theo chiều dương D x = 3cm chuyển động theo chiều dương VẬN DỤNG MÁY TÍNH CASIO fx – 570MS VÀO VIỆC KIỂM TRA NHANH KẾT QUẢ BÀI TOÁN TỔNG HỢP HAI DAO ĐỘNG ĐIỀU HOÀ CÙNG PHƯƠNG, CÙNG TẦN SỐ I NÊU VẤN ĐỀ: Để tổng hợp hai dao động điều hồ có phương, tần số biên độ khác pha khác nhau, ta thường dùng giản đồ vectơ Frexnen A1 Trong đó, Vectơ A1 biểu diễn cho dao động x1 A1 sin t 1 Vectơ A biểu diễn cho dao động x2 A2 sin t 1 A Và Vectơ A vectơ tổng hợp hai dao động x1 x2 Phương trình dao động tổng hợp: x x1 x2 A sin t 2 Với: biên độ A A12 A2 A1 A2 cos 1 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 A2 www.aotrangtb.com Email: Loinguyen1310@gmail.com 12 PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠAOTRANGTB.COM - 113 A sin 1 A2 sin góc pha arctan A1 cos 1 A2 cos Ta thấy, việc xác định biên độ A góc pha dao động tổng hợp theo phương pháp Frexmen phức tạp dễ nhầm lẫn thao tác “nhập máy” em học sinh; chí phiền phức với giáo viên Sau đây, tơi xin trình bày phương pháp khác nhằm giúp em học sinh hỗ trợ giáo viên kiểm tra nhanh kết toán tổng hợp hai dao động II NỘI DUNG PHƯƠNG PHÁP: Cơ sở phương pháp: Dựa vào phương pháp biểu diễn số phức đại lượng sin Như ta biết, dao động điều hoà x A sin t biểu diễn vectơ A có độ dài tỉ lệ với giá trị biên độ A tạo với trục hoành góc góc pha ban đầu Mặt khác, đại lượng sin biểu diễn số phức dạng mũ A Như vậy, việc tổng hợp dao động điều hoà phương, tần số phương pháp Frexmen đồng nghĩa với việc cộng số phức biểu diễn dao động Các thao tác cộng số phức dạng mũ thực dễ dàng với máy tính CASIO fx – 570MS Để thực phép tính số phức ta phải chọn Mode máy tính dạng Complex, cách nhấn phím MODE phía hình xuất chữ CMPLX Các cài đặt đơn vị đo góc (Deg, Rad, Gra) có tác dụng với số phức Nếu hình hiển thị kí hiệu D ta phải nhập góc số phức có đơn vị đo góc độ Để nhập ký hiệu góc “ ” số phức ta ấn SHIFT Ví dụ: dao động x 8sin t biểu diễn với số phức 60 , ta nhập máy sau: 3 SHIFT hình hiển thị 60 Lưu ý: Khi thực phép tính số phức dạng mũ kết phép tính hiển thị mặc định dạng đại số a + bi Vì vậy, ta phải chuyển kết lại dạng số mũ A để biết biên độ góc pha dao động Bằng cách: Ấn SHIFT r hiển thị biên độ A dao động Tiếp tục ấn SHIFT [Re - Im] hiển thị góc pha dao động (Phím [Re – Im] dùng để chuyển đổi qua lại phần thực phần ảo số phức) Thử lại toán cụ thể với hai phương pháp Ở tập số trang 20 sgk Vật lý 12: Hai dao động điều hoà phương, tần số có biên độ A1 = 2a, A2 = a pha ban đầu 1 , Hãy tính biên độ pha ban đầu dao động tổng hợp PHƯƠNG PHÁP Frexmen Biên độ dao động tổng hợp: A A12 A2 A1 A2 cos 4a a 4a cos 3 5a a = a Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com 13 PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠAOTRANGTB.COM - 114 Pha ban đầu dao động tổng hợp: A sin 1 A2 sin 2 tan A1 cos 1 A2 cos a sin a 3 2a cos a cos a a hay 90o 2 a sin PHƯƠNG PHÁP SỐ PHỨC (Dùng máy tính CASIO fx – 570MS) Số phức dao động tổng hợp có dạng: A A11 A2 (không nhập a) 260 1180 Tiến hành nhập máy: Chọn MODE 2 SHIFT + SHIFT SHIFT hiển thị giá trị biên độ A A = 1.73 = SHIFT hiển thị góc pha ban đầu = 90 o Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com 14 PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - 115 Ưu nhược điểm phương pháp dùng máy tính: Ưu điểm: Thực nhanh toán tổng hợp với nhiều dao động; pha ban đầu dao động có trị số Nhược điểm: Do học sinh không trang bị lý thuyết số phức nên việc dùng máy tính ban đầu gặp rắc rối mà khơng biết cách khắc phục (ví dụ MODE, chế độ Deg, Rad, …) Nhưng thao tác máy năm ba lấn quen Tốc độ thao tác phụ thuộc nhiều vào loại máy tính khác (Nhược điểm này, giáo viên khắc phục dễ Nhưng với học sinh, thực CASIO fx – 500MS để cho fx – 570MS) Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email:Loinguyen1310@gmail.com 15 PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - 116 CHUYÊN ĐỀ 10 BÀI TOÁN ĐỒ THỊ CỦA DAO ĐỘNG ĐIỀU HÒA + Xác định chu kỳ T, giá trị cực đại , hai toạ độ điểm đồ thị + Kết hợp khái niệm liên quan , tìm kết Câu 1: Một dao động điều hịa có đồ thị hình vẽ a) Vận tốc cực đại gia tốc cực đại có giá trị sau đây: A (cm/s); 16 cm/s2 x(cm) B (cm/s); cm/s2 C (cm/s); 16 cm/s2 3/4 D (cm/s); 12 cm/s2 1/4 b) Phương trình dao động có dạng sau đây: A x = cos(2 t + ) cm B x = cos( t ) cm -4 C x = cos(2 t + ) cm 3 D x = cos(2 t + ) cm c) Tính động vị trí có ly độ x = 2cm, biết vật nặng có khối lượng m = 200g, lấy 10 A 0,0048J B 0,045J C 0,0067J D 0,0086J Câu 2: Cho đồ thị dao động điều hịa hình vẽ a) Vận tốc cực đại gia tốc cực đại có giá trị sau đây: x(cm) A 20 (cm/s); 160 cm/s2 2 B (cm/s); cm/s 10 C 20 (cm/s); 80 cm/s2 D (cm/s); 120 cm/s2 b) Phương trình dao động có dạng sau đây: A x = 10 cos(2 t + ) cm - 10 B x = 10 cos(2 t - ) cm C x = 10 cos(2 t + ) cm 3 D x = 10 cos(2 t + ) cm c) Tính động vị trí có ly độ x = 2cm, biết vật nặng có khối lượng m = 0,5Kg, lấy 10 A 0,08J B 0,075J C 0,075J D 0,086J Câu 3: Một chất điểm dao động điều hịa có đồ thị dao động Hình vẽ a) Viết phương trình ly độ A x = cos(4 t + ) cm B x = cos(8 t - ) cm C x = cos(8 t + ) cm 3 D x = cos(8 t + ) cm 0,5 t(s) Câu 0,5 t(s) Câu x(cm) 0,25 t(s) -8 Câu www.aotrangtb.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - 117 b) Viết phương trình vận tốc A v = 64 cos(4 t + ) cm/s ) cm/s c) Viết phương trình gia tốc Lấy 10 C v = cos(8 t + A a = 64 cos(4 t + ) cm/s2 C a = cos(8 t - ) cm/s2 ) cm/s 3 D v = cos(8 t + ) cm/s B v = 64 cos(8 t - ) cm/s2 3 D a = cos(8 t + ) cm/s2 B a = 5120cos(8 t - x(cm) Câu 4: Cho đồ thị dao động điều hịa a) Tính: Biên độ, tần số góc, chu kỳ, tần số b) Tính pha ban đầu dao động 10 c) Viết phương trình dao động d) Phương trình vận tốc e) Phương trình gia tốc 1/6 f) Sau khoảng thời gian liên tiếp động lại Giải: a) Tính A; ω; T; f - Ta có: A = 10cm - Tại thời điểm t = 0; x = 5cm; x tăng: x x = A cosφ => cos => A Vận dụng mối quan hệ dao động điều hòa chuyển động trịn đều: Ta nhận xét x tăng nên ta chọn Thời gian từ thời gian từ x = đến x = 10 là: T t s T 1s 6 Vậy: 2 ; f 1Hz b) Theo câu a ta có: c) x = 10cos( 2 t ) A ' d) v = x = - 20 sin( 2 t ) e) a = - ω2.x ( thay a x) f) Động vị trí: x(cm) 2 A W = Wđ + Wt = 2Wt => kA kx x 2 10 A A x1 x2 Thời gian để vật từ đến là: 2 24 24 T t s 0, 25s 4 11 12 • 10 t(s) x A T Câu t(s) Câu 5: Cho đồ thị dao động điều hòa www.aotrangtb.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM a) Tính: Biên độ, tần số góc, chu kỳ, tần số b) Tính pha ban đầu dao động c) Viết phương trình dao động d) Phương trình vận tốc e) Phương trình gia tốc f) Sau khoảng thời gian liên tiếp động lại Giải: a) Tính A; ω; T; f - Ta có: A = 10cm - Tại thời điểm t = 0; x = 5cm; x giảm: x x = A cosφ => cos => A Vận dụng mối quan hệ dao động điều hòa chuyển động trịn đều: Ta nhận xét x giảm nên ta chọn T Thời gian từ x = đến x = t = = s T 0,5 s 12 24 2 Vậy: 4 ; f Hz T b) Theo câu a ta có: c) x = 10cos( 4 t ) d) v = x ' = - 40 sin( 2 t ) e) a = - ω2.x ( thay a x) f) Động vị trí: 1 A A A W = Wđ + Wt = 2Wt => kA2 kx x Thời gian để vật từ x1 đến x2 2 2 T t s 0,125 s Câu 6: Cho đồ thị ly độ dao động điều hịa Hãy viết phương trình ly độ: A x = 4cos(2 t + ) x(cm) B x = 4cos(2 t - ) 4 2 C x = 4cos(2 t + ) t(s) D x = 4cos(2 t - ) - 118 Câu 7: Cho đồ thị ly độ dao động điều hịa Hãy viết phương trình dao động vật: A x1 = 6cos 25 t; x2 = 6sin 25 t www.aotrangtb.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ 25 B x1 = 6cos( t + ) ; x2 = 6cos12,5 t 2 C x1 = 6cos25 t ; x2 = 6cos( 25 t ) 3 AOTRANGTB.COM x(cm) - 119 25 D x1 = 6cos12,5 t ; x2 = 6có( t+ ) 2 25 t(s) Câu 8: Đồ thị vật dao động điều hồ có dạng hình vẽ : Biên độ, pha ban đầu : A cm; rad B - cm; - πrad C cm; π rad D -4cm; rad Câu 9: Đồ thị biểu diễn biến thiên vận tốc theo li độ dao động điều hồ có hình dạng sau đây: A Đường parabol; B Đường tròn; C Đường elip; D Đường hypecbol Câu 10: Đồ thị hình biểu diễn biến thiên li độ u theo thời gian t vật dao động điều hòa Tại điểm nào, điểm M, N, K H gia tốc vận tốc vật có hướng ngược A Điểm H B Điểm K C Điểm M D Điểm N Câu 11: Đồ thị biểu diễn dao động điều hồ hình vẽ bên ứng với phương trình dao động sau đây: x A x = 3sin( 2 t+ ) 2 B x = 3cos( t+ ) 1,5 3 o t(s) C x = 3cos(2t- ) -3 2 D x = 3sin( t+ ) Câu 12: Một lắc lò xo dao động điều hịa với phương trình x = Acost Sau đồ thị biểu diễn www.aotrangtb.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - 120 động Wđ Wt lắc theo thời gian Người ta thấy sau 0,5(s) động lại tần số dao động lắc là: A (rad/s) W Wñ B 2(rad/s) W0 = /2 KA C (rad/s) W0 /2 Wt D 4(rad/s) t(s) Bài 13: Đồ thị vận tốc vật dao động điều hịa có dạng hình v( cm / s ) vẽ Lấy 10 Phương trình dao động vật nặng là: 25 A x = 25cos( 3 t ) (cm, s) B x = 5cos( 5 t ) (cm, s) t (s ) O ,1 2 25 C x = 25cos ( 0, 6t ) (cm, s) D x = 5cos( 5 t ) (cm, s) 2 Câu 14: Một lắc lò xo dao động điều hòa mà lực đàn hồi chiều dài lị xo có mối liên hệ cho đồ thị sau: Fđh(N) 2 (cm) 10 14 22 Độ cứng lò xo bằng: A 50N/m B 100N/m C 150N/m D 200N/m www.aotrangtb.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - 121 CHUYÊN ĐỀ 11: BÀI TOÁN LIÊN QUAN TỚI CHIỀU DÀI CON LẮC LỊ XO Câu 1: Tại nơi có hai lắc đơn dao động với biên độ nhỏ Trong khoảng thời gian, người ta thấy lắc thứ thực dao động, lắc thứ thực dao động Tổng độ dài hai lắc 136 cm Độ dài lắc là: A l1 = 100 cm; l2 = 36 cm B l1 = 36 cm; l2 = 100 cm C l1 = 85 cm; l2 = 51 cm D l1 = 51 cm; l2 = 85 cm Câu 2: Một vật m = 1kg treo vào lị xo có độ cứng k = 400N/m Quả cầu dao động điều hòa với E = 0,5J theo phương thẳng đứng a Chiều dài cực đại cực tiểu lị xo q trình dao động là: A lmax 35, 25cm; lmin 24, 75cm B lmax 37, 5cm; lmin 27,5cm C lmax 35cm; lmin 25cm D lmax 37cm; lmin 27cm b.Vận tốc cầu thời điểm mà chiều dài lò xo 35cm là: A v 50 3cm / s B v 20 3cm / s C v 5 3cm / s D v 3cm / s Câu 3: Một lị xo có chiều dài tự nhiên l0 25cm , có khối lượng khơng đáng kể, dùng để treo vật, khối lượng m = 200g vào điểm A Khi cân lò xo dài l = 33cm, g 10m / s Hệ số đàn hồi lò xo là: A K = 25N/m B K = 2,5N/m C K = 50N/m D K = 5N/m Câu 4: Hai lò xo giống hệt nhau, chiều dài tự nhiên l0 = 20cm, độ cứng k = 200N/m ghép nối tiếp treo thẳng đứng vào điểm cố định Khi treo vào đầu vật m = 200g kích thích cho vật dao động với biên độ 2cm Lấy g = 10m/s2 Chiều dài tối đa lmax tối thiểu lmin lò xo trình dao động là: A lmax = 44cm ; lmin = 40cm B lmax = 42,5cm ; lmin = 38,5cm C lmax = 24cm ; lmin = 20cm D lmax = 22,5cm ; lmin = 18,5cm Câu 5: Một lị xo khối lượng khơng đáng kể, có chiều dài tự nhiên l0, độ cứng k treo vào điểm cố định Nếu treo vật m1 = 50g giãn thêm 2m Thay vật m2 = 100g dài 20,4 cm Chọn đáp án A l0 = 20 cm ; k = 200 N/m B l0 = 20 cm ; k = 250 N/m C l0 = 25 cm ; k = 150 N/m D l0 = 15 cm ; k = 250 N/m Câu 6: Một lị xo khối lượng khơng đáng kể, treo vào điểm cố định, có chiều dài tự nhiên l0 Khi treo vật m1 = 0,1 kg dài l1 = 31 cm Treo thêm vật m2 = 100g độ dài l2 = 32 cm Độ cứng k l0 là: A 100 N/m 30 cm B 100 N/m 29 cm C 50 N/m 30 cm D 150 N/m 29 cm Câu 7: Một cầu có khối lượng m = 0.1kg, treo vào đầu lị xo có chiều dài tự nhiên l0 = 30cm, độ cứng k = 100N/m, đầu cố định, cho g = 10m/s2 chiều dài lò xo vị trí cân là: A 31cm B 29cm C 20 cm D.18 cm Câu 8: Một lắc lò xo treo thẳng đứng dao động điều hoà với tần số 4,5Hz Trong trình dao động chiều dài lò xo biến thiên từ 40cm đến 56cm Lấy g 10m / s Chiều dài tự nhiên là: A 48cm B 46,8cm C 42cm D 40cm Câu 9: Một lị xo khối lượng khơng đáng kể, treo vào điểm cố định, có chiều dài tự nhiên l0 Khi treo vật m1 = 0, 1kg dài l1 = 31cm Treo thêm vật m2 = 100g thi độ dài l2 = 32cm Độ cứng k l0 là: A 100 N/m 30cm B 100 N/m 29cm C 50 N/m 30cm D 150 N/m 29cm Câu 10: Một lị xo khối lượng khơng đáng kể, có chiều dài tự nhiên l0, độ cứng k treo vào điểm cố định Nếu treo vật m1 = 50g giãn thêm 20cm Thay vật m2 = 100g dài 20, 4cm Chọn đáp án đúng: A l0 = 20cm, k = 200 N/m B l0 = 20cm, k = 250 N/m Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM C l0 = 25cm, k = 150 N/m - 122 D l0 = 15cm, k = 250 N/m )(cm) Chiều dài tự nhiên lò xo l0 30cm Lấy g 10m / s Chiều dài tối thiểu tối đa lò xo uqá trình dao động là: A 30, 5cm 34,5cm B 31cm 36cm C 32cm 34cm D Tất sai Câu 12: Một lò xo chiều dài tự nhiên l0 40cm treo thẳng đúng, đầu có vật khối lượng m Khi cân lị xo giãn 10cm Chọn trục Ox thẳng đứng, chiều dương hướng xuống, gốc toạ độ vị trí cân Kích thích cho cầu dao động với phương trình: x cos(t )(cm) Chiều dài lò xo cầu dao động nửa chu kỳ kể từ lúc bắt đầu dao động là: A 50cm B 40cm C 42cm D 48cm Câu 13: Một lị xo có khối lượng khơng đáng kể, chiều dài tự nhiên l0 125cm treo thẳng đúng, đầu có cầu m Chọn gốc toạ độ vị trí cân bằng, trục Ox thẳng đứng, chiều dương hướng xuống.Vật dao động với phương trình: x 10 cos(2t )(cm) Lấy g 10m / s Chiều dài lò xo thời điểm t0 = là: A 150cm B 145cm C 135cm D 115cm Câu 14: Một lắc lò xo gồm vật nặng khối lượng m 400 g , lị xo có độ cứng k 200 N/m, chiều dài tự nhiên l0 35cm đặt mặt phẳng nghiêng góc 30 so với mặt phẳng nằm ngang Đầu Câu 11: Con lắc lị xo treo thẳng dao động điều hồ theo phương trình: x cos(20t cố định, đầu gắn vật nặng Cho vật dao động điều hoà với biên độ 4cm Lấy g 10m / s Chiều dài cực tiểu lò xo trình dao động là: A 40cm B 38cm C 32cm D 30cm Câu 15: Một lò xo treo thẳng đứng, đầu treo vật m1 = 10g chiều dài lò xo cân 24 cm Treo tiếp m2 = 20g vào sợi dây mảnh chiều dài lị xo 28 cm Chiều dài tự nhiên độ cứng k lị xo có giá trị A = 20cm, k = N/m B = 20cm, k = 10 N/m C = 22cm, k = N/m D = 22cm, k = 10 N/m Câu 16: Một lắc lò xo gồm lị xo nhẹ khối lượng khơng đáng kể, đầu gắn vật nặng daođộng π điều hoà theo phương thẳng đứng với phương trình x = 4cos(5πt – ) cm Tỷ số chiều dài lớn nhỏ lò xo Lấy g = 10m/s Chiều dài tự nhiên lò xo A = 20cm B = 24 cm C = 22 cm D = 18 cm Câu 17: Một lắc lò xo treo thẳng đứng, độ dài tự nhiên lò xo 30cm , vật dao động chiều dài lò xo biến thiên từ 32cm đến 38cm, g 10 m / s Vận tốc cực đại dao động A 30 cm / s B 40 cm / s C 20 cm / s D 10 cm / s Câu 18: Một cầu có khối lượng m = 100g treo vào đầu lị xo có chiều dài tự nhiên 30cm , độ cứng k = 100N/m, đầu cố định Lấy g = 10m/s2 Chiều dài lò xo vật VTCB A 31cm B 40cm C 20cm D 29cm Câu 19: Một lò xo có chiều dài tự nhiên ℓ0 = 40cm, độ cứng k = 20N/m cắt thành hai lị xo có chiều dài ℓ1 = 10cm ℓ2 = 30cm Độ cứng hai lò xo ℓ1, ℓ2 A 80N/m; 26,7N/m B 5N/m; 15N/m C 26,7N/m; 80N/m D 15N/m; 5N/m Câu 20: Một lị xo có chiều dài tự nhiên 30cm , có độ cứng k = 60 N/m cắt thành hai lò xo có chiều dài tự nhiên 10cm 20cm Độ cứng hai lò xo dài ℓ1; ℓ2 tương ứng Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com PHƯƠNG PHÁP GIẢI NHANH CHƯƠNG DAO ĐỘNG CƠ AOTRANGTB.COM - 123 A 180 N/m 120 N/m B 20 N/m 40 N/m C 120 N/m 180 N/m D 40 N/m 20 N/m Câu 21: Một lò xo nhẹ có độ cứng k, chiều dài tự nhiên ℓ0, đầu gắn cố định Khi treo đầu lị xo vật có khối lượng m1 =100g, chiều dài lò xo cân ℓ1 = 31cm Thay vật m1 vật m2 = 200g vật cân bằng, chiều dài lị xo ℓ2 = 32cm Độ cứng lò xo chiều dài ban đầu A ℓ0 = 30cm k = 100N/m B ℓ0 = 31.5cm k = 66N/m C ℓ0 = 28cm k = 33N/m D ℓ0 = 26cm k = 20N/m Câu 22: Một lị xo có chiều dài ℓ0 = 50cm, độ cứng k = 60 (N/m) cắt thành hai lò xo có chiều dài ℓ1 = 20cm, ℓ2 = 30cm Độ cứng k1, k2 hai lò xo nhận giá trị A k1 = 180 (N/m); k2 = 120 (N/m) B k1 = 150 (N/m); k2 = 100 (N/m) C k1 = 24 (N/m); k2 = 36 (N/m) D k1 = 120 (N/m); k2 = 180 (N/m) Câu 23: Một lị xo có chiều dài tự nhiên 10 cm Khi treo vào lò xo vật nặng m = kg chiều dài lị xo 20 cm Khối lượng lị xo xem khơng đáng kể, g = 9,8 m/s2 Độ cứng k lò xo A 9,8 N/m B 10 N/m C 49 N/m D 98 N/m Câu 24: Con lắc lò xo thẳng đứng gồm lị xo có đầu cố định, đầu gắn vật dao động điều hồ có tần số góc 10rad/s, đặt nơi có gia tốc trọng trường g = 10m/s2 Tại vị trí cân độ giãn lò xo A 10cm B 8cm C 6cm D 1cm Câu 25: Một lắc lò xo treo thẳng đứng, dao động điều hoà với tần số 4,5Hz Trong q trình dao động chiều dài lị xo biến thiên từ 40cm đến 56cm Lấy g = 10m/s2 Chiều dài tự nhiên lò xo A 48cm B 42cm C 46,8cm D 40cm Câu 26: Một vật m = 1kg treo vào lị xo có chiều dài tự nhiên ℓ0 = 30cm, độ cứng k = 400N/m Quả cầu dao động điều hòa với E = 0,5J theo phương thẳng đứng Lấy g = 10m/s2 Chiều dài cực đại cực tiểu lò xo trình dao động A max 35, 25cm; 24,5cm B max 37,5cm; 32,5cm C max 35cm; 25cm D max 37,5cm; 27,5cm Câu 27: Một lắc lò xo gồm vật nặng khối lượng m 400 g, lị xo có độ cứng k 200 N/m, chiều dài tự nhiên l0 35 đặt mặt phẳng nghiêng góc α 300 so với mặt phẳng nằm ngang Đầu cố định, đầu gắn vật nặng Cho vật dao động điều hoà với biên độ 4cm Lấy g 10 m/s2 Chiều dài cực tiểu lị xo q trình dao động là: A 40cm B 38cm C 32cm D 30cm Trong trình biên soạn sưu tầm khơng tránh khỏi thiếu sót, kinh nghiệm kiến thức cịn tuổi đời cịn trẻ, mong bạn thơng cảm Liên hệ theo số điện thoại 01694 013 498 Email: Loinguyen1310@gmail.com Tài liệu dài nên không giải mẫu hết được… bạn chờ Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.aotrangtb.com Email: Loinguyen1310@gmail.com ... c Số lần dao động chu kì: - Trong thời gian T giây vật dao động n = lần - Biên độ A: - Trong thời gian t giây vật dao động n t t f lần T Bài tập tự luận: Bài 1: Một vật dao động điều... CHƯƠNG DAO ĐỘNG CƠ Bài tập tự giải: π Bài 1: Một vật dao động điều hịa với phương trình x 2cos10πt (cm) Tính quãng đường vật 3 1,1s Đáp số: S 44 cm π Bài 2: Một vật dao động điều... k x m. x Bài tập tự luận: π Bài 1: Phương trình dao động điều hòa vật x 5cos πt (cm) 2 a Xác định biên độ, tần số góc, chu kì tần số dao động b Xác định pha dao động thời điểm