1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bất đẳng thức sắp xếp lại và một số ứng dụng

52 154 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 52
Dung lượng 324,07 KB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ——————–o0o——————– TRẦN HUYỀN THƯƠNG BẤT ĐẲNG THỨC SẮP XẾP LẠI MỘT SỐ ỨNG DỤNG THÁI NGUYÊN - 2018 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ——————–o0o——————– TRẦN HUYỀN THƯƠNG BẤT ĐẲNG THỨC SẮP XẾP LẠI MỘT SỐ ỨNG DỤNG Chuyên ngành: PHƯƠNG PHÁP TOÁN CẤP Mã số: 84 60 113 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS TRỊNH THANH HẢI THÁI NGUYÊN - 2018 i Mục lục Mở đầu Chương Kiến thức chuẩn bị 1.1 Định nghĩa số tính chất bất đẳng thức 1.2 Một số phương pháp giải tốn bất đẳng thức thường gặp phổ thơng Chương Bất đẳng thức xếp lại số ứng dụng 2.1 Bất đẳng thức xếp lại 2.1.1 Khái niệm bất đẳng thức xếp lại 2.1.2 Ý tưởng vận dụng bất đẳng thức xếp lại vào giải toán bất đẳng thức 2.2 Ứng dụng bất đẳng thức xếp lại vào giải số toán bất đẳng thức 2.2.1 Sử dụng bất đẳng thức xếp lại để chứng minh số bất đẳng thức quen thuộc 2.2.2 Sử dụng bất đẳng thức xếp lại vào giải số toán bất đẳng thức dành cho học sinh khá, giỏi Tài liệu tham khảo 20 20 20 22 23 23 29 48 Lời nói đầu Bất đẳng thức xếp lại (hay gọi bất đẳng thức hoán vị) bất đẳng thức cấp mạnh Sử dụng bất đẳng thức xếp lại cho ta lời giải bất đẳng thức thú vị Trên tạp chí tốn quốc tế Mathematical Excalibur (Vol 4, No 3, tháng 3/1999), Kin Yin Li (công tác Khoa Tốn Đại học Khoa học Cơng nghệ Hồng Kông) viết báo với tiêu đề “Rearrangement Inequality” nhằm giới thiệu bất đẳng thức này, từ có nhiều tác giả ngồi nước quan tâm, trao đổi bất đẳng thức xếp lại Với mong muốn làm rõ sở toán học, ý tưởng việc sử dụng bất đẳng thức xếp lại để chứng minh bất đẳng thức, chọn hướng nghiên cứu sử dụng bất đẳng thức xếp lại việc đưa lời giải cho số bất đẳng thức đề thi học sinh giỏi quốc gia quốc tế làm hướng nghiên cứu luận văn thạc sĩ với tên đề tài “Bất đẳng thức xếp lại số ứng dụng” Ngoài phần mở đầu, kết luận tài liệu tham khảo, nội dung luận văn trình bày chương: Chương Kiến thức chuẩn bị Trong chương trình bày định nghĩa, tính chất bất đẳng thức liệt kê vài hướng giải tốn bất đẳng thức thường gặp chương trình tốn phổ thơng đề thi chọn học sinh giỏi Chương Bất đẳng thức xếp lại số ứng dụng Nội dung Chương trình bày bất đẳng thức xếp lại ý tưởng việc vận dụng bất đẳng thức xếp lại vào việc giải số toán liên quan đến bất đẳng thức, trình bày cụ thể số ví dụ minh họa cho việc vận dụng bất đẳng thức xếp lại vào việc chứng minh số bất đẳng thức quen thuộc chương trình phổ thơng Cuối chương sưu tầm, chọn lọc đưa số tốn kỳ thi học sinh giỏi có liên quan đến bất đẳng thức xếp lại Luận văn hoàn thành trường Đại học Khoa học, Đại học Thái Nguyên Lời tác giả xin bày tỏ lòng biết ơn sâu sắc tới thầy giáo PGS TS Trịnh Thanh Hải Thầy dành nhiều thời gian hướng dẫn giải đáp thắc mắc tơi suốt q trình làm luận văn Tơi xin bày tỏ lòng biết ơn sâu sắc tới thầy Em xin chân thành cảm ơn toàn thể thầy Khoa Tốn Tin, trường Đại học Khoa học - Đại học Thái Nguyên tận tình hướng dẫn, truyền đạt kiến thức suốt thời gian theo học, thực hoàn thành luận văn Luận văn tác giả đầu tư nghiên cứu hướng dẫn PGS.TS Trịnh Thanh Hải nhiều lí do, luận văn thiếu sót định Em hy vọng nhận nhiều đóng góp q Thầy cơ, anh chị em đồng nghiệp để luận văn hoàn chỉnh Thái Nguyên, tháng năm 2018 Tác giả luận văn Trần Huyền Thương Chương Kiến thức chuẩn bị Chương trình bày số kiến thức số kết lý thuyết bất đẳng thức, kết kiến thức bổ trợ cho việc trình bày kết chương Nội dung chương tổng hợp từ tài liệu [1] [2] 1.1 Định nghĩa số tính chất bất đẳng thức Trong toán học, bất đẳng thức phát biểu quan hệ thứ tự hai đối tượng Ký hiệu a < b có nghĩa a nhỏ b ký hiệu a > b có nghĩa a lớn b Những quan hệ nói gọi bất đẳng thức nghiêm ngặt; ngồi ta có bất đẳng thức khơng ngặt: a ≤ b có nghĩa a nhỏ b và; a ≥ b có nghĩa a lớn b Sau số tính chất quen thuộc bất đẳng thức thường dùng Tính chất 1.1.1 (Tính chất bắc cầu) Nếu a > b b > c a > c Tính chất 1.1.2 a > b ⇔ a + c > b + c Hệ 1.1.3 a > b ⇔ a − c > b − c Hệ 1.1.4 a + c > b ⇔ a > b − c Tính chất 1.1.5 a > b c > d ⇒ a + c > b + d  c > : a > b ⇔ ac > bc, Tính chất 1.1.6 c < : a > b ⇔ ac < bc Tính chất 1.1.7 a > b ⇔ −a < −b  a b   c > : a > b ⇔ > ; c c Tính chất 1.1.8  a b  c < : a > b ⇔ < c c  a > b > Tính chất 1.1.9 ⇒ ac > bd c > d > Tính chất 1.1.10 a > b > ⇔ < 1 < a b Tính chất 1.1.11 a > b > 0, n ∈ N∗ ⇒ an > bn √ √ Tính chất 1.1.12 a > b > 0, n ∈ N∗ ⇒ n a > n b Hệ 1.1.13 (i) Nếu a b hai số dương a > b ⇔ a2 > b2 (ii) Nếu a b hai số khơng âm a ≥ b ⇔ a2 ≥ b2 Tính chất 1.1.14 Với a, b ∈ R ta có: (i) |a + b| ≤ |a| + |b| (ii) |a − b| ≤ |a| + |b| (iii) |a + b| = |a| + |b| ⇔ a.b ≥ (iv) |a − b| = |a| + |b| ⇔ a.b ≤ 1.2 Một số phương pháp giải toán bất đẳng thức thường gặp phổ thơng Trong chương trình phổ thơng, học sinh tiếp cận với số hướng để giải toán bất đẳng thức như: - Định nghĩa; - Phép biến đổi tương đương; - Một số bất đẳng thức kinh điển, chẳng hạn bất đẳng thức Cauchy, Bunhiacopski, Chebyshev, Bernouli; - Tính chất bắc cầu; - Tính chất tỉ số; - Làm trội; - Bất đẳng thức tam giác; - Tam thức bậc hai; - Quy nạp toán học; - Chứng minh phản chứng; - Biến đổi lượng giác; - Khai triển nhị thức Newton; - Tích phân Sau số ví dụ minh họa Ví dụ 1.2.1 Chứng minh với m, n, p, q ta có: m2 + n2 + p2 + q + ≥ m(n + p + q + 1) Chứng minh: Đối với ví dụ ta sử dụng phương pháp biến đổi tương đương sau m2 + n2 + p2 + q + ≥ m(n + p + q + 1) m2 m2 − mn + n2 + − mp + p2 4 m m2 + − mq + q + −m+1 ≥0 4 2 m m m m ⇔ −n + −p + −q + −1 2 2 ⇔ Ta thấy bất đẳng thức cuối hiển nhiên ≥ Dấu xảy  m   −n=0          m   −p=0   2 ⇔   m   −q =0           m   −1=0  m  n =          m    p=     m    q=           m=2  m = ⇔ n = p = q = Ví dụ 1.2.2 Cho xy ≥ Chứng minh rằng: 1 + ≥ 2 1+x 1+y + xy Chứng minh: Đối với ví dụ ta sử dụng phương pháp biến đổi tương đương sau: 1 + ≥ 2 1+x 1+y + xy 1 1 ⇔ − + − ≥0 2 1+x + xy 1+y + xy xy − y xy − x2 + ≥0 ⇔ (1 + x2 ) (1 + xy) (1 + y ) (1 + xy) x(y − x) y(x − y) ⇔ + ≥0 (1 + x2 ) (1 + xy) (1 + y ) (1 + xy) (y − x)2 (xy − 1) ⇔ ≥ (1 + x2 ) (1 + y ) (1 + xy) Bất đẳng thức cuối xy ≥ ✷ Ví dụ 1.2.3 Chứng minh rằng: (a10 + b10 )(a2 + b2 ) ≥ (a8 + b8 )(a4 + b4 ) Chứng minh: Đối với ví dụ ta sử dụng phương pháp biến đổi tương đương sau: (a10 + b10 )(a2 + b2 ) ≥ (a8 + b8 )(a4 + b4 ) ⇔ a12 + a10 b2 + a2 b10 + b12 ≥ a12 + a8 b4 + a4 b8 + b12 ⇔ a8 b2 (a2 − b2 ) + a2 b8 (b2 − a2 ) ≥ ⇔ a2 b2 (a2 − b2 )(a6 − b6 ) ≥ ⇔ a2 b2 (a2 − b2 )2 (a4 + a2 b2 + b4 ) ≥ Bất đẳng thức cuối ✷ Ví dụ 1.2.4 Cho a, b, c số đo ba cạnh tam giác Chứng minh rằng: a b c + + ≥ (1.1) b+c−a c+a−b a+b−c Chứng minh: Theo bất đẳng thức Cauchy: a b c abc + + ≥33 b+c−a c+a−b a+b−c (b + c − a)(c + a − b)(a + b − c) (1.2) Cũng theo bất đẳng thức Cauchy: (b + c − a)(c + a − b) ≤ (b + c − a + c + a − b) = c (1.3) Viết tiếp hai bất đẳng thức tương tự (1.3) nhân với (b + c − a)(c + a − b)(a + b − c) ≤ abc Suy abc ≥ (b + c − a)(c + a − b)(a + b − c) (1.4) Từ (1.2), (1.4) suy (1.1) Dấu “=” xảy a = b = c hay tam giác tam giác ✷ Ví dụ 1.2.5 Cho ≤ n ∈ Z Chứng minh nn+1 > (n + 1)n ... xếp lại vào giải số toán bất đẳng thức 2.2.1 Sử dụng bất đẳng thức xếp lại để chứng minh số bất đẳng thức quen thuộc 2.2.2 Sử dụng bất đẳng thức xếp lại vào giải số. .. Bất đẳng thức xếp lại 2.1.1 Khái niệm bất đẳng thức xếp lại 2.1.2 Ý tưởng vận dụng bất đẳng thức xếp lại vào giải toán bất đẳng thức 2.2 Ứng dụng bất đẳng thức. .. đẳng thức xếp lại số ứng dụng Nội dung Chương trình bày bất đẳng thức xếp lại ý tưởng việc vận dụng bất đẳng thức xếp lại vào việc giải số toán liên quan đến bất đẳng thức, trình bày cụ thể số

Ngày đăng: 17/08/2018, 09:24

TỪ KHÓA LIÊN QUAN

w