1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tuyển tập đề thi cao học môn toán (1998 2008)

111 1,9K 10
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 111
Dung lượng 3,68 MB

Nội dung

Đề thi cao học môn Toán 1998-2008 Tài liệu tham khảo và tuyển tập Đề thi cao học môn Toán 1998-2008 cho các bạn chuẩn bị thi cao học có tư liệu ôn thi toán tốt và đạt kết quả cao giúp các bạn củng cố nâng cao kiến thức, chuẩn bị thật kỹ cho kỳ thi cao học. Chúc các bạn gặp nhiều may mắn!!!

DongPhD Problems Book Series Tuyển tập Đề thi Cao học môn Toán (19982008) Cuốn sách bao gồm các đề thi tuyển sinh sau đại học của các trường ĐHQG Hà Nội, Đại học Sư phạm TPHCM, Đại học Huế, Đại học Vinh, Đại học Quy Nhơn, Viện Toán, Đại học Kinh tế Quốc dân. Contributors: Ngô Quốc Anh Đặng Xuân Cương DongPhD RobinHood Nguyễn Đình Hoàng Nhân Trần Mậu Quý Bản điện tử chính thức có tại http://www.vnmath.com Trường Đại học Sư phạm TP.HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Hội đồng Tuyển sinh Sau đại học 2004 Độc Lập - Tự Do - Hạnh Phúc ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2004 ĐỀ THI MÔN : GIẢI TÍCH (CƠ SỞ) (Thời gian 180 phút, không kể thời gian phát đề) Câu I: Cho không gian mêtric X với E, F là hai tập con của X sao cho E là tập conpact và F là tập đóng. Đặt d(E, F ) = inf x∈E,y∈F d(x, y) a) Chứng minh tồn tại x 0 ∈ E sao cho d(x 0 , F ) = d(E, F ). b) Cho E ∩ F = Ø. Chứng minh tồn tại số t > 0 sao cho d(E, F ) ≥ t. Câu II: Cho (X, µ) là không gian có độ đo và hàm số f : X → R + là hàm khả tích. Cho dãy (A n ) các tập đo được trong không gian X sao cho: A n ⊂ A n+1 với mọi n ∈ N và ∞  n=1 A n = X Chứng minh rằng: lim n→∞  A n fdµ =  X fdµ Câu III: Cho (X, µ) là không gian có độ đo và B ⊂ X với B là tâp đo được. Cho hàm số đo được f : X → N. Với n ∈ N, ta đặt: B n = {x ∈ B : |f(x)| ≤ n} Chứng minh rằng với mọi n thì B n là tập đo được và lim n→∞ µ(B n ) = µ(b) Câu IV: Tính tích phân sau đây: lim n→∞ 1  −1 x + x 2 e nx 1 + e nx dx Câu V: Cho X là không gian Hilbert với tích vô hướng ·, · và e n là một hệ trực chuẩn đầy đủ trong không gian X. Cho a n là một dãy số. Đặt T (x) = ∞  n=1 a n < x, e n > e n , với x ∈ X a) Cho dãy a n bị chặn. Chứng minh T là ánh xạ tuyến tính liên tục và tính T . b) Cho lim n→∞ a n = 0. Chứng minh T là ánh xạ compact. HẾT Ghi chú - Thí sinh không được sử dụng tài liệu - Cán bộ coi thi không được giải thích gì thêm 1 Trường Đại học Sư phạm TP.HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Hội đồng Tuyển sinh Sau đại học 2004 Độc lập - Tự do - Hạnh phúc ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2004 MÔN THI : ĐẠI SỐ (CƠ SỞ) (Thời gian 180 phút, không kể thời gian phát đề) Bài I: Cho A là vành giao hoán có đơn vị. a) Định nghĩa iđêan tối đại của vành A. b) Cho M là một iđêan của A. Chứng minh M là iđêan tối đại khi và chỉ khi A / M là trường. c) Cho M là một iđêan của A. Chứng minh: Nếu ∀x ∈ M 1 + x khả nghịch trong A thì M là iđêan tối đại duy nhất của A. Bài II: a) Cho (G, ·) là một nhóm có 2n phần tử và H là một nhóm con của G có n phần tử. Chứng minh ∀x ∈ G x 2 ∈ H b) Trong nhóm đối xứng S 4 (nhóm các phép thế bậc 4) hãy xét tính chuẩn tắc của các nhóm con xiclic sinh bởi một vòng xích độ dài 3. Bài III: Trong trường các số hữu tỷ Q ta xét tập con: A =  m n ∈ Q/n là số lẻ  a) Chứng minh A là vành con của Q. b) Tìm các phần tử khả nghịch trong vành A. c) Chứng minh vành con A là một vành chính. Bài IV: Xét đa thức f(x) = x 3 + x + 1 ∈ Q[x] 1) Chứng minh f(x) = x 3 + x + 1 bất khả vi trong Q[x] 2) Gọi α là nghiệm thực của f(x) = x 3 + x + 1 (nghiệm thực này là duy nhất). Đặt K = {aα 2 + bα + c/a, b, c ∈ Q} a) Chứng minh ánh xạ α : Q[x] −→ R g(x) −→ g(α) là đồng cấu vành. b) Tìm Kerϕ. c) Chứng minh K là một trường. HẾT Ghi chú - Thí sinh không được sử dụng tài liệu 1 Trường Đại học Sư phạm TP.HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Hội đồng Tuyển sinh Sau đại học 2004 Độc lập - Tự do - Hạnh phúc ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2004 MÔN THI : ĐẠI SỐ VÀ GIẢI TÍCH (Thời gian 180 phút, không kể thời gian phát đề) Câu 1: Tìm miền hội tụ của chuỗi hàm lũy thừa ∞  n=1  n + 2 n + 1  n(n+1) x n Câu 2: Cho hàm số f : R 2 → R xác định bởi: f(x, y) =    2xy x 2 + y 2 , khi (x, y) = (0, 0) 0 , khi (x, y) = (0, 0) a) Xét sự liên tục của f trên R 2 ; b) Tính các đạo hàm riêng của f trên R 2 . Câu 3: Tính tích phân  D (2x − y)dxdy, trong đó D là nửa trên của hình tròn có tâm tại điểm (1,0) bán kính 1 Câu 4: Cho tập hợp các số tự nhiên N. Với mọi m, n ∈, đặt d(m, n) =  0 , nếu m = n 1 + 1 m + n , nếu m = n Hãy chứng minh: a) d là một metric trên N. b) (N, d) là một không gian metric đầy đủ. Câu 5: Tính định thức:             1 3 0 0 4 6 2 4 0 0 5 8 5 1 1 5 2 1 7 6 6 7 1 2 3 7 0 0 0 0 1 2 0 0 0 0             Câu 6: Cho ánh xạ tuyến tính f : R 4 → R 3 có ma trận trong cặp cơ sở chính tắc là   1 0 2 1 2 3 −1 1 −2 0 −5 3   Hãy xác định nhân và ảnh của f. Hỏi f có là đơn cấu, toàn cấu hay không? Vì sao? Câu 7: Cho ma trận   −1 3 −1 −3 5 −1 −3 3 1   a) Tìm giá trị riêng, vectơ riêng của A. b) Tính A 2004 HẾT Ghi chú - Thí sinh không được sử dụng tài liệu 1 TRƯỜNG ĐH SƯ PHẠM TP.HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM HỘI ĐỒNG TUYỂN SINH SĐH 2005 Độc lập - Tự do - Hạnh phúc ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2005 MÔN CƠ BẢN: ĐẠI SỐ (dành cho PPGD Toán) (Thời gian 180 phút, không kể thời gian phát đề) Câu 1 : Cho ma trận vuông A =      a 1 1 1 1 a 1 1 1 1 a 1 1 1 1 a      a) Tính det A b) Tính rank A. Câu 2 : Cho B là ma trận vuông cấp n, (B) ij = 1 hoặc (B) ij = −1 với mọi i, j. Chứng minh det B chia hết cho 2 n−1 . Câu 3 : Cho n là một số tự nhiên (n ≥ 1) , R n [x] là tập các đa thức với hệ số thực bậc bé hơn hoặc bằng n. Biết rằng R n [x] với phép cộng các đa thức và phép nhân một số với một đa thức là một không gian vectơ trên R và 1, x, . . . , x n (∗) là một cơ sở của R n [x]. Cho ánh xạ f : R n [x] → f : R n [x] p(x) → p(x) − xp ′ (x) p ′ (x) : đạo hàm của đa thức p(x) a. Chứng minh f là ánh xạ tuyến tính. Tìm ma trận của f trong cơ sở (*) ở trên. b. Tìm một cơ sở và số chiều của các không gian con Ker f = f −1 (0) và imf = f (R n [x]) Câu 4 : Trong không gian vectơ Euclide R 4 (với tích vô hướng thông thưng), cho L là không gian con sinh bởi các vectơ α 1 = (0, 1, 0, 1), α 2 = (0, 1, 1, 0), α 3 = (1, 1, 1, 1), α 4 = (1, 2, 1, 2), (L =< α 1 , α 2 , α 3 , α 4 >) a. Tìm điều kiện cần và đủ để vectơ (x 1 , x 2 , x 3 , x 4 ) ∈ L. b. Tìm một cơ sở và số chiều của L. c. Tìm một cơ sở trực chuẩn của L. Câu 5 : Cho E là không gian vec tơ Euclide, tích vô hướng của hai vectơ x, y ∈ E, kí hiệu là < x, y > và cho ϕ : E → E là ánh xạ thoả mãn < ϕ(x), ϕ(y) > = < x, y > ∀x, y ∈ E. Chứng minh ϕ là ánh xạ tuyến tính. HẾT Ghi chú : – Thí sinh không được sử dụng tài liệu – Cán bộ coi thi không giải thích gì thêm. 1 TRƯỜNG ĐH SƯ PHẠM TP.HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM HỘI ĐỒNG TUYỂN SINH SĐH 2005 Độc lập - Tự do - Hạnh phúc ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2005 MÔN CƠ BẢN: ĐẠI SỐ (Thời gian 180 phút, không kể thời gian phát đề) Kí hiệu : • n Q là trường số hữu tỉ, R là trường số thực, C là trường số phức, Z là vành số nguyên. • Z p là vành thương Z/pZ. Câu 1 : (2đ + 1đ) 1. Cho (G,·) là một nhóm giao hoán hữu hạn có mn phần tử, với m, n nguyên tố cùng nhau. Đặt A = {x ∈ G : x m = e} và B = {x ∈ G : x n = e} (e là phần tử đơn vị của nhóm). Chứng minh A và B là 2 nhóm con của G thoả A ∩ B = {e} và AB = G. 2. Cho (G,·) là một nhóm có 2n phần tử. Chứng minh trong G có phần tử cấp 2. Câu 2 : (0,5đ + 1,5đ) Xét vành tích Z 2 = Z × Z với phép toán cộng và phép nhân theo thành phần. a. Cho I là một iđêan của Z 2 . Đặt : I 1 = {x ∈ Z/(x, 0) ∈ I}, I 2 = {y ∈ Z/(0, y) ∈ I} Chứng minh I 1 , I 2 là 2 iđêan của Z. b. Chứng minh vành Z 2 không phải là vành chính mặc dù mọi iđêan của nó đều là iđêan chính. Câu 3 : (1đ + 1đ + 1đ) Cho đa thức f(x) = 1x 4 + 1 ∈ K[x], với K là một trường có đơn vị là 1. Hãy xét tính bất khả qui của f(x) trong K[x] đối với từng trường hợp sau : a. K = Q b. K = Z 5 c. K = Z 3 Câu 4 : (2đ) Cho số phức α = −1 + i √ 2 và đồng cấu vành ϕ : R[x] → C xác định bởi ϕf = f (α). Chứng minh ϕ là toàn ánh và suy ra C ∼ = R[x]  x 2 − 2x + 3 HẾT Ghi chú : – Thí sinh không được sử dụng tài liệu. – Cán bộ coi thi không giải thích gì thêm. 1 TRƯỜNG ĐH SƯ PHẠM TP.HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM HỘI ĐỒNG TUYỂN SINH SĐH 2005 Độc lập - Tự do - Hạnh phúc ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2005 MÔN CƠ BẢN : ĐẠI SỐ VÀ GIẢI TÍCH ĐẠI CƯƠNG (Thời gian 180 phút, không kể thời gian phát đề) Câu 1 : Cho hàm số f(x, y) =    (x 2 + y 2 ) sin 1 x 2 + y 2 nếu x 2 + y 2 > 0 0 nếu x = y = 0 Chứng minh rằng hàm số f(x, y) có các đạo hàm riêng ∂f ∂x , ∂f ∂y không liên tục tại O(0, 0) nhưng f(x, y) khả vi tại O(0, 0). Câu 2 : Tìm miền hội tụ của chuỗi lũy thừa +∞  n=1  n + 1 3n + 2  n (x − 2) n . Câu 3 : Gọi M = {x ∈ C([0, 1])|x(1) = 1, 0 ≤ x(t) ≤ 1, ∀t ∈ [0, 1]} a. Chứng minh rằng M là tập đóng không rỗng và bị chặn trọng không gian mêtric C([0, 1]) với mêtric d(x, y) = max 0≤t≤1 |x(t) − y(t)|, với x(t), y(t) ∈ C([0, 1]). b. Xét f : C([0, 1]) → R xác định bởi f(x) =  1 0 x 2 (t) dt. Chứng minh rằng f liên tục trên M nhưng f không đạt được giá trị nhỏ nhất trên M. Từ đó suy ra M không phải là tập compact trong C([0, 1]). Câu 4 : Cho f : R 3 → R 3 là một phép biến đổi tuyến tính xác định bởi : f(u 1 ) = v 1 , f(u 2 ) = v 2 , f(u 3 ) = v 3 . Với u 1 = (1, 1, 1), u 2 = (0, 1, 1), u 3 = (0, 0, 1) ; v 1 = (a + 3, a + 3, a + 3), v 2 = (2, a + 2, a + 2), v 3 = (1, 1, a + 1) với a ∈ R a. Tìm ma trận của f với cơ sở chính tắc e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1). b. Tìm giá trị của a để f là một đẳng cấu. c. Khi f không là một đẳng cấu hãy tìm cơ sở và số chiều của Imf và Kerf. d. Với a = −3, f có chéo hóa được không ? Trong trường hợp f chéo hóa được, hãy tìm một cơ sở để ma trận của f với cơ sở đó có dạng chéo. Câu 5 : Cho dạng toàn phương q(x 1 , x 2 , x 3 ) = x 2 1 + 2x 2 2 + x 2 3 + 2x 1 x 2 + 2ax 1 x 3 + 2x 2 x 3 . a. Đưa dạng toàn phương về dạng chính tắc. b. Với giá trị nào của a thì q là xác định dương, nửa xác định dương. HẾT Ghi chú : – Thí sinh không được sử dụng tài liệu – Cán bộ coi thi không giải thích gì thêm. 1 ♣≠ι ηχ Θυχ γι α Η ∝ Ν  ι ♣ τηι τυψν σινη σαυ →≠ι ηχ ν♦m 2000 Μ↔ν τηι χ← β∂ν: ♣≠ι σ Τηι γιαν λ∝m β∝ι: 180 πη⌠τ Χ♥υ Ι. M λ∝ τ⊄π ηπ χ÷χ mα τρ⊄ν χ⊇π n (n ≥ 1), τηχ, κη∂ νγη⇒χη. 1. Χηνγ mινη ρ≈νγ M λ∝ νηm →ι ϖι πη∠π νη♥ν mα τρ⊄ν. 2. C ∈ M χ →⇒νη. Χηνγ mινη ρ≈νγ ÷νη ξ≠ f : M → M, f(A) = C −1 AC λ∝ mτ →∑νγ χ⊇υ νηm. Τ⋅m Im f, Ker f (ηαψ χηνγ mινη ρ≈νγ f λ∝ →…νγ χ⊇υ). 3. Χηνγ mινη ρ∝νγ ÷νη ξ≠ f 1 : M → R ⋆ , f 1 (A) = |A| λ∝ →∑νγ χ⊇υ νηm. Τ⋅m Im f 1 , Ker f 1 . Χ♥υ ΙΙ. Χηνγ mινη ρ≈νγ C ⋆ λ∝ νηm →ι ϖι πη∠π νη♥ν τη↔νγ τη↑νγ. Ξ∠τ χ÷χ ÷νη ξ≠ f : C ⋆ → C ⋆ , f (α) = α, g : C ⋆ → C ⋆ , g(α) = α λ∝ →∑νγ χ⊇υ νηm, →←ν χ⊇υ, το∝ν χ⊇υ ηαψ κη↔νγ? Τ⋅m Im f, Ker f. Χ♥υ ΙΙΙ. Χηνγ mινη ρ≈νγ χ÷χ πη∠π βι∏ν →ι τρχ γιαο τρ♠ν κη↔νγ γιαν Ευχλιδ E λ∝m τη∝νη mτ νηm →ι ϖι πη∠π νη♥ν (πη∠π ηπ τη∝νη), κ ηι√υ G. Γι∂ σ g ∈ G. ♣∅τ ÷νη ξ≠ ϕ : G → G, ϕ(f) = g −1 fg. Χηνγ mινη ρ≈νγ ϕ λ∝ →…νγ χ⊇υ νηm. Χ♥υ Ις. C[x] λ∝ ϖ∝νη. ♣∅τ ÷νη ξ≠ ϕ : C [x] → C [x] , f (x) → f (x) (→↑χ ηιυ λ∝ a 0 + a 1 x + . + a n x n ). 1. Χηνγ mινη ρ≈νγ ϕ λ∝ →∑νγ χ⊇υ νηm. 2. Χηνγ mινη ρ≈νγ R[x] λ∝ ϖ∝νη χον m∝ κη↔νγ ιδεαν. Χ♥υ ς. 1. Χηνγ mινη ρ≈νγ χ÷χ mα τρ⊄ν →ι ξνγ χ⊇π n λ⊄π τη∝νη νηm αβεν →ι ϖι πη∠π χνγ, κ ηι√υ νηm ν∝ψ λ∝ M. 2. Χηνγ mινη ρ≈νγ ÷νη ξ≠ f : M → M, f(A) = A ′ (χηυψν ϖ⇒ χ〉α A) λ∝ →∑νγ χ⊇υ νηm. Τ⋅m Im f, Ker f. 3. Χηνγ mινη ρ≈νγ τ⊄π M χ÷χ mα τρ⊄ν →ι ξνγ τηχ χ⊇π n λ⊄π τη∝νη R−κη↔νγ γιαν ϖ∠χ τ← (ηαψ R−κη↔νγ γιαν ϖ∠χ τ← χον χ〉α κη↔νγ γιαν χ÷χ mα τρ⊄ν ϖυ↔νγ χ⊇π n). 4. T λ∝ mα τρ⊄ν κη∂ νγη⇒χη (κη↔νγ νη⊇τ τηι∏τ →ι ξνγ). Χηνγ mινη ρ≈νγ ÷νη ξ≠ f : M → M, f (A) = T −1 AT λ∝ →∑νγ χ⊇υ (τχ λ∝ ÷νη ξ≠ τυψ∏ν τ⇑νη). ♣≠ι ηχ Θυχ γι α Η ∝ Ν  ι ♣ τηι τυψν σινη σαυ →≠ι ηχ ν♦m 2000 Μ↔ν τηι χ← β∂ν: ♣≠ι σ Τηι γιαν λ∝m β∝ι: 180 πη⌠τ Χ♥υ Ι. Τ⋅m η≠νγ χ〉α η√ ϖ∠χ τ← a 1 , a 2 , a 3 ∈ R 3 τηεο τηαm σ a a 1 = (1, a, 1) , a 2 = (1, 1, a) , a 3 = (a, 1, 1) . Τ⋅m πη∩ν β τρχ τι∏π χ〉α L = {a 1 , a 2 , a 3 } κηι a = −2 ηο∅χ a = 1. Χ♥υ ΙΙ. Βι∏τ R 5 [x] λ∝ κη↔νγ γιαν χ÷χ →α τηχ χ β⊄χ νη〈 η←ν 5. Χηο f (x) = 1 + x 2 + x 3 + x 4 . Χηνγ mινη ρ≈νγ (1) ϖ∝ (2) λ∝ χ÷χ χ← σ χ〉α ν 1. 1, x, x 2 , x 3 , x 4 . 2. f (4) (x), f (3) (x), f ′′ (x), f ′ (x), f (x). Τ⋅m mα τρ⊄ν χηυψν χ← σ (1) σανγ (2). Τ⋅m το≠ → χ〉α f (x) = 34+33x+16x 2 +5x 3 +x 4 τρονγ χ← σ (2). Χ♥υ ΙΙΙ. Πη∠π βι∏ν →ι τυψ∏ν τ⇑νη f τρ♠ν κη↔νγ γιαν πηχ χ mα τρ⊄ν λ∝ A =   3 0 0 1 0 1 2 −1 0   . χ χη∠ο ηο÷ →↑χ κη↔νγ? Χ τ∑ν τ≠ι πη∠π βι∏ν →ι τυψ∏ν τ⇑νη νγη⇒χη →∂ο f −1 ? Τ⋅m ϖ∠χ τ← ρι♠νγ ϖ∝ γι÷ τρ⇒ ρι♠νγ χ〉α f −1 . Χ♥υ Ις. Χηνγ mινη ρ≈νγ τ⊄π ηπ χ÷χ mα τρ⊄ν τηχ χ δ≠νγ A =  a b 2b a  . ϖι a, b ∈ R λ⊄π τη∝νη ϖ∝νη χον χ〉α ϖ∝νη Mat(2, R), η〈ι ν χ λ∝ ιδεαν κη↔νγ? ♣≠ι ηχ Θυχ γι α Η ∝ Ν  ι ♣ τηι τυψν σινη σαυ →≠ι ηχ ν♦m 2001 Μ↔ν τηι χ← β∂ν: ♣≠ι σ Τηι γιαν λ∝m β∝ι: 180 πη⌠τ Χ♥υ Ι. Χηνγ mινη ρ≈νγ 1. Τ⊄π S 1 χ÷χ σ πηχ χ m↔ →υν β≈νγ 1 λ∝ mτ νηm χον χ〉α νηm νη♥ν χ÷χ σ πηχ κη÷χ 0. 2. ¸νη ξ≠ f : R → S 1 χηο βι f (x) = cos(πx) + i sin(πx) λ∝ mτ →∑νγ χ⊇υ τ⌡ νηm χνγ χ÷χ σ τηχ R ϖ∝ο S 1 . Χ♥υ ΙΙ. 1. Χηνγ mινη ρ≈νγ mι κη↔νγ γιαν χον L χ〉α κη↔νγ γιαν ϖ∠χ τ← ηυ η≠ν χηιυ V →υ χ β τυψ∏ν τ⇑νη. Πη∩ν β τυψ∏ν τ⇑νη χ〉α L χ δυψ νη⊇τ κη↔νγ? 2. Τ⋅m σ χηιυ, mτ χ← σ ϖ∝ πη∩ν β τυψ∏ν τ⇑νη χ〉α κη↔νγ γιαν χον χ〉α κη↔νγ γιαν R 4 σινη βι η√ ϖ∠χ τ← {u 1 = (1, −2, −1, 1), u 2 = (−1, 3, 0, 2), u 3 = (2, −5, −1, −1), u 4 = (2, −4, −2, 2)}. Χ♥υ ΙΙΙ. Ξ∠τ mα τρ⊄ν τηχ A =   a d 0 d b d 0 −d c   . 1. Ν∏υ ϕ λ∝ mτ πη∠π βι∏ν →ι τυψ∏ν τ⇑νη τρονγ κη↔νγ γιαν R 3 χ mα τρ⊄ν →ι ϖι χ← σ χη⇑νη τχ λ∝ A τη⋅ ϕ χ χη∠ο ηο÷ →↑χ κη↔νγ? ς⋅ σαο? 2. ςι a = 3, b = 4, c = 5 ϖ∝ d = 2 η•ψ τ⋅m mα τρ⊄ν τρχ γιαο Q σαο χηο B = Q T AQ λ∝ mα τρ⊄ν →↑νγ χη∠ο. Χ♥υ Ις. Πη∠π βι∏ν →ι τυψ∏ν τ⇑νη ϕ γι λ∝ λυ λινη β⊄χ p ν∏υ p λ∝ mτ σ νγυψ♠ν δ↑←νγ σαο χηο ϕ p−1 = 0 ϖ∝ ϕ p = 0. Γι∂ σ ϕ λ∝ mτ πη∠π βι∏ν →ι τυψ∏ν τ⇑νη λυ λινη β⊄χ p τρονγ κη↔νγ γιαν ϖ∠χ τ← n−χηιυ V . Χηνγ mινη ρ≈νγ 1. Ν∏υ x λ∝ mτ ϖ∠χ τ← σαο χηο ϕ p−1 (x) = 0 τη⋅ η√ ϖ∠χ τ←  x, ϕ (x) , ϕ 2 (x) , ., ϕ p−1 (x)  →χ λ⊄π τυψ∏ν τ⇑νη. 2. p ≤ n. 3. ϕ χη¬ χ mτ γι÷ τρ⇒ ρι♠νγ λ = 0. 4. Ν∏υ E − A λ∝ mα τρ⊄ν χ〉α πη∠π βι∏ν →ι ϕ →ι ϖι χ← σ ν∝ο → τη⋅ mα τρ⊄ν A κη∂ νγη⇒χη (E λ∝ mα τρ⊄ν →←ν ϖ⇒). . Book Series Tuyển tập Đề thi Cao học môn Toán (1998 – 2008) Cuốn sách bao gồm các đề thi tuyển sinh sau đại học của các trường ĐHQG Hà Nội, Đại học Sư phạm. Đại học Sư phạm TP.HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Hội đồng Tuyển sinh Sau đại học 2004 Độc Lập - Tự Do - Hạnh Phúc ĐỀ THI TUYỂN SINH SAU ĐẠI HỌC

Ngày đăng: 16/08/2013, 10:39

HÌNH ẢNH LIÊN QUAN

trong đó D là nửa trên của hình tròn có tâm tại điểm (1,0) bán kính 1 Câu 4: Cho tập hợp các số tự nhiênN - Tuyển tập đề thi cao học môn toán (1998 2008)
trong đó D là nửa trên của hình tròn có tâm tại điểm (1,0) bán kính 1 Câu 4: Cho tập hợp các số tự nhiênN (Trang 4)

TỪ KHÓA LIÊN QUAN