Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
890,26 KB
Nội dung
SỞ GD VÀ ĐT BẮC NINH TRƯỜNG THPT LÊ VĂN THỊNH ĐÁPÁNĐỀ KHẢO SÁT CHẤT LƯỢNG ĐẦU NĂMNĂM HỌC 2018-2019 Mơn: TỐN 12 Ngày thi: 16 tháng năm 2018 Đề gốc Câu 1: I NHẬN BIẾT Tập xác định hàm số y tan x là: A \ 0 B \ k ,k Chọn D \ k ,k C B Lờigiải k , k k ,k Điều kiện xác định: cos x x Vậy tập xác định \ Câu 2: Nghiệm phương trình cos x x k 2 A B k x k x k C D k x k 2 Lờigiải Chọn D x k k x k x k 2 k x k 2 x k 2 k x k 2 có số hạng tổng quát un 3n Tìm cơng sai d cấp số cộng Phương trình cos x cos x cos Câu 3: Cho cấp số cộng un A d B d C d 2 Lờigiải D d 3 Chọn A Ta có un 1 un n 1 3n Câu 4: Suy d công sai cấp số cộng Dãy số sau có giới hạn ? n n 2 A un B un Chọn C un n 3n n 1 D un n 4n Lời giải: A 2 2 lim un lim (Vì ) n n 3 n TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com Câu 5: Câu 6: Trong không gian cho bốn điểm khơng đồng phẳng Có thể xác định mặt phẳng phân biệt từ điểm cho? A B C D Lờigiải Chọn B Vì điểm khơng đồng phẳng tạo thành tứ diện mà tứ diện có mặt Cho hai đường thẳng phân biệt a, b mặt phẳng P , a P Chọn mệnh đề sai A Nếu b // a b // P B Nếu b // a b P D Nếu b // P b a C Nếu b P b // a Lờigiải Chọn A Nếu a P b // a b P Câu 7: Cho hàm số y x 3x Mệnh đề đúng? A Hàm số đồng biến khoảng ; 1 nghịch biến khoảng 1; B Hàm số đồng biến khoảng (; ) C Hàm số nghịch biến khoảng ; 1 đồng biến khoảng 1; D Hàm số nghịch biến khoảng 1;1 Chọn D Ta có y 3x x 1 Bảng biến thiên x y y 1 Lờigiải 2 Câu 8: Dựa vào bảng biến thiên ta chọn đápán D Cho hàm số y f x có đạo hàm đoạn a;b Ta xét khẳng định sau: 1 Nếu hàm số f x đạt cực đại điểm x a;b f x giá trị lớn f x đoạn a;b 2 Nếu hàm số f x đạt cực đại điểm x a;b f x giá trị nhỏ f x đoạn a;b 3 Nếu hàm số f x đạt cực đại điểm x đạt cực tiểu điểm x x 0, x1 a;b ta ln có f x f x Câu 9: Số khẳng định là? A B C Hàm số y x 3x 3x có điểm cực trị? A B C Lờigiải Chọn C TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com D D Ta có y 3x 6x x 1 , x Hàm số cho có đạo hàm khơng đổi dấu nên khơng có cực trị Câu 10: Giá trị nhỏ hàm số y x 3x đoạn 2; 4 là: A y B y C y 2; 4 2; 4 2; 4 Chọn D y 2; 4 Lờigiải B x 2; 4 mà f 2 y Ta có: y 3x y 2; 4 f 4 57 x 1 2; 4 x 3 Câu 11: Tiệm cận ngang đồ thị hàm số y đường thẳng có phương trình? x 1 A y B y C x D y Lờigiải Chọn D x 3 Ta có lim y lim đường thẳng y tiệm cận ngang đồ thị hàm số x x x Câu 12: Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án A, B, C, D Hỏi hàm số hàm số nào? y 1 O A y 2x x 1 B y 2x x 1 x 1 C y Lờigiải 2x x 1 Chọn A Đồ thị hàm số có đường tiệm cận đứng x 1 loại đápán Đồ thị hàm số qua điểm A 0; loại đápán B Câu 13: Khối đa diện có 12 mặt có số cạnh là: A 30 B 60 C 12 Lờigiải Chọn A D y 2x x 1 C D D 24 Khối đa diện có 12 mặt khối đa diện loại 5; có số cạnh 30 Câu 14: Cho tứ diện MNPQ Gọi I ; J ; K trung điểm cạnh MN ; MP ; MQ Tỉ số thể tích A Chọn VMIJK VMNPQ B C Lờigiải D D TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com M K I J N Q P Ta có: VM IJK VM NPQ MI MJ MK 1 1 MN MP MQ 2 Câu 15: Cho tập A 0;2; 4; 6; 8 ; B 3; 4;5;6; 7 Tập A \ B A 0; 6; 8 Chọn B 0;2; 8 B C 3; 6;7 D 0;2 Lờigiải Ta có A \ B 0;2; II THƠNG HIỂU Câu 16: Phương trình cos 2x sin x có nghiệm khoảng 0;10 ? A Chọn B C Lờigiải D A sin x 1 PT cho 2 sin x sin x x k 2, k sin x VN 21 Theo đề: x 0;10 k 2 10 k 4 Vì k nên k 1;2; 3; 4; 5 Vậy PT cho có nghiệm khoảng 0;10 Câu 17: Một tổ cơng nhân có 12 người Cần chọn người để làm nhiệm vụ, hỏi có cách chọn? A A123 B 12! C C 123 D 123 Lờigiải Chọn C Số cách chọn người, C 123 (cách chọn) Câu 18: Tìm hệ số x khai triển thành đa thức 2 3x 10 A C 106 26 3 B C 106 24 3 Chọn C C 104 26 3 D C 106 24.36 Lờigiải B 10 10 Ta có: 2 3x C 10k 210k 3x C 10k 210k 3 x k 10 k 0 Theo giả thiết suy ra: k TÀI LIỆU ÔN THI THPT QG 2019 k k k 0 www.MATHVN.com Vậy hệ số x khai triển C 106 2106 3 C 106 24 3 6 Câu 19: Cho cấp số nhân un có u1 3 , công bội q 2 Hỏi 192 số hạng thứ u ? n A Số hạng thứ B Số hạng thứ C Số hạng thứLờigiải Chọn B Giả sử 192 số hạng thứ n un với n * Ta có 192 u1.q n 1 192 3 2 n1 64 2 n1 n Do 192 số hạng thứ un Câu 20: Phát biểu sau sai? A lim un c ( un c số ) C lim n D lim D Số hạng thứ 2 2 n1 n 1 B lim q n q k 1 nk Lờigiải Chọn B Theo định nghĩa giới hạn hữu hạn dãy số (SGK ĐS11-Chương 4) lim q n q Câu 21: Tính đạo hàm hàm số y tan x : 4 A y C y cos x sin x B y cos x D y sin x Giải: Chọn A y x cos2 x cos2 x Câu 22: Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x y Phép tịnh tiến theo v sau biến đường thẳng d thành nó? A v 2; 4 B v 2;1 C v 1;2 D v 2; 4 Lờigiải Chọn A Phép tịnh tiến theo v biến đường thẳng d thành vectơ v phương với vectơ phương d Mà d có VTCP u 1;2 Câu 23: Cho hình chóp S ABCD có đáy ABCD hình bình hành tâm O Gọi M , N , P theo thứ tự trung điểm SA , SD AB Khẳng định sau đúng? A NOM cắt OPM B MON // SBC TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com D NMP // SBD C PON MNP NP Chọn Hướng dẫn giải B S M N A D P O B C Xét hai mặt phẳng MON SBC Ta có: OM // SC ON // SB Mà BS SC C OM ON O Do MON // SBC Câu 24: Cho hình chóp S ABCD , cạnh đáy a , góc mặt bên mặt đáy 60 Tính khoảng cách từ điểm B đến mặt phẳng SCD A a Chọn * Ta có: B a a Lờigiải C D a C BD d O; SCD OD d B; SCD d B; SCD 2.d O; SCD 2OH Trong H hình chiếu vng góc O lên SCD S H A D 60 I O B C * Gọi I trung điểm CD ta có: SI CD 60 SCD ; ABCD OI ; SI SIO OI CD Xét tam giác SOI vng O ta có: SO OI tan 60 TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com a * Do SOCD tứ diện vuông O nên: 1 1 2 16 2 2 OH OC OD OS a a 3a 3a a a d B; SCD x 1 Câu 25: Cho hàm số y Khẳng định sau đúng? 2x A Hàm số cho đồng biến khoảng xác định B Hàm số cho đồng biến C Hàm số cho đồng biến khoảng ;2 2; OH D Hàm số cho nghịch biến khoảng xác định Lờigiải Chọn A x 1 x 1 Ta có y 0, x 2x x x 22 Do hàm số cho đồng biến khoảng ;2 2; Câu 26: Cho hàm số y đúng? A m x m ( m tham số thực) thỏa mãn y Mệnh đề 0;1 x 1 B m C m Lờigiải D m Chọn D Tập xác định: D \ 1 Với m y , x 0;1 y 0;1 Suy m Khi y 1m x 1 không đổi dấu khoảng xác định TH 1: y m y y 0 m (loại) 0;1 TH 2: y m y y 1 m ( thỏa mãn) 0;1 x2 x C , đồ thị C có đường tiệm cận? x 3x A B C D Lờigiải Chọn C Tập xác định D \ 1;2 Câu 27: Cho hàm số y Ta có y x 2 nên đồ thị hàm số có tiệm cận ngang y tiệm cận đứng x 2 x 2 Câu 28: Cho hình chóp S ABCD Gọi A , B , C , D theo thứ tự trung điểm SA , SB , SC , SD Tính tỉ số thể tích hai khối chóp S A B C D S ABCD 1 1 A B C D 16 Lờigiải TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com Chọn C S D' C' A' B' D C A Ta cóVà VS AB D VS ABD VS B D C VS BDC Suy VS AB D VS ABCD B V SA SB SD 1 S AB D SA SB SD VS ABCD 16 V SB SD SC 1 S B D C SB SD SC VS ABCD 16 V V 1 1 S B D C S AB C D VS ABCD 16 16 VS ABCD 3a Biết hình chiếu vng góc A lên ABC trung điểm BC Tính thể tích V khối lăng trụ Câu 29: Cho hình lăng trụ ABC A B C có đáy ABC tam giác cạnh a , AA B V A V a 2a C V Lờigiải Chọn C B 3a D V a 3 C A B H C A Gọi H trung điểm BC Theo giả thiết, A H đường cao hình lăng trụ A H AA2 AH Vậy, thể tích khối lăng trụ V S ΔABC A H TÀI LIỆU ÔN THI THPT QG 2019 a2 a 3a www.MATHVN.com a Câu 30: Trên mặt phẳng toạ độ Oxy , cho tam giác ABC biết A 1; 3 , B 2; 2 , C 3;1 Tính cosin góc A tam giác A cos A 17 B cos A 17 C cos A Lời giải: 17 D cos A 17 Chọn B AB 3; , AC 2; AB.AC 3.2 5.2 cos A cos AB; AC AB.AC 34.2 17 III VẬN DỤNG Câu 31: Tổng tất giá trị nguyên m để phương trình sin x m 4 cos x 2m có nghiệm là: A B C 10 Lờigiải D Chọn C sin x m 4 cos x 2m sin x m 4 cos x 2m Phương trình có nghiệm 42 m 4 2m 5 3m 12m 57 57 m 3 Vì m nên m 0,1,2, 3, Vây tổng tất giá trị nguyên m để phương trình có nghiệm 10 sin x cos x Câu 32: Giá trị nhỏ m giá trị lớn M hàm số y sin x cos x A m ; M B m ; M C m 2 ; M D m 1 ; M Lờigiải Chọn C sin x cos x Ta có y y 1 sin x y 2 cos x 2y * sin x cos x Phương trình có nghiệm * y 1 y 2 1 2y y y 2 y 2 Vậy m 2 ; M Câu 33: Trên giá sách có sách toán, sách lý, sách hóa Lấy ngẫu nhiên sách Tính xác suất để ba sách lấy cótoán 37 10 A B C D 42 21 Lờigiải Chọn C Số kết chọn sách sách C 93 84 Gọi A biến cố ‘ Lấy sách tốn sách.’ A biến cố ‘ Không lấy sách tốn sách.’ TÀI LIỆU ƠN THI THPT QG 2019 www.MATHVN.com Ta có xác sút để xảy A P A P A C 53 84 37 42 ax bx 1, x Câu 34: Cho hàm số f x Khi hàm số f x có đạo hàm x Hãy tính ax b 1, x T a 2b A T 4 B T C T 6 D T Lờigiải Chọn C Ta có f 0 lim f x lim ax bx x 0 x 0 x 0 x 0 lim f x lim ax b 1 b Để hàm số có đạo hàm x hàm số phải liên tục x nên f 0 lim f x lim f x Suy b b 2 x 0 x 0 ax 2x 1, x Khi f x ax 1, x Xét: f x f 0 ax 2x +) lim lim lim ax 2 2 x 0 x 0 x 0 x x f x f 0 ax +) lim lim lim a a x 0 x 0 x 0 x x Hàm số có đạo hàm x a 2 Vậy với a 2 , b 2 hàm số có đạo hàm x T 6 Câu 35: Cho hình chóp S ABCD có đáy ABCD hình vng tâm O cạnh a , SO vng góc với mặt phẳng ABCD SO a Khoảng cách SC AB A a 15 Chọn B a C Lờigiải 2a 15 D 2a D S H A M D O N C B Gọi M , N trung điểm cạnh AB,CD ; H hình chiếu vng góc O SN TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com 10 Vì AB //CD nên d AB, SC d AB,(SCD ) d M ,(SCD ) 2d O,(SCD ) (vì O trung điểm đoạn MN ) CD SO Ta có CD (SON ) CD OH CD ON CD OH Khi OH (SCD ) d O;(SCD ) OH OH SN 1 1 a Tam giác SON vuông O nên OH OH ON OS a2 a2 a2 Vậy d AB, SC 2OH 2a Câu 36: Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, AB a , BC a , SA a SA vng góc với đáy ABCD Tính sin , với góc tạo đường thẳng BD mặt phẳng SBC A sin B sin C sin D sin Lờigiải Chọn C ABCD hình chữ nhật nên BD 2a , ta có AD / / SBC nên suy d D, SBC d A, SBC AH với AH SB Tam giác SAB vuông cân A nên H trung điểm SB suy AH a 2 a d D, SBC d A, SBC sin BD, SBC BD BD 2a mx , m tham số thực Gọi S tập hợp tất giá trị nguyên 2x m tham số m để hàm số nghịch biến khoảng 0;1 Tìm số phần tử S Câu 37: Cho hàm số y B A Chọn C Lờigiải D C TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com 11 m Tập xác định D \ m2 y 2x m 2 m 2 m m 4 m Yêu cầu toán m m 2 m 0;1 m m 2 Câu 38: Cho hàm số y f x xác định hàm số y f x có đồ thị hình vẽ Tìm số điểm cực trị hàm số y f x y -2 A O C Lờigiải B x D Chọn D Quan sát đồ thị ta có y f x đổi dấu từ âm sang dương qua x 2 nên hàm số y f x có điểm cực trị x 2 x x x 2 x 1 x x 2 Mà x 2 nghiệp kép, nghiệm lại nghiệm đơn nên hàm số y f x Ta có y f x 2x f x có ba cực trị Câu 39: Đồ thị hàm số y A Chọn D 5x x có tất đường tiệm cận? x 2x B C D Lờigiải Tập xác định: D 1; \ 1 2 5x x x x x x y đường tiệm lim y lim lim x x x x 2x 1 x cận ngang đồ thị hàm số TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com 12 5x 1 x 5x x lim y lim lim x 0 x 0 x 0 x 2x x 2x 5x x lim x 0 x 25x 9x 2x 5x x lim x 0 25x x 25x x 1 9 x 0 không đường tiệm cận đứng đồ thị hàm số Vậy đồ thị hàm số có tất đường tiệm cận Câu 40: Cho lăng trụ tam giác ABC A B C có tất cạnh a Khoảng cách hai đường thẳng BC AB A a 21 Chọn B a a Lờigiải C D a A A' C' I B' H A C B Ta có BC //B C BC // AB C suy d BC , AB d BC , AB C d B, AB C d A, AB C Gọi I H hình chiếu vng góc A BC AI Ta có B C A I B C A A nên B C A AI B C A H mà AI AH Do ABC AH Khi d A, ABC A H Vậy khoảng cách cần tìm A A.A I A A2 A I a a a a a 21 a 21 Câu 41: Biết n số nguyên dương thỏa mãn x n a a1 x 2 a2 x 2 an x 2 a1 a a 2n 3.192 Mệnh đề sau đúng? A n 9;16 Chọn n B n 8;12 C n 7;9 Lờigiải D n 5; B TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com 13 n Ta có x n 2 x 2 C n0 2n C n1 2n 1 x 2 C n2 2n 2 x 2 C nn x 2 n 3 Do a1 a a 192 C n1 2n 1 C n2 2n 2 C n3 2n 3 2n 3.192 n C n1 C n2 C n3 192 n Câu 42: Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD biết AD 2AB , đường thẳng a,b , a 0 Tính a b AC có phương trình x 2y , D 1;1 A a;b A a b 4 B a b 3 C a b Lờigiải D a b Chọn D Gọi A a;b Vì A AC : x 2y nên a 2b a 2b Do a nên 2b b 1 * Khi A 2b 2;b Ta có AD 2b 3;1 b véctơ phương đường thẳng AD u 2; 1 véctơ phương đường thẳng AC Trên hình vẽ, tan DC cos 1 AD AD.u Lại có cos AD u Từ 1 suy b 1 b 2b 2 b 1 b 2b 2 a Khi A 4; 3 , suy a b A a; b D 1;1 2 C B b 2b b 3 (do * ) IV VẬN DỤNG CAO Câu 43: Xét tứ diện ABCD có cạnh AB BC CD DA AC , BD thay đổi Giá trị lớn thể tích khối tứ diện ABCD A 27 Chọn B 27 C Lờigiải D A Gọi M , N trung điểm BD, AC Đặt BD 2x , AC 2y TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com x, y 14 Ta có CM BD, AM BD BD AMC Ta có MA MC x , MN x y , S AMN 1 2 DB.S AMC 2x y x y x y x y 3 VABCD x 1 MN AC y x y 2 y2 x y2 27 3 27 x ax a Câu 44: Cho hàm số y Gọi M , m giá trị lớn nhất, giá trị nhỏ hàm x 1 VABCD số cho đoạn 1;2 Có giá trị nguyên a để M 2m A 15 B 14 C 15 D 16 Lờigiải Chọn A x ax a 3x 4x Xét hàm số f x Ta có f x 0, x 1;2 x 1 x 1 16 Do f 1 f x f 2, x 1;2 hay a f x a , x 1;2 Ta xét trường hợp sau : 1 16 Th1 : Nếu a a M a ; m a 2 16 13 Theo đề a a a Do a nguyên nên a 0;1;2; 3; 4 16 1 16 16 0 a m a ; M a 3 1 16 61 Theo đề a 2 a a Th2 : Nếu a Do a nguyên nên a 10; 9; ; 6 16 16 a a M 0; m (Ln thỏa mãn) 3 Do a nguyên nên a 5; 4; ; 1 Th3 : Nếu a Vậy có 15 gái trị a thỏa mãn yêu cầu toán Câu 45: Cho hàm số y x 3x C Biết đường thẳng d : y ax b cắt đồ thị C ba điểm phân biệt M , N , P Tiếp tuyến ba điểm M , N , P đồ thị C cắt C điểm M , N , P (tương ứng khác M , N , P ) Khi đường thẳng qua ba điểm M , N , P có phương trình A y 4a 9 x 18 8b TÀI LIỆU ÔN THI THPT QG 2019 B y 4a 9 x 14 8b www.MATHVN.com 15 D y 8a 18 x 18 8b C y ax b Lờigiải Chọn A : y 3x 3 x x x Giả sử A x 1; y1 ; B x ; y2 ;C x ; y Ta có phương trình tiếp tuyến A đồ thị C 1 1 3x Xét phương trình hồnh độ giao điểm đồ thị C 1 3x x x x 3x x 3x x x 3 Do A 2x ; 8x 13 6x x x x 2x1 x 12x Lại có 8x 13 6x 8 x 13 3x 18x 18 8 ax b 18x 18 8 ax b 18x 18 2x 4a 9 18 8b Khi yA x A 4a 9 18 8b Vậy phương trình đường thẳng qua điểm A, B ,C y x 4a 9 18 8b Câu 46: Cho hàm số bậc ba f x ax bx cx d có đồ thị hình vẽ bên dưới: Hỏi đồ thị hàm số g x A Chọn x 3x 2x có đường tiệm cận đứng? x f x f x B C D Lờigiải A ĐK x ; f x 0; f x Xét phương trình x f x f x x x x 0 x x x 0 a a 0, 5;1 2 1 c c 2; 3 b b 1;2 Đồ thi hàm số có đường tiệm cận đứng x a; x b; x c; x Câu 47: Cho hai đường thẳng cố định a b chéo Gọi AB đoạn vng góc chung a b TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com 16 ( A huộc a, B thuộc b ) Trên a lấy điểm M (khác A ), b lấy điểm N (khác B ) cho AM x , BN y, x y Biết AB 6, góc hai đường thẳng a b 600 Khi thể tích khối tứ diện ABNM đạt giá trị lớn tính độ dài đoạn MN (trong trường hợp MN ) A 21 C 39 Lờigiải B 12 D 13 Chọn A Dựng hình chữ nhật ABNC AM , BN AM , AC 600 AB AM AB AM Ta có AB ACM AB BN AB AC VABNM VMABC 1 6.x y xy AB.S ACM AB.AC AM sin CAM 6 2 3 x y VABNM xy Dấu xảy x y 2 Khi AM BN AC Lại có AB / /CN CN AMC CN CM MN CM CN 2 600 MAC 1200 Mặt khác MAC 600 AMC CM MN 42 62 13 Trường hợp 1: MAC 1200 Trường hợp 2: MAC CM AM AC 2AM AC cos1200 48 MN 48 62 41 Câu 48: Cho tập hợp A 1;2; 3; ;100 Gọi S tập hợp gồm tất tập A , tập gồm phần tử A có tổng 91 Chọn ngẫu nhiên phần tử S Xác suất chọn phần tử có số lập thành cấp số nhân bằng? A B C D 645 645 645 645 Lờigiải Chọn C Giả sử tập a, b, c S a,b, c 100 ; a, b, c phân biệt a b c 91 Đây toán chia kẹo Euler nên số a, b, c C 91311 Tuy nhiên chứa có chữ số giống nhau, số có chữ số giống 3.45 135 ( bộ) Vậy n C 902 3.45 : 3! 645 Gọi A biến cố: ” a, b, c lập thành cấp số nhân” Gọi q công bội cấp số nhân theo ta có q a aq aq 91 a q q 1.91 13.7 a a Trường hợp 1: 1 q q 91 q a 91 a 91 Trường hợp 2: (loại) q0 q q TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com 17 a 13 a 13 (thỏa mãn) Trường hợp 3: q 1q q a a7 Trường hợp 3: (thỏa mãn) q3 q q 13 Vậy n A P A 645 0 x y Câu 49: Biết m giá trị để hệ bất phương trình có nghiệm thực x y 2xy m Mệnh đề sau đúng? 1 1 A m ; B m ; 0 C m ;1 D m 2; Lờigiải Chọn B Hệ phương trình tương đương với: 0 x y 0 x y 2xy m x y xy m x y x y 0 x y I x 12 y 12 m II Tập nghiệm (I) phần nằm hai đường thẳng d : y x ; d ' : y x d ' Nếu m 1 hệ phương trình vơ nghiệm Nếu m 1 tập nghiệm (II) hình tròn (C ) (kể biên) có tâm A 1;1 bán kính R m Do hệ phương trình có nghiệm d ' tiếp tuyến đường tròn (C ) Nghĩa là: m 1 m 2 Vậy hệ phương trình có nghiệm m Câu 50: Cho phương trình: sin x sin x cos x m cos3 x m cos x cos2 x m Có giá trị nguyên tham số m để phương trình có nghiệm 2 x 0; ? A Chọn Ta có: B C Lờigiải D D TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com 18 sin x sin x sin x cos3 x m 2 cos x m 2 3 cos3 x m 1 Xét hàm số f t t t 2t có f t 6t 2t 0, t , nên hàm số f t đồng biến Bởi vậy: 1 f sin x f 2 cos3 x m sin x cos3 x m 2 Với x 0; 2 sin2 x cos3 x m 3 2 cos3 x cos2 x m 4 Đặt t cos x , phương trình 3 trở thành 2t t m 2 Ta thấy, với t ;1 phương trình cos x t cho ta nghiệm x 0; Xét hàm số g t 2t t với t ;1 t Ta có g t 6t 2t , g t t Ta có bảng biến thiên t g t g t 80 27 2 Do đó, để phương trình cho có nghiệm x 0; điều kiện cần đủ phương trình 4 có nghiệm t ;1 m 80 m 3;2;1; ( Do m nguyên) 0; m 27 Chúc em đạt kết cao kì thi THPT 2019! TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com 19 ... khoảng 1;1 Chọn D Ta có y 3x x 1 Bảng biến thi n x y y 1 Lời giải 2 Câu 8: Dựa vào bảng biến thi n ta chọn đáp án D Cho hàm số y f x có đạo hàm đoạn a;b... A 0; loại đáp án B Câu 13: Khối đa diện có 12 mặt có số cạnh là: A 30 B 60 C 12 Lời giải Chọn A D y 2x x 1 C D D 24 Khối đa diện có 12 mặt khối đa diện loại 5; có số cạnh 30... ta ln có f x f x Câu 9: Số khẳng định là? A B C Hàm số y x 3x 3x có điểm cực trị? A B C Lời giải Chọn C TÀI LIỆU ÔN THI THPT QG 2019 www.MATHVN.com D D Ta có y