1. Trang chủ
  2. » Khoa Học Tự Nhiên

Chuyên đề bồi dưỡng học sinh giỏi vật lý THCS phương pháp cộng vận tốc trong các bài toán cực trị chuyển động

17 270 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 595,31 KB

Nội dung

Chuyên đề bồi dưỡng học sinh giỏi vật lý THCS phương pháp cộng vận tốc trong các bài toán cực trị chuyển động Chuyên đề bồi dưỡng học sinh giỏi vật lý THCS phương pháp cộng vận tốc trong các bài toán cực trị chuyển động Chuyên đề bồi dưỡng học sinh giỏi vật lý THCS phương pháp cộng vận tốc trong các bài toán cực trị chuyển động Chuyên đề bồi dưỡng học sinh giỏi vật lý THCS phương pháp cộng vận tốc trong các bài toán cực trị chuyển động

http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, PHƯƠNG PHÁP CỘNG VẬN TỐC TRONG BÀI TOÁN CỰC TRỊ CỦA CHUYỂN ĐỘNG – VẬT LÍ THCS 1.1.Tính tương đối toạ độ: Đối với hệ quy chiếu khác toạ độ khác 1.2 Tính tương đối vận tốc: Vận tốc vật hệ quy chiếu khác khác - Công thức cộng vận tốc    v13  v12  v23  v13 : vận tốc vật vật 3( vận tốc tuyệt đối)  v12 : vận tốc vật vật 2(vận tốc tương đối)  v 23 : vận tốc vật vật 3(vận tốc kéo theo)   v13  v31   v12  v 21   v 23  v32 1.3 Hệ quả:       - Nếu v12 , v13 phương ,cùng chiều độ lớn: v13  v12  v23 - Nếu v12 , v13 phương, ngược chiều độ lớn: v13  v12  v23 - Nếu v12 , v13 vng góc với độ lớn: v13  v122  v232 2   - Nếu v12 , v13 tạo với góc  độ lớn: v13  v12  v23  2v12v23 cos  Kiến thức toán học: B 2.1 Định lí Pitago: Cho ∆ABC vng A Ta có: BC  AB2  AC 2.2 Hàm số lượng giác góc nhọn: A C (H-1) http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, Theo (H-1): AC AB AC AB ; CosB  ; tgB  ; CotgB  BC BC AB AC AB AC AB AC SinC  ; CosC  ; tgC  ; CotgC  BC BC AC AB SinB  (1) 2.3 Định lý hàm Sin: Cho ∆ ABC ta có: a b c   S in A SinB SinC B (H-2) (2) 2.4 Định lý hàm Cos : Cho ABC ta có: a  b  c  2bc.cos A A C b  c  a  2ac.cos B (3) c  a  b  2ab.cos C 2.5 Công thức cộng góc: Cos(   )  C os  C os  sin  sin  Sin(   )  Sin Cos   Cos Sin 2.6 Hàm số lượng giác góc có liên quan đặc biệt: Ví dụ: Sin(90   )  Cos với     90 II Nội dung tập: 1.1 Các tập ví dụ: Bài 1:(Bài tập lí thuyết) Hai chất điểm chuyển động hai đường thẳng Ax By vng góc với nhau, tốc độ v1 v2( Hình vẽ) a Vẽ vẽ véc tơ vận tốc chất điểm so với y x  v1 chất điểm A  v2 B http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, b Biểu diễn hình vẽ khoảng cách ngắn hai chất điểm trình chuyển động Giải: Xét chuyển động tương đối vật so với vật 2, ta có:      v12  v1  (v2 )  v1  v2 Đoạn BH vuông góc với đường thẳng  chứa véc tơ vận tốc v12 khoảng cách ngắn hai chất điểm Bài 2: Từ hai bến A, B bờ sơng có V2 hai ca nơ khởi hành Khi nước sông V1 không chảy sức đẩy động ca A B nô từ A chạy song song với bờ theo chiều từ A B có V1 = 24km/h Cịn ca nơ chạy từ B vng góc với bờ có vận tốc 18km/h Qng đường AB 1km Hỏi khoảng cách nhỏ hai ca nơ q trình chuyển động nước chảy từ A  B với V3 = 6km/h (sức đẩy động không đổi) (Trích đề thi chuyên lý vào) Giải Theo đề ta có hình vẽ Do dịng nước chảy từ từ A B với vận tốc 6km/h nên canô chuyển động H xi dịng vận tốc : V21 V2 V’2 Vx = V1 + V3 = 24 + = 30km/h - Canô xuất phát từ B bị nước  V’x Ván V3 http://topdoc.vn – File word sách tham Akhảo,Agiáo dạyB thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, đẩy ta có hướng vận tốc V2' hình vẽ Áp dụng định lý Pitago tam giác vuông B V2' V3 ta : 2 V2'2 = V22  V32 = 18 + = 10 km/h Ta áp dụng tính tương đối vận tốc cho tốn Canơ từ AB với vận tốc Vx ta tưởng tượng coi canô đứng yên điểm B chuyển động với vận tốc V 'X với V 'X = Vx hướng V 'X ngược chiều với Vx Do canơ chuyển động theo hướng V2' chọn mốc canơ1 hướng chuyển động canô lúc V21 hợp với AB góc  Từ dễ dàng suy khoảng cách nhỏ canơ có độ lớn độ dài đoạn AH V21 Ta tính AH tam giác vng AHB Có Sin = AH AB  AH = AB Sin (1) Mặt khác xét tam giácvng BV2V21 Có :V 221 = V 22 (VX'  V3 ) = 182 + (30 – 6)2 = 900  V21 = 30km/h Và Sin   18 V2 =  0,6 (2) V21 30 Thế (2) vào (1) ta AH = AB.sin = 1.0,6 = 0,6(km) Vậy khoảng cách nhỏ canô trình chuyển động 0,6km Nhận xét: Bài giống tìm khoảng cách nhỏ vật trình chuyển động Tuy nhiên cách giải hoàn toàn khác Về chất giống tượng khoảng cách vật bị thay đổi theo thời gian Đối với ta lập biểu thức d (khoảng cách vật) hàm thời gian t sau từ d = f(t) ta tìm giá trị nhỏ Cịn ta giải theo đưa cách giải để học sinh tham khảo Cách giải kết hợp tính tương đối vận tốc hình học Đó vật chuyển động ta coi đứng yên vật chuyển động so với vật, cịn khoảng cách ngắn hai vật dựa vào hình học phải đoạn thẳng vng góc với hướng chuyển động vật http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, Bài 3: Hai xe chuyển động hai đường vng góc với nhau, xe A hướng tây với tốc độ 50km/h, xe B hướng Nam với tốc độ 30km/h Vào thời điểm xe A B cách giao điểm hai đường 4,4km 4km tiến phía giao điểm Tìm khoảng cách ngắn giũa hai xe Giải Xét chuyển động tương đối vật so với vật 2, ta có:      v12  v1  (v2 )  v1  v2 Đoạn BH vng góc với đường thẳng chứa  véc tơ vận tốc v12 khoảng cách ngắn hai xe  dmin= BH tan   v2     59 ,   310 v1 dmin= BH = BI sin  = (BO - OI) sin  = (BO - OA.tan  ).sin  = 1,166(km) Bài 4.( đề thi HSG Nghệ An 2005-2006, bảng B ) Hai vật chuyển động hai đường đường thẳng vng góc với với tốc độ khơng đổi có giá trị v1= 30km/h, v2= 20km/h Tại thời điểm khoàng cách hai vật nhỏ vật cách giao điểm s 1=500m Hỏi lúc vật cách giao điểm đoạn s2 Giải: Xét chuyển động tương đối vật so với vật 2, ta có: http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học,      v12  v1  (v2 )  v1  v2 -Tại A cách O đoạn s1=500m dựng véc tơ    v1 véc tơ - v , v12 Kẻ đường AB vng góc với đường thẳng chứa véc tơ  v12 ( Theo đề khoảng cách ngắn dmin= AB) tan  =  BO = v1  v2 0A  750(m) tan  Bài 5: Hai tàu chuyển động với tốc độ hai đường hợp với góc   60 tiến phía giao điểm O Xác định khoảng cách nhỏ hai tàu Cho biết lúc đầu hai tàu cách giao điểm O khoảng l1=20km, l2=30km Giải: Xét chuyển động tương đối vật so ta có:      v12  v1  (v2 )  v1  v2 dmin= BH, OAK tam giác (vì tốc độ hai tàu nhau)  dmin=KB.sin  KB = l2 - l1  dmin= (km) http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, Bài 6: Hai vật chuyển động thẳng hai đường thẳng tạo với góc  =30 với tốc độ v  v1 hướng phía giao điểm, thời điểm khoảng cách hai vật nhỏ vật cách giao điểm đoạn d 1= 30 m Hỏi vật cách giao điểm đoạn bao nhiêu? Giải: Xét chuyển động tương đối vật so ta có      v12  v1  (v2 )  v1  v2  BA  v12 , dmin = AB Vì v2  v1 nên chứng minh     30 Hạ đường AH  BO AH = AO.sin300 = d1.sin300 =15 (m) HO = d1.cos300 = 45 (m) BH = AH  45m  BO=d2= 90(m) tan 30 Bài 7: Có hai vật M1 M2 lúc đầu cách khoảng l =2m (Hình vẽ), lúc hai vật chuyển động thẳng M1 chạy B với tốc độ http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, v1=10m/s, M2 chạy C với tốc độ v2=5m/s Tính khoảng cách ngắn hai vật thời gian để đạt khoảng cách Biết góc tạo hai đường   450 Giải: Xét chuyển động tương đối vật so vật 2, ta có:      v12  v1  (v2 )  v1  v2 dmin = AH = AB.sin  v21= v12  v22  2v1v2 cos(180   )  v12  v22  2v1v2 cos  - Áp dụng định lí hàm sin, ta có: BM BN BN   sin  sin(180   ) sin   v2 v v  12  sin   sin  sin  v12  d  lv sin  v12  v22  2v1v2 cos  BH= v12 t  t   0,5( m) l  d BH   0,138(s) v12 v12 Bài 8: Ở đoạn sơng thẳng có dịng nước chãy với vận tốc vo, người từ vị trí A bờ sông bên muốn chèo thuyền tới B bờ sông bên Cho AC; CB = a Tính vận tốc nhỏ thuyền so với nước mà người phải chèo để http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, tới B Giải:    Ta có v1  vo  v12 Ta biểu diễn véc tơ vận tốc hình vẽ   Vì vo không đổi nên v12 nhỏ v12  v1  V12= vo.sin  = v0 b a  b2 */ Nhận xét: Các tốn hồn tồn giải theo cách thiết lập phương trình, sau lí luận theo hàm bậc hai mặt toán học, nhiên lời giải dài hơn! Bài 9: Một ô tô chuyển động thẳng với vận tốc v1 = 54km/h Một hành khách cách ô tô đoạn a = 400m cách đường đoạn d = 80m, muốn đón tơ Hỏi người phải chạy theo hướng nào, với vận tốc nhỏ để đón tơ? Giải: Xét chuyển động tương đối vật so vật 1, ta có:      v21  v2  (v1 )  v2  v1  Để gặp v 21 phải ln có hướng AB  Véc tơ vận tốc v có ln nằm đường http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học,    Xy // AB  v v  xy , tức v  AB Tính chất đồng dạng tam giác: DAB AHD , ta có: v2 v1 d   v2  v1  10,8km / h d a a * Nhận xét : Ở toán học sinh phải lập biểu thức tính vận tốc người chạy để đón tơ Sau dựa vào biểu thức để tìm giá trị nhỏ vận tốc Bài 10: Hai tàu A B ban đầu cách khoảng l A Chúng chuyển động lúc với vận tốc có độ lớn v1, v2 Tàu A chuyển động theo hướng AC tạo v1 B H với AB góc  (hình vẽ) a Hỏi tàu B phải theo hướng để gặp tàu A Sau kể từ lúc chúng vị trí A B hai tàu C gặp nhau? b Muốn hai tàu gặp H (BH vng góc với v1 ) độ lớn vận tốc v1, v2 phải thỏa mản điều kiện gì? Giải: a Tàu B chuyển động với vận tốc v2 hợp với BA góc  A  v1 H - Hai tàu gặp M Ta có AM = v1.t, BM = v2.t - Trong tam giác ABM: +  AM BM v1t vt    sin  sin  sin  sin   sin  = v1 sin  v2 - v1 v21  v2 M (1) http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, B v1 http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, - Tàu B phải chạy theo hướng hợp với BA góc  thỏa mãn (1) - Cos  = cos[1800 – (    ) ] = - cos(    ) = sin  sin   cos  cos  - Gọi vận tốc tàu B tàu A v21 Tại thời điểm ban đầu v21 phương chiều với BA Theo công thức cộng vận tốc: v21  v23  v13  v2  v1 => v212  v22  v12  2v2v1 cos  => v212  v22 (sin   cos  )  v12 (sin   cos  )  2v1v2 (sin  sin   cos  cos  ) =( sin  v22  sin  sin  v1v2  sin  v12 )+( cos  v22  cos  cos  v1v2  cos  v12 ) =( sin  v2  sin  v1 ) +( cos  v2  cos  v1 )2 = ( cos  v2  cos  v1 )2 ( theo (1) ) => v21 = v1 cos   v2 cos  Vậy thời gian để tàu B chuyển động đến gặp tàu A là: t= AB l  v21 v1 cos   v2 cos  b Để tàu gặp H thì:     90    90    sin   sin(90   )  cos  Theo (1) ta có: cos   v1 v sin   tan   v2 v1 Bài 11: Hai người bơi xuất phát từ A bờ cón sơng phải đạt tới điểm B bờ bên nằm đối diện với điểm A Muốn vậy, người thứ bơi để chuyển động theo đường thẳng AB, cịn người thứ hai ln bơi theo hướng vng góc với với dịng chảy, đến bờ bên C, sau chạy ngược tới A http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, với vận tốc u Tính giá trị u để hai người tới A lúc Biết vận tốc nước chảy vo=2km/h, vận tốc người bơi nước v’=2,5km/h Giải: *Xét người thứ nhất: -Vận tốc người bờ:      v1  v ' v0 , v1  v0  v12  v '2  v02 Thời gian người thứ đến B là: t1= AB  v1 AB v12  v02 *Xét người thứ hai: Vận tốc người thứ hai bờ      v2  v ' v0 , v '  v0  v22  v' v02 Thời gian đến C t20= Thời gian chạy bờ: AB AC AB =  v' v2 v2 cos  t’20= BC v0 t 20 v0 AB   u u v'.u Theo đề t1= t20+t’20  AB v ' v u  2  AB v0 AB  v' v'.u v0 v'  v02 v' v' v02  2,5  2 2,5  2,5  2  3km / h Bài 12: Một người đứng A cách đường quốc lộ h=100m nhìn thấy xe tơ vừa đến B cách d=500m chạy đường với vận tốc v1=50km/h http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, (hình vẽ) Đúng lúc nhìn thấy xe người chạy theo hướng AC ( BAC   ) với vận tốc v2 a Biết v  20 km/h Tính  b  v cực tiểu? Tính vận tốc cực tiểu Giải: A v2 ∝ d h β B C H v1 Gọi t thời gian để ô tô người đến C Ta có: AC  v2 t ; BC = v1 t Theo định lý hàm sin có: AC BC v t v t    sin  sin  sin  sin  v  sin   sin  (1) v2 Từ (1) (2) suy ra: sin   => sin   Mặt khác: sin   h (2) d v1.h (3) v2 d    600 ;  1200 http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, v1.h (*) Ta thấy v1, h, d không đổi nên v2 d sin  sin      900 b Từ (3) => v2  h.v1 v   10km / h Lúc đó: 2(min) h 1.2 Bài tập vận dụng: Bài 1: N Một người A xe đạp đường thẳng Ox theo chiều từ trái sang phải, O ∝ M xuất phát từ M cách O OM=800m, với vận tốc không đổi V=4,2m/s Một người H B cánh đồng xuất phát từ điểm H cách O OH=173,2m ( 100 3m) vận tốc không đổi v=1,2m/s theo đường thẳng HN để gặp A N Hãy xác định vị trí N người đến lúc Đáp số: N cách O 242,2m Bài 2: Một người đứng cách đường thẳng khoảng h Trên đường ô tô chạy với vận tốc v1 Khi người thấy xe cách khoảng a bắt đầu chạy đường để đón tơ a Nếu vận tốc chạy của người v2 người phải chạy theo hướng để gặp tơ b Tính vận tốc tối thiểu hướng chạy người để gặp ô tô Áp dụng: v1=10m/s; h=50m; a=200m; v2=3m/s Đáp số: a Vậy người chạy theo hướng vng góc với AB http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, b v2min  h v1  2,5m / s a Bài 3: Trong hệ trục toạ độ xOy (như hình y vẽ), có hai vật nhỏ A B chuyển động thẳng Lúc bắt đầu chuyển động, vật A cách vật A B đoạn L=100m Biết vận tốc vật A O v1 x v2 v1=10m/s theo hướng Ox, vận tốc vật B v2=15m/s theo hướng Oy B a Sau thời gian kể từ lúc bắt đầu chuyển động, hai vật A B lại cách 100m b Xác định khoảng cách nhỏ hai vật A B Đáp số: a Sau 9,23 giây kể từ lúc bắt đầu chuyển động b Smin  55,47(m) Bài 4: Từ điểm O bờ sông rộng OA=0,5km, A người muốn tới điểm A đối diện bên sông cách thuyền từ O đến B từ B A (Hình 1) Vận tốc thuyền nước v1=3km/h, vận tốc B v2 v1 O Hình nước bờ sông v2=2km/h, vận tốc bờ v=5km/h Tìm độ dài BA để thời gian chuyển động ngắn tính thời gian ngắn Đáp số: tmin  10 125 10  132(m) (h) ABmin  15 Bài 5: ( Kỳ thi chọn HS giỏi NH 06-07, vật lí 9) http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, Một ghe máy có vận tốc nước n lặng 6km/h xi dịng từ bến A đến bến B cách 12km Cùng lúc có thuyền máy ngược dòng từ B đến A, vận tốc thuyền máy nước yên lặng 10km/h, sau gặp chúng quay lại trở bến xuất phát Hỏi vận tốc dịng chảy ghe máy lại bến A không sớm sau thuyền máy đến bến B PHẦN III – KẾT LUẬN Trong tốn mà tơi nêu trên, có nhiều cách giải khác, nhiên áp dụng cơng thức cộng vận tốc để giải giải ngắn gọn, đơn giản Tất nhiên số cụ thể cần kết hợp phương pháp khác Đề tài tiến hành thử nghiệm trình giảng dạy, bồi dưỡng học sinh lớp 8,9, đối tượng học sinh khá, giỏi, kết cho thấy tương đối khả quan, các em biêt vận dụng giải thu kết nhanh Vì đề tài theo tơi có tính khả thi Trong viết chun đề khơng tránh khỏi thiếu sót Rất mong bạn đồng nghiệp đóng góp thêm ý kiến đê chun đề hồn thiện có hiệu Tôi xin chân thành cám ơn! Người thực hiện: Triệu Như Vũ http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, TÀI LIỆU THAM KHẢO Nâng cao phát triển vật lí – Nhà xuất giáo dục Việt Nam Chuyên đề bồi dưỡng Vật lí – Nhà xuất Đại học Quốc gia TP Hồ Chí Minh 121 tập Vật lí nâng cao lớp – Nhà xuất Đà Nẵng 500 tập Vật lí THCS – Nhà xuất Đại học Quốc gia TP Hồ Chí Minh Vật lí nâng cao 10 – Nhà xuất giáo dục Bài tập Vật lí nâng cao 10 – Nhà xuất giáo dục Tuyển chọn đề thi vào lớp 10 chuyên môn Vật lí –Nhà xuất Hà Nội http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, ... học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, b v2min  h v1  2,5m / s a Bài 3: Trong. .. dạy, bồi dưỡng học sinh lớp 8,9, đối tượng học sinh khá, giỏi, kết cho thấy tương đối khả quan, các em biêt vận dụng giải thu kết nhanh Vì đề tài theo tơi có tính khả thi Trong viết chun đề khơng... án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, http://topdoc.vn – File word sách tham khảo, giáo án dạy thêm, chuyên đề bồi dưỡng học sinh giỏi, luyện thi đại học, Bài 3:

Ngày đăng: 29/10/2018, 09:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN