1. Mức độ thanh khoản của một tài sản được xác định bởi: a) Chi phí thời gian để chuyển tài sản đó thành tiền mặt. b) Chi phí tài chính để chuyển tài sản đó thành tiền mặt. c) Khả năng tài sản có thể được bán một cách dễ dàng với giá thị trường. d) Cả a) và b). e) Có người sẵn sàng trả một số tiền để sở hữu tài sản đó. TL: d) theo định nghĩa về “Liquidity” 2. Trong nền kinh tế hiện vật, một con gà có giá bằng 10 ổ bánh mỳ, một bình sữa có giá bằng 5 ổ bánh mỳ. Giá của một bình sữa tính theo hàng hoá khác là: a) 10 ổ bánh mỳ b) 2 con gà c) Nửa con gà d) Không có ý nào đúng TL: c) 3. Trong các tài sản sau đây: (1) Tiền mặt; (2) Cổ phiếu; (3) Máy giặt cũ; (4) Ngôinhà cấp 4. Trật tự xếp sắp theo mức độ thanh khoản giảm dần của các tài sản đó là: a) 1-4-3-2 b) 4-3-1-2 c) 2-1-4-3 d) Không có câu nào trên đây đúng TL: d) 4. Mức cung tiền tệ thực hiện chức năng làm phương tiện trao đổi tốt nhất là: a) M1. b) M2.
CHỦ ĐỀ I KHOẢNG CÁCH VÀ GÓC TRONG KHÔNG GIAN I. TÓM TẮT KIẾN THỨC A. KHỎANG CÁCH. 1) Khỏang cách từ một điểm M đến một đường thẳng a trong không gian là độ dài đọan thẳng MH, trong đó MH ⊥ a với H ∈ a. 2) Khỏang cách từ một điểm M đến mặt phẳng (P) là độ dài đọan MH, trong đó MH ⊥ (P) với H ∈ (P). 3) Nếu đường thẳng a // (P) thì khỏang cách từ a đến (P) là khỏang cách từ một điểm M bất kì của a đến (P). 4) Nếu hai mặt phẳng song song thì khỏang cách giữa chúng là khỏang cách từ một điểm bất kì của mặt phẳng này đến mặt phẳng kia 5) Hai đường thẳng chéo nhau a và b luôn luôn có đường thẳng chung ∆ . Nếu ∆ cắt a và b lần lượt tại A và B thì độ dài đọan thẳng AB gọi là khỏang cách giữa a và b chéo nhau nói trên. Muốn tìm khỏang cách giữa hai đường thẳng chéo nhau người ta còn có thể: a) hoặc tìm khỏang cách từ đường thẳng thứ nhất đến mặt phẳng chứa đường thẳng thứ hai và song song với đường thẳng thứ nhất. b) hoặc tìm khỏang cách giữa hai mặt phẳng lần lượt chứa hai đường thẳng đó và song song với nhau. B. GÓC. 1) Góc )900( 0 ≤≤ ϕϕ giữa hai đường thẳng trong không gian là góc giữa hai đường thẳng cùng đi qua một điểm tùy ý trong không gian và lần lượt song song với hai đường thẳng đã cho. 2) Góc giữa một đường thẳng và một mặt phẳng là góc giữa đường thẳng đó và hình chiếu vuông góc của nó trên mặt phẳng. 3) Góc giữa hai mặt phẳng là góc giữa hai đường thẳng bất kì lần lượt vuông góc với hai mặt phẳng đó. II. RÈN LUYỆN Bài 1: Cho tứ diện đều ABCD cạnh a. a) Tính khỏang cách từ điểm A tới mặt phẳng BCD. b) Tính khỏang cách giữa hai cạnh đối diện AB và CD. Giải a) Gọi G là trọng tâm tam giác đều BCD và E = BC ∩ DG , F = CD ∩ BG H G E F B D C A 1 Ta có : BF = DE = AF = a = 2 3a và AGCDABFCD AFCD BFCD ⊥⇒⊥⇒ ⊥ ⊥ )( Chứng minh tương tự ta có BC ⊥ AG Vậy AG ⊥ (BCD) và AG là khỏang cách từ A đến (BCD). Ta có: AG 2 = AB 2 – BG 2 = a 2 - 3 2 2 3 3 2 2 2 aa = . Vậy AG = 3 6a b) Gọi H là trung điểm AB . Vì CD )(ABF ⊥ nên CD HF ⊥ . Mặt khác FA = FB nên FH AB ⊥ . Vậy FH là khỏang cách giữa hai cạnh đối AB và CD. Ta có HF 2 = AF 2 – AH 2 = 222 3 2 2 2 aaa = − . Vậy HF = 2 2a Bài 2. Cho hình chóp tam giác đều SABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Tính a) Góc giữa cạnh bên và mặt đáy. b) Góc giữa mặt bên và mặt đáy Giải I A C B S H a) Do SABC là hình chóp tam giác đều nên góc giữa các cạnh bên và đáy bằng nhau. Gọi H là hình chiếu của S lên mp(ABC). Ta có H là trọng tâm của tam giác ABC. AH là hình chiếu của SA lên mp(ABC) nên góc SAH là góc giữa cạnh bên SA và đáy. Ta có: AI = 2 33a , AH = 3 3 2 aAI = Cos SAH =. 2 3 2 3 == a a SA AH . Vậy SAH = 30 0 b) Các mặt bên của hình chóp tao với đáy các góc bằng nhau. Ta có SIA BCSI BCAI ∠⇒ ⊥ ⊥ là góc giữa mặt bên và mặt đáy. SH = SA sỉn 30 0 = a , HI = 2 3 2 aAH = 2 Vậy tan SIH = 3 32 = HI SH CHỦ ĐỀ II THỂ TÍCH KHỐI ĐA DIỆN I.TÓM TẮT KIẾN THỨC 1. Thể tích của khối hộp chữ nhật. V = abc ( a, b, c là 3 kích thước) 2. Thể tích của khối lập phương V = a 3 3. Thể tích của khối lăng trụ V = B.h 4. Thể tích của khối chóp. V = 3 1 B.h ( B là diện tích của đáy ) II. RÈN LUYỆN. Bài 1: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, các cạnh bên SA, SB, SC đều tạo với đáy một góc 60 o . a) Tính thể tích của khối chóp S.ABC. b) Tính khỏang cách từ điểm A đến mp(SBC). Giải H F E A C B S a) Gọi H là hình chiếu của S lên mp(ABC), ta có H là trọng tâm tam giác ABC AH là hình chiếu của SA lên mp(ABC) nên g(SAH) = 60 o Ta có: AE = 2 3a , AH = 3 3a , HE = 6 3a SH = AH.tan 60 o = a a = 3. 3 3 Vậy V SABC = 12 3 . 4 3 3 1 32 a a a = b)Gọi AK là khỏang cách từ A đến mp(SBC) Ta có: V SABC = V ASBC = SBC SABC SBC S V AKAKS 3 3 1 =⇒ SE 2 = SH 2 + HE 2 = a 2 + 6 42 36 42 36 6 6 6 22 2 2 a SE aa a a =⇒=+= 3 S SBC = 12 42 6 42 . 2 1 2 aa a = Vậy SK = 42 33 42 12 . 12 3.3 2 3 a a a = Bài 2: Cho hình chóp tam giác S.ABC có AB = 5a, BC = 6a, CA = 7a. Các mặt bên SAB, SBC, SCA tạo với đáy một góc 60 o .Tính thể tích khối chóp SABC. Giải 60 A C B H S F E J Hạ SH )(ABC ⊥ , kẽ HE ⊥ AB, HF ⊥ BC, HJ ⊥ AC suy ra SE ⊥ AB, SF ⊥ BC, SJ ⊥ AC Ta có 0 60 =∠=∠=∠ SJHSFHSEH ⇒ SJHSFHSAH ∆=∆=∆ nên HE =HF = HJ = r ( r là bán kính đường tròn ngọai tiếp ABC ∆ ) Ta có S ABC = ))()(( cpbpapp −−− với p = a cba 9 2 = ++ Nên S ABC = 2 2.3.4.9 a Mặt khác S ABC = p.r 3 62 a p S r ==⇒ Tam giác vuông SHE: SH = r.tan 60 0 = a a 223. 3 62 = Vậy V SABC = 32 3822.66 3 1 aaa = . Bài 3: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, có BC = a. Mặt bên SAC vuông góc với đáy, các mặt bên còn lại đều tạo với mặt đáy một góc 45 0 . a) Chứng minh rằng chân đường cao khối chóp trùng với trung điểm cạnh AC. b) Tính thể tích khối chóp SABC. Giải a) Kẽ SH ⊥ BC vì mp(SAC) ⊥ mp(ABC) nên SH ⊥ mp(ABC). Gọi I, J là hình chiếu của H lên AB và BC ⇒ SI ⊥ AB, SJ ⊥ BC, theo giả thiết 0 45 =∠=∠ SJHSIH 4 45 I J H A C B S Ta có: HJHISHJSHI =⇒∆=∆ nên BH là đường phân giác của ABC ∠ , từ đó suy ra H là trung điểm của AC. b) Ta có HI = HJ = SH = 2 a V SABC = 12 . 3 1 3 a SHS ABC = Bài 4 : Cho hình chóp SABC, đáy ABC là tam giác cân tại A có trung tuyến AD = a, hai mặt bên SAB và SAC cùng vuông góc với đáy. Cạnh bên SB hợp với đáy một góc α và hợp với mặt phẳng SAD một góc β .Tính thể tích khối chóp SABC theo a, βα , . Giải S D A C B Ta có : )( )()( )()( )()( ABCSA ABCSAC ABCSAB SASACSAB ⊥⇒ ⊥ ⊥ =∩ + AB là hình chiếu của SB lên mp(ABC) nên g(SB, (ABC)) = α =∠ SBA 5 Ta có : )(SADBC SABC ADBC ⊥⇒ ⊥ ⊥ + SD là hình chiếu của SB lên mp(SAD) nên g(SB, (SAD)) = β =∠ BSD Ta có : SB 2 = SA 2 + AB 2 = SA 2 + AD 2 + BD 2 (1) Mà SA = SB.sin α , BD = SB.sin β (1) 222222222222 sin.sin.sin.sin. aSBSBSBSBaSBSB =−−⇔++=⇔ βαβα 22222222 )sin(cos)sinsin1( aSBaSB =−⇔=−−⇔ βαβα βα 22 sincos − =⇔ a SB βα β βα α 2222 sincos sin , sincos sin − = − =⇒ a BD a SA V = )cos().cos(3 sin.sin )sin(cos sin.sin . 3 1 3 1 3 1 3 22 3 βαβα βα βα βα −+ = − == aa SAADBDSAS ABC Bài 5: Cho khối chóp SABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA = 2a.Gọi B’, D’lần lượt là hình chiếu của A lên SB và SD. Mặt phẳng (AB’D’) cắt SC tại C’. Tính thể tích khối chóp SAB’C’D’. Giải A n B D' O S C' B' D C Ta có AB’ ⊥ SB, AB’ ⊥ CB ⇒ AB’ ⊥ (SBC) ⇒ AB’ ⊥ SC (a) Tương tự AD’ SC⊥ (b) Từ (a) và (b) suy ra SC ')'''( ACSCDCAB ⊥⇒⊥ Do tính đối xứng, ta có V SAB’C’D’ = 2V SAB’C’ Ta có: 15 8 6 4 . 5 4 . '. . '.' . ' 2 2 2 2 2 2 2 2 22 . ''. ===== a a a a SC SA SB SA SC SCSC SB SBSB SC SC SB SB V V ABCS CABS Mà V SABC = 45 8 3 . 15 8 3 2. 2 . 3 1 33 '' 32 aa V a a a CSAB ==⇒= Vậy V SAB’C’D’ = 45 16 3 a 6 Bài 6: Cho khối chóp SABCD có đáy ABCD là hình bình hành. Gọi B’, C’ lần lượt là trung điểm của SB và SD. Mặt phẳng AB’D’cắt SC tại C’.Tính tỉ số thể tích của hai khối chóp SAB’C’D’ và SABCD. Giải I C' C" S I O D' B' B D C A Gọi O = BDAC ∩ .Ta có AC’, B’D’, SO đồng quy tại I và I là trung điểm của SO Kẻ OC” // AC’ .Ta có SC’ = C’C” = C”C, nên 3 1' = SC SC . Ta có 12 1 6 1 3 1 . 2 1' . ' '''' =⇒=== SABCD CSAB SABC CSAB V V SC SC SB SB V V Tương tự ta cũng có: 12 1 '' = SABCD DSAC V V Vậy 6 1 12 1 12 1 ''''''' =+= + = SABCD DSACCSAB SABCD DCSAb V VV V V Bài 7: Cho khối chóp tứ giác đều SABCD. Một mặt phẳng )( α qua A, B và trung điểm M của SC . Tính tỉ số thể tích của hai phần khối chóp bị phân chia bởi mặt phẳng đó. Giải. Kẻ MN // CD (N )SD ∈ thì hình thang ABMN là thiết diện của khối chóp khi cắt bởi mặt phẳng (ABM). + SABCDSADBSANB SADB SAND VVV SD SN V V 4 1 2 1 2 1 ==⇒== 7 N S O M B D C A + SABCDSBCDSBMN SBCD SBMN VVV SD SN SC SM V V 8 1 4 1 4 1 2 1 . 2 1 . ==⇒=== Mà V SABMN = V SANB + V SBMN = SABCD V 8 3 . Suy ra V ABMN.ABCD = SABCD V 8 5 Do đó : 5 3 . = ABCDABMN SABMN V V Bài 7: Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có chiều cao bằng h và góc của hai đường chéo của hai mặt bên kề nhau phát xuất từ một đỉnh là α . Tính thể tích của lăng trụ. Giải B' h D' C' A' O B D C A Gọi x là cạnh của đáy, ta có B’D’ = x 22 '',2 xhADAB +== αα cos'2'2cos'.'.2'''':'' 22222 ABABADABADABDBDAB −=−+=∆ αα cos)()(cos)(2)(22 2222222222 xhxhxxhxhx +−+=⇔+−+=⇔ α α cos )cos1( 2 2 − =⇔ h x .Vậy V = x 2 .h = α α cos )cos1( 3 − h Bài 8: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều . Mặt (A’BC) tạo với đáy một góc 30 0 và diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ. Giải. 8 30 I C' B' A' C B A Giả sử BI = x 3 2 32 x x AI ==⇒ Ta có 0 30' ' =∠⇒ ⊥ ⊥ IAA BCIA BCAI x xAI AIIAAIA 2 3 32 3 2 30cos:':' 0 ====∆ A’A = AI.tan 30 0 = xx = 3 3 .3 Vậy V ABC.A’B’C’ = CI.AI.A’A = x 3 3 Mà S A’BC = BI.A’I = x.2x = 8 2 =⇒ x Do đó V ABC.A’B’C’ = 8 3 Bài 9: Cho hình hộp ABCD.A’B’C’D’ có đáy là hình chữ nhật với AB = 3 , AD = 7 . Hai mặt bên (ABB’A’) và (ADD’A’) lần lượt tạo với đáy những góc 45 0 và 60 0. Tính thể tích khối lăng trụ đó nếu biết cạnh bên bằng 1. Giải Kẻ A’H )(ABCD ⊥ , HM ADHNAB ⊥⊥ , ADNAABMA ⊥⊥⇒ ',' (định lý 3 đường vuông góc) 00 60',45' =∠=∠⇒ NHAMHA Đặt A’H = x . Khi đó A’N = x : sin 60 0 = 3 2x AN = HM x NAAA = − =− 3 43 '' 2 22 Mà HM = x.cot 45 0 = x 9 H N M D' C' B' A' D C B A Nghĩa là x = 7 3 3 43 2 =⇒ − x x Vậy V ABCD.A’B’C’D’ = AB.AD.x = 3 7 3 .7.3 = CHỦ ĐỀ III DIỆN TÍCH HÌNH TRÒN XOAY- THỂ TÍCH KHỐI TRÒN XOAY I.TÓM TẮC KIẾN THỨC. 1. Diện tích xung quanh hình trụ: S xq = lR .2 π ( R: bán kính đáy, l : độ dài đường sinh) 2. Thể tích khối trụ: V = hR 2 π ( h : độ dài đường cao ) 3. Diện tích xung quanh hình nón: S xq = lR π 4. Thể tích khối nón: V = hR . 3 1 2 π 5. Diện tích mặt cầu: S = 2 4 R π 6. Thể tích khối cầu: V = 3 . 3 4 R π II.RÈN LUYỆN. Bài 1: Cho hình trụ có bán kính đáy bằng a và đường cao bằng a 2 . a) M và N là hai điểm lưu động trên hai đáy sao cho góc của MN và đáy bằng α . Tính khỏang cách từ trục đến MN. b) Tính thể tích và diện tích xung quanh của lăng trụ tam giác đều ngọai tiếp hình trụ Giải. 10 . thể tích của hình nón. c) Tính độ dài đường cao hình trụ nội tiếp trong hình nón, biết thiết diện qua trục của hình trụ là hình vuông. Giải. 11 Q P N M. 442 . Bài 6: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và có cạnh bênSA vuông góc với đáy. a) Xác định tâm mặt cầu ngọai tiếp hình chóp SABCD.