1. Trang chủ
  2. » Giáo án - Bài giảng

Nội dung cơ bản ôn thi vào THPT

28 404 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 435 KB

Nội dung

Mục lục Mục lục 1 Phần I: đại số (24 tiết) 2 Chủ đề 1: Căn thức Biến đổi căn thức.(4 tiết) 2 Dạng 1: Tìm điều kiện để biểu thức chứa căn thức nghĩa 2 Dạng 2: Biến đổi đơn giản căn thức .2 Dạng 3: Bài toán tổng hợp kiến thức và kỹ năng tính toán 3 Chủ đề 2: Phơng trình bậc hai và định lí Viét (6 tiết) .4 Dạng 1: Giải phơng trình bậc hai .4 Dạng 2: Chứng minh phơng trình nghiệm, vô nghiệm 5 Dạng 3: Tính giá trị của biểu thức đối xứng, lập phơng trình bậc hai nhờ nghiệm của phơng trình bậc hai cho trớc .6 Dạng 4: Tìm điều kiện của tham số để phơng trình nghiệm, nghiệm kép, vô nghiệm 7 Dạng 5: Xác định tham số để các nghiệm của phơng trình ax2 + bx + c = 0 thoả mãn điều kiện cho trớc 8 Dạng 6: So sánh nghiệm của phơng trình bậc hai với một số .8 Dạng 7: Tìm hệ thức liên hệ giữa hai nghiệm của phơng trình bậc hai không phụ thuộc tham số .9 Dạng 8: Mối quan hệ giữa các nghiệm của hai phơng trình bậc hai 9 Chủ đề 3: Hệ phơng trình (4 tiết) 11 Dạng 1: Giải hệ phơng trình bản và đa đợc về dạng cơ bản 11 Dạng 2: Giải hệ bằng phơng pháp đặt ẩn phụ .13 Dạng 3: Xác định giá trị của tham số để hệ nghiệm thoả mãn điều kiện cho trớc 13 Dạng 1: Hệ đối xứng loại I 14 Dạng 2: Hệ đối xứng loại II 15 Dạng 3: Hệ bậc hai giải bằng phơng pháp thế hoặc cộng đại số 16 Chủ đề 4: Hàm số và đồ thị (3 tiết) .17 Dạng 1: Vẽ đồ thị hàm số 17 Dạng 2: Viết phơng trình đờng thẳng .18 Dạng 3: Vị trí tơng đối giữa đờng thẳng và parabol 18 Chủ đề 5: Giải bài toán bằng cách lập phơng trình, hệ phơng trình (4 tiết) .19 Dạng 1: Chuyển động (trên đờng bộ, trên đờng sông tính đến dòng nớc chảy) 19 Dạng 2: Toán làm chung làn riêng (toán vòi n ớc) 19 Dạng 3: Toán liên quan đến tỉ lệ phần trăm 19 Dạng 4: Toán nội dung hình học .20 Dạng 5: Toán về tìm số .20 Chủ đề 6: Phơng trình quy về phơng trình bậc hai (3 tiết) .20 Dạng 1: Phơng trình ẩn số ở mẫu 20 Dạng 2: Phơng trình chứa căn thức 21 Dạng 3: Phơng trình chứa dấu giá trị tuyệt đối .21 Dạng 4: Phơng trình trùng phơng .21 Dạng 5: Phơng trình bậc cao 21 Phần II: Hình học (16 tiết) 22 Chủ đề 1: Nhận biết hình, tìm điều kiện của một hình .22 Chủ đề 2: Chứng minh tứ giác nội tiếp, chứng minh nhiều điểm cùng nằm trên một đờng tròn.22 Chủ đề 3: Chứng minh các điểm thẳng hàng, các đờng thẳng đồng quy 25 Chủ đề 4: Chứng minh điểm cố định 25 Chủ đề 5: Chứng minh hai tam giác đồng dạng và chứng minh đẳng thức hình học 26 Chủ đề 6: Các bài toán về tính số đo góc và số đo diện tích .27 Chủ đề 7: Toán quỹ tích 27 Chủ đề 8: Một số bài toán mở đầu về hình học không gian .27 Phần I: đại số (24 tiết) Chủ đề 1: Căn thức Biến đổi căn thức.(4 tiết) Dạng 1: Tìm điều kiện để biểu thức chứa căn thức nghĩa. Bài 1: Tìm x để các biểu thức sau nghĩa.( Tìm ĐKXĐ của các biểu thức sau). 3x16x 14) x2x 1 )7 x5 3x 3x 1 13) x7 3x 6) 65xx 1 12) 27x x3 5) 35x2x 11) 12x 4) 73xx 10) 147x 1 3) 2x 9) 2x5 2) 3x 8) 13x 1) 2 2 2 2 2 2 ++ + + + + + + + Dạng 2: Biến đổi đơn giản căn thức. Bài 1: Đa một thừa số vào trong dấu căn. 22 x 7 x e) ; x25 x 5)(x d) ; 5 2 x c) 0);x (với x 2 x b) ; 3 5 5 3 a) > Bài 2: Thực hiện phép tính. 33 3; 3 33 3152631526 h) ;2142021420 g) 725725 f) ;10:)4503200550(15 c) 26112611 e) ;0,4)32)(10238( b) ;526526 d) ;877)714228( a) +++ ++ ++ ++++ Bài 3: Thực hiện phép tính. 1027 1528625 c) 57 1 :) 31 515 21 714 b) 6 1 ) 3 216 28 632 ( a) + + + Bài 4: Thực hiện phép tính. 62126,5126,5 e) 77474 d) 25353 c) 535)(3535)(3 b) 1546)10)(15(4 ) +++ +++ ++++ a Bài 5: Rút gọn các biểu thức sau: 2 1 1 3 3 a) b) 7 24 1 7 24 1 3 1 1 3 1 1 5 2 6 5 2 6 3 5 3 5 c) d) 5 2 6 5 2 6 3 5 3 5 + + + + + + + + + + + Bài 6: Rút gọn biểu thức: 10099 1 . 43 1 32 1 21 1 c) 34710485354b) 4813526a) + ++ + + + + + +++++ Bài 7: Rút gọn biểu thức sau: 4 3y6xy3x yx 2 e) )4a4a(15a 12a 1 d) ; 4a a42a8aa c) 1.a và 0a với, 1a aa 1 1a aa 1 b) b.a và 0b 0,a với, ba 1 : ab abba a) 22 22 24 ++ + + > + + + >> + Bài 8: Tính giá trị của biểu thức ( )( ) a.)y)(1x(1xybiết , x1yy1xE e) 1.x2x9x2x16biết , x2x9x2x16D d) 0;3yy3xxbiết , yxC c) ;1)54(1)54(x với812xxB b) 549 1 y; 25 1 x khi2y,y3xxA a) 2222 2222 22 33 3 2 =++++++= =+++++= =+++++= +=+= + = =+= Dạng 3: Bài toán tổng hợp kiến thức và kỹ năng tính toán. Bài 1: Cho biểu thức 21x 3x P = a) Rút gọn P. b) Tính giá trị của P nếu x = 4(2 - 3 ). c) Tính giá trị nhỏ nhất của P. Bài 2: Xét biểu thức 1. a a2a 1aa aa A 2 + + + + = a) Rút gọn A. b) Biết a > 1, hãy so sánh A với A . c) Tìm a để A = 2. d) Tìm giá trị nhỏ nhất của A. Bài 3: Cho biểu thức x1 x 2x2 1 2x2 1 C + + = a) Rút gọn biểu thức C. b) Tính giá trị của C với 9 4 x = . c) Tính giá trị của x để . 3 1 C = 3 Bài 4: Cho biểu thức 222222 baa b : ba a 1 ba a M + = a) Rút gọn M. b) Tính giá trị M nếu . 2 3 b a = c) Tìm điều kiện của a, b để M < 1. Bài 5: Xét biểu thức . 2 x)(1 1x2x 2x 1x 2x P 2 ++ + = a) Rút gọn P. b) Chứng minh rằng nếu 0 < x < 1 thì P > 0. c) Tìm giá trị lơn nhất của P. Bài 6: Xét biểu thức . x3 1x2 2x 3x 6x5x 9x2 Q + + + = a) Rút gọn Q. b) Tìm các giá trị của x để Q < 1. c) Tìm các giá trị nguyên của x để giá trị tơng ứng của Q cũng là số nguyên. Bài 7: Xét biểu thức ( ) yx xyyx : yx yx yx yx H 2 33 + + = a) Rút gọn H. b) Chứng minh H 0. c) So sánh H với H . Bài 8: Xét biểu thức . 1aaaa a2 1a 1 : 1a a 1A + + += a) Rút gọn A. b) Tìm các giá trị của a sao cho A > 1. c) Tính các giá trị của A nếu 200622007a = . Bài 9: Xét biểu thức . x1 2x 2x 1x 2xx 39x3x M + + + + + = a) Rút gọn M. b) Tìm các giá trị nguyên của x để giá trị tơng ứng của M cũng là số nguyên. Bài 10: Xét biểu thức . 3x 3x2 x1 2x3 3x2x 11x15 P + + + + = a) Rút gọn P. b) Tìm các giá trị của x sao cho . 2 1 P = c) So sánh P với 3 2 . Chủ đề 2: Phơng trình bậc hai và định lí Viét (6 tiết) Dạng 1: Giải phơng trình bậc hai. Bài 1: Giải các phơng trình 1) x 2 6x + 14 = 0 ; 2) 4x 2 8x + 3 = 0 ; 3) 3x 2 + 5x + 2 = 0 ; 4) -30x 2 + 30x 7,5 = 0 ; 5) x 2 4x + 2 = 0 ; 6) x 2 2x 2 = 0 ; 7) x 2 + 2 2 x + 4 = 3(x + 2 ) ; 8) 2 2 x 2 + x + 1 = 3 (x + 1) ; 9) x 2 2( 3 - 1)x - 2 3 = 0. 4 Bài 2: Giải các phơng trình sau bằng cách nhẩm nghiệm: 1) 3x 2 11x + 8 = 0 ; 2) 5x 2 17x + 12 = 0 ; 3) x 2 (1 + 3 )x + 3 = 0 ; 4) (1 - 2 )x 2 2(1 + 2 )x + 1 + 3 2 = 0 ; 5) 3x 2 19x 22 = 0 ; 6) 5x 2 + 24x + 19 = 0 ; 7) ( 3 + 1)x 2 + 2 3 x + 3 - 1 = 0 ; 8) x 2 11x + 30 = 0 ; 9) x 2 12x + 27 = 0 ; 10) x 2 10x + 21 = 0. Dạng 2: Chứng minh phơng trình nghiệm, vô nghiệm. Bài 1: Chứng minh rằng các phơng trình sau luôn nghiệm. 1) x 2 2(m - 1)x 3 m = 0 ; 2) x 2 + (m + 1)x + m = 0 ; 3) x 2 (2m 3)x + m 2 3m = 0 ; 4) x 2 + 2(m + 2)x 4m 12 = 0 ; 5) x 2 (2m + 3)x + m 2 + 3m + 2 = 0 ; 6) x 2 2x (m 1)(m 3) = 0 ; 7) x 2 2mx m 2 1 = 0 ; 8) (m + 1)x 2 (2m 1)x 3 + m = 0 ; 9) ax 2 + (ab + 1)x + b = 0. Bài 2: Chứng minh rằng với a, b , c là các số thực thì phơng trình sau luôn nghiệm: (x a)(x b) + (x b)(x c) + (x c)(x a) = 0 Chứng minh rằng với ba số thức a, b , c phân biệt thì phơng trình sau hai nghiệm phân biết: x) (ẩn 0 cx 1 bx 1 ax 1 = + + Chứng minh rằng phơng trình: c 2 x 2 + (a 2 b 2 c 2 )x + b 2 = 0 vô nghiệm với a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng phơng trình bậc hai: (a + b) 2 x 2 (a b)(a 2 b 2 )x 2ab(a 2 + b 2 ) = 0 luôn hai nghiệm phân biệt. Bài 3: Chứng minh rằng ít nhất một trong các phơng trình bậc hai sau đây nghiệm: ax 2 + 2bx + c = 0 (1) bx 2 + 2cx + a = 0 (2) cx 2 + 2ax + b = 0 (3) Cho bốn phơng trình (ẩn x) sau: x 2 + 2ax + 4b 2 = 0 (1) x 2 - 2bx + 4a 2 = 0 (2) x 2 - 4ax + b 2 = 0 (3) x 2 + 4bx + a 2 = 0 (4) Chứng minh rằng trong các phơng trình trên ít nhất 2 phơng trình nghiệm. Cho 3 phơng trình (ẩn x sau): (3) 0 cb 1 x ba ba2a cx (2) 0 ba 1 x ac ac2c bx (1) 0 ac 1 x cb cb2b ax 2 2 2 = + + + + = + + + + = + + + + với a, b, c là các số dơng cho trớc. Chứng minh rằng trong các phơng trình trên ít nhất một phơng trình nghiệm. Bài 4: Cho phơng trình ax 2 + bx + c = 0. 5 Biết a 0 và 5a + 4b + 6c = 0, chứng minh rằng phơng trình đã cho hai nghiệm. b) Chứng minh rằng phơng trình ax 2 + bx + c = 0 ( a 0) hai nghiệm nếu một trong hai điều kiện sau đợc thoả mãn: a(a + 2b + 4c) < 0 ; 5a + 3b + 2c = 0. Dạng 3: Tính giá trị của biểu thức đối xứng, lập phơng trình bậc hai nhờ nghiệm của ph- ơng trình bậc hai cho trớc. Bài 1: Gọi x 1 ; x 2 là các nghiệm của phơng trình: x 2 3x 7 = 0. Tính: ( )( ) 4 2 4 1 3 2 3 1 1221 21 21 2 2 2 1 xxF ;xxE ;x3xx3xD ; 1x 1 1x 1 C ;xxB ;xxA +=+= ++= + = =+= Lập phơng trình bậc hai các nghiệm là 1x 1 và 1x 1 21 . Bài 2: Gọi x 1 ; x 2 là hai nghiệm của phơng trình: 5x 2 3x 1 = 0. Không giải phơng trình, tính giá trị của các biểu thức sau: . x4xx4x 3xx5x3x C ; x 1 x 1 1x x x x 1x x x x B ;x3x2xx3x2xA 2 2 1 2 21 2 221 2 1 2 211 2 1 2 2 1 2 1 2 21 3 22 2 1 3 1 + ++ = + ++ + += += Bài 3: a) Gọi p và q là nghiệm của phơng trình bậc hai: 3x 2 + 7x + 4 = 0. Không giải phơng trình hãy thành lập phơng trình bậc hai với hệ số bằng số mà các nghiệm của nó là 1p q và 1q p . b) Lập phơng trình bậc hai 2 nghiệm là 2610 1 và 7210 1 + . Bài 4: Cho phơng trình x 2 2(m -1)x m = 0. a) Chứng minh rằng phơng trình luôn luôn hai nghiệm x 1 ; x 2 với mọi m. b) Với m 0, lập phơng trình ẩn y thoả mãn 1 22 2 11 x 1 xy và x 1 xy +=+= . Bài 5: Không giải phơng trình 3x 2 + 5x 6 = 0. Hãy tính giá trị các biểu thức sau: ( )( ) 2 2 1 1 21 1 2 2 1 1221 x 2x x 2x D ;xxC ; 1x x 1x x B ;2x3x2x3xA + + + == + == Bài 6: Cho phơng trình 2x 2 4x 10 = 0 hai nghiệm x 1 ; x 2 . Không giải phơng trình hãy thiết lập phơng trình ẩn y hai nghiệm y 1 ; y 2 thoả mãn: y 1 = 2x 1 x 2 ; y 2 = 2x 2 x 1 Bài 7: Cho phơng trình 2x 2 3x 1 = 0 hai nghiệm x 1 ; x 2 . Hãy thiết lập phơng trình ẩn y hai nghiệm y 1 ; y 2 thoả mãn: 6 = = += += 1 2 2 2 2 2 1 1 22 11 x x y x x y b) 2xy 2xy a) Bài 8: Cho phơng trình x 2 + x 1 = 0 hai nghiệm x 1 ; x 2 . Hãy thiết lập phơng trình ẩn y hai nghiệm y 1 ; y 2 thoả mãn: =+++ +=+ +=+ +=+ 0.5x5xyy xxyy b) ; 3x3x y y y y x x x x yy a) 21 2 2 2 1 2 2 2 121 21 1 2 2 1 1 2 2 1 21 Bài 9: Cho phơng trình 2x 2 + 4ax a = 0 (a tham số, a 0) hai nghiệm x 1 ; x 2 . Hãy lập phơng trình ẩn y hai nghiệm y 1 ; y 2 thoả mãn: 21 2121 21 xx y 1 y 1 và x 1 x 1 yy +=++=+ Dạng 4: Tìm điều kiện của tham số để phơng trình nghiệm, nghiệm kép, vô nghiệm. Bài 1: a) Cho phơng trình (m 1)x 2 + 2(m 1)x m = 0 (ẩn x). Xác định m để phơng trình nghiệm kép. Tính nghiệm kép này. b) Cho phơng trình (2m 1)x 2 2(m + 4)x + 5m + 2 = 0. Tìm m để phơng trình nghiệm. c) Cho phơng trình: (m 1)x 2 2mx + m 4 = 0. - Tìm điều kiện của m để phơng trình nghiệm. - Tìm điều kiện của m để phơng trình nghiệm kép. Tính nghiệm kép đó. d) Cho phơng trình: (a 3)x 2 2(a 1)x + a 5 = 0. Tìm a để phơng trình hai nghiệm phân biệt. Bài 2: a) Cho phơng trình: ( ) 06mm 1x x12m2 12xx 4x 2 224 2 =+ + ++ . Xác định m để phơng trình ít nhất một nghiệm. b) Cho phơng trình: (m 2 + m 2)(x 2 + 4) 2 4(2m + 1)x(x 2 + 4) + 16x 2 = 0. Xác định m để phơng trình ít nhất một nghiệm. 7 Dạng 5: Xác định tham số để các nghiệm của phơng trình ax 2 + bx + c = 0 thoả mãn điều kiện cho trớc. Bài 1: Cho phơng trình: x 2 2(m + 1)x + 4m = 0 1) Xác định m để phơng trình nghiệm kép. Tìm nghiệm kép đó. 2) Xác định m để phơng trình một nghiệm bằng 4. Tính nghiệm còn lại. 3) Với điều kiện nào của m thì phơng trình hai nghiệm cùng dấu (trái dấu) 4) Với điều kiện nào của m thì phơng trình hai nghiệm cùng dơng (cùng âm). 5) Định m để phơng trình hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia. 6) Định m để phơng trình hai nghiệm x 1 ; x 2 thoả mãn 2x 1 x 2 = - 2. 7) Định m để phơng trình hai nghiệm x 1 ; x 2 sao cho A = 2x 1 2 + 2x 2 2 x 1 x 2 nhận giá trị nhỏ nhất. Bài 2: Định m để phơng trình nghiệm thoả mãn hệ thức đã chỉ ra: a) (m + 1)x 2 2(m + 1)x + m 3 = 0 ; (4x 1 + 1)(4x 2 + 1) = 18 b) mx 2 (m 4)x + 2m = 0 ; 2(x 1 2 + x 2 2 ) = 5x 1 x 2 c) (m 1)x 2 2mx + m + 1 = 0 ; 4(x 1 2 + x 2 2 ) = 5x 1 2 x 2 2 d) x 2 (2m + 1)x + m 2 + 2 = 0 ; 3x 1 x 2 5(x 1 + x 2 ) + 7 = 0. Bài 3: Định m để phơng trình nghiệm thoả mãn hệ thức đã chỉ ra: a) x 2 + 2mx 3m 2 = 0 ; 2x 1 3x 2 = 1 b) x 2 4mx + 4m 2 m = 0 ; x 1 = 3x 2 c) mx 2 + 2mx + m 4 = 0 ; 2x 1 + x 2 + 1 = 0 d) x 2 (3m 1)x + 2m 2 m = 0 ; x 1 = x 2 2 e) x 2 + (2m 8)x + 8m 3 = 0 ; x 1 = x 2 2 f) x 2 4x + m 2 + 3m = 0 ; x 1 2 + x 2 = 6. Bài 4: a) Cho phơnmg trình: (m + 2)x 2 (2m 1)x 3 + m = 0. Tìm điều kiện của m để phơng trình hai nghiệm phân biệt x 1 ; x 2 sao cho nghiệm này gấp đôi nghiệm kia. b) Ch phơng trình bậc hai: x 2 mx + m 1 = 0. Tìm m để phơng trình hai nghiệm x 1 ; x 2 sao cho biểu thức )xx2(1xx 3x2x R 21 2 2 2 1 21 +++ + = đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó. c) Định m để hiệu hai nghiệm của phơng trình sau đây bằng 2. mx 2 (m + 3)x + 2m + 1 = 0. Bài 5: Cho phơng trình: ax 2 + bx + c = 0 (a 0). Chứng minh rằng điều kiện cần và đủ để phơng trình hai nghiệm mà nghiệm này gấp đôi nghiệm kia là 9ac = 2b 2 . Bài 6: Cho phơng trình bậc hai: ax 2 + bx + c = 0 (a 0). Chứng minh rằng điều kiện cần và đủ để phơng trình hai nghiệm mà nghiệm này gấp k lần nghiệm kia (k > 0) là : kb 2 = (k + 1) 2 .ac Dạng 6: So sánh nghiệm của phơng trình bậc hai với một số. Bài 1: a) Cho phơng trình x 2 (2m 3)x + m 2 3m = 0. Xác định m để phơng trình hai nghiệm x 1 ; x 2 thoả mãn 1 < x 1 < x 2 < 6. b) Cho phơng trình 2x 2 + (2m 1)x + m 1 = 0. Xác định m để phơng trình hai nghiệm phân biệt x 1 ; x 2 thoả mãn: - 1 < x 1 < x 2 < 1. Bài 2: Cho f(x) = x 2 2(m + 2)x + 6m + 1. a) Chứng minh rằng phơng trình f(x) = 0 nghiệm với mọi m. 8 b) Đặt x = t + 2. Tính f(x) theo t, từ đó tìm điều kiện đối với m để phơng trình f(x) = 0 hai nghiệm lớn hơn 2. Bài 3: Cho phơng trình bậc hai: x 2 + 2(a + 3)x + 4(a + 3) = 0. a) Với giá trị nào của tham số a, phơng trình nghiệm kép. Tính các nghiệm kép. b) Xác định a để phơng trình hai nghiệm phân biệt lớn hơn 1. Bài 4: Cho phơng trình: x 2 + 2(m 1)x (m + 1) = 0. a) Tìm giá trị của m để phơng trình một nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1. b) Tìm giá trị của m để phơng trình hai nghiệm nhỏ hơn 2. Bài 5: Tìm m để phơng trình: x 2 mx + m = 0 nghiệm thoả mãn x 1 - 2 x 2 . Dạng 7: Tìm hệ thức liên hệ giữa hai nghiệm của phơng trình bậc hai không phụ thuộc tham số. Bài 1: a) Cho phơng trình: x 2 mx + 2m 3 = 0. Tìm hệ thức liên hệ giữa hai nghiệm của phơng trình không phụ thuộc vào tham số m. b) Cho phơng trình bậc hai: (m 2)x 2 2(m + 2)x + 2(m 1) = 0. Khi phơng trình nghiệm, hãy tìm một hệ thức giữa các nghiệm không phụ thuộc vào tham số m. c) Cho phơng trình: 8x 2 4(m 2)x + m(m 4) = 0. Định m để phơng trình hai nghiệm x 1 ; x 2 . Tìm hệ thức giữa hai nghiệm độc lập với m, suy ra vị trí của các nghiệm đối với hai số 1 và 1. Bài 2: Cho phơng trình bậc hai: (m 1) 2 x 2 (m 1)(m + 2)x + m = 0. Khi phơng trình nghiệm, hãy tìm một hệ thức giữa các nghiệm không phụ thuộc vào tham số m. Bài 3: Cho phơng trình: x 2 2mx m 2 1 = 0. a) Chứng minh rằng phơng trình luôn hai nghiệm x 1 , x 2 với mọi m. b) Tìm biểu thức liên hệ giữa x 1 ; x 2 không phụ thuộc vào m. c) Tìm m để phơng trình hai nghiệm x 1 ; x 2 thoả mãn: 2 5 x x x x 1 2 2 1 =+ . Bài 4: Cho phơng trình: (m 1)x 2 2(m + 1)x + m = 0. a) Giải và biện luận phơng trình theo m. b) Khi phơng trình hai nghiệm phân biệt x 1 ; x 2 : - Tìm một hệ thức giữa x 1 ; x 2 độc lập với m. - Tìm m sao cho |x 1 x 2 | 2. Bài 5: Cho phơng trình (m 4)x 2 2(m 2)x + m 1 = 0. Chứng minh rằng nếu ph- ơng trình hai nghiệm x 1 ; x 2 thì: 4x 1 x 2 3(x 1 + x 2 ) + 2 = 0. Dạng 8: Mối quan hệ giữa các nghiệm của hai phơng trình bậc hai. Kiến thức cần nhớ: 1/ Định giá trị của tham số để phơng trình này một nghiệm bằng k (k 0) lần một nghiệm của phơng trình kia: Xét hai phơng trình: ax 2 + bx + c = 0 (1) ax 2 + bx + c = 0 (2) trong đó các hệ số a, b, c, a, b, c phụ thuộc vào tham số m. Định m để sao cho phơng trình (2) một nghiệm bằng k (k 0) lần một nghiệm của phơng trình (1), ta thể làm nh sau: i) Giả sử x 0 là nghiệm của phơng trình (1) thì kx 0 là một nghiệm của phơng trình (2), suy ra hệ phơng trình: 9 (*) 0c'kxb'xka' 0cbxax 0 2 0 2 0 2 0 =++ =++ Giải hệ phơng trình trên bằng phơng pháp thế hoặc cộng đại số để tìm m. ii) Thay các giá trị m vừa tìm đợc vào hai phơng trình (1) và (2) để kiểm tra lại. 2/ Định giá trị của tham số m để hai phơng trình bậc hai tơng đơng với nhau. Xét hai phơng trình: ax 2 + bx + c = 0 (a 0) (3) ax 2 + bx + c = 0 (a 0) (4) Hai phơng trình (3) và (4) tơng đơng với nhau khi và chỉ khi hai phơng trình cùng 1 tập nghiệm (kể cả tập nghiệm là rỗng). Do đó, muỗn xác định giá trị của tham số để hai phơng trình bậc hai tơng đơng với nhau ta xét hai trờng hợp sau: i) Trờng hợp cả hai phơng trinhg cuùng vô nghiệm, tức là: < < 0 0 )4( )3( Giải hệ trên ta tịm đợc giá trị của tham số. ii) Trờng hợp cả hai phơng trình đều nghiệm, ta giải hệ sau: = = (4)(3) (4)(3) (4) (3) PP SS 0 0 Chú ý: Bằng cách đặt y = x 2 hệ phơng trình (*) thể đa về hệ phơng trình bậc nhất 2 ẩn nh sau: =+ =+ c'ya'xb' caybx Để giải quyết tiếp bài toán, ta làm nh sau: - Tìm điều kiện để hệ nghiệm rồi tính nghiệm (x ; y) theo m. - Tìm m thoả mãn y = x 2 . - Kiểm tra lại kết quả. Bài 1: Tìm m để hai phơng trình sau nghiệm chung: 2x 2 (3m + 2)x + 12 = 0 4x 2 (9m 2)x + 36 = 0 Bài 2: Với giá trị nào của m thì hai phơng trình sau nghiệm chung. Tìm nghiệm chung đó: a) 2x 2 + (3m + 1)x 9 = 0; 6x 2 + (7m 1)x 19 = 0. b) 2x 2 + mx 1 = 0; mx 2 x + 2 = 0. c) x 2 mx + 2m + 1 = 0; mx 2 (2m + 1)x 1 = 0. 10 [...]... giác vuông b) Tứ giác MBCN là hình gì? c) Gọi F, E, G lần lợt là trung điểm của O1O2, MN, BC Chứng minh F cách đều 4 điểm E, G, A, H d) Khi cát tuyến MAN quay xung quanh điểm A thì E vạch một đờng nh thế nào? Bài 4: Cho hình vuông ABCD Lấy B làm tâm, bán kính AB, vẽ 1/4 đờng tròn phía trong hình vuông.Lấy AB làm đờng kính , vẽ 1/2 đờng tròn phía trong hình vuông Gọi P là điểm tuỳ ý trên cung AC ( không... đờng tròn Bài 3: (Bài 66/52 - Ôn tập và kiểm tra hình học 9) Cho hai đờng tròn (O) và (O') cắt nhau tại A và B Tia OA cắt đờng tròn (O') tại C, tia O'A cắt đờng tròn (O) tại D Chứng minh rằng: a) Tứ giác OO'CD nội tiếp b) Tứ giác OBO'C nội tiếp, từ đó suy ra năm điểm O, O', B, C, D cùng nằm trên một đờng tròn Bài 4: (Bài 67/53 - Ôn tập và kiểm tra hình học 9) Cho tứ giác ABCD nội tiếp nửa đờng tròn đờng... AECD, BFCD nội tiếp đợc b) CD2 = CE CF c)* IK // AB Bài 6: (Bài 78/57 - Ôn tập và kiểm tra hình học 9) Cho tam giác ABC nội tiếp đờng tròn (O) Từ A vẽ tiếp tuyến xy với đờng tròn Vẽ hai đờng cao BD và CE a) Chứng minh rằng bốn điểm B, C, D, E cùng nằm trên một đờng tròn b) Chứng minh rằng xy// DE, từ đó suy ra OA DE Bài 7: (Bài 79/57 - Ôn tập và kiểm tra hình học 9) Cho tam giác đều ABC nội tiếp đờng... trong các nghiệm của phơng trình (2) lớn gấp 2 lần một trong các nghiệm của phơng trình (1) Chủ đề 3: Hệ phơng trình (4 tiết) Hệ hai phơng trình bậc nhất hai ẩn Dạng 1: Giải hệ phơng trình cơ bản và đa đợc về dạng cơ bản Bài 1: Giải các hệ phơng trình 11 3x y= 42 4x y= 32 2x+ y= 53 1) ; 2) ; 3) 2x+ y= 5 6x y= 53 4x+ 6y= 10 3x 4y+ 2= 0 2x+ y= 35 4x y= 96 4) ; 5) ; 6) 5x+ 2y= 14 3x 2y= 14 10x 15y= 18... Bài 3: Một canô xuôi từ bến sông A đến bến sông B với vận tốc 30 km/h, sau đó lại ngợc từ B trở về A Thời gian xuôi ít hơn thời gian đi ngợc 1 giờ 20 phút Tính khoảng cách giữa hai bến A và B Biết rằng vận tốc dòng nớc là 5 km/h và vận tốc riêng của canô lúc xuôi và lúc ngợc bằng nhau Bài 4: Một canô xuôi một khúc sông dài 90 km rồi ngợc về 36 km Biết thời gian xuôi dòng sông nhiều hơn thời gian ngợc... hình học 9) Cho tứ giác ABCD nội tiếp nửa đờng tròn đờng kính AD Hai đờng chéo AC và BD cắt nhau tại E Vẽ EF vuông góc AD Gọi M là trung điểm của DE Chứng minh rằng: a) Các tứ giác ABEF, DCEF nội tiếp đợc b) Tia CA là tia phân giác của góc BCF c)* Tứ giác BCMF nội tiếp đợc Bài 5: (Bài 69/53 - Ôn tập và kiểm tra hình học 9) Từ một điểm M ở bên ngoài đờng tròn (O) ta vẽ hai tiếp tuyến MA, MB với đờng tròn... giác đều ABC nội tiếp đờng tròn tâm O D và E lần lợt là điểm chính giữa của các cung AB và AC DE cắt AB ở I và cắt AC ở L a) Chứng minh DI = IL = LE b) Chứng minh tứ giác BCED là hình chử nhật c) Chứng minh tứ giác ADOE là hình thoi và tính các góc của hình này Bài 2: Cho tứ giác ABCD nội tiếp đờng tròn các đờng chéo vuông góc với nhau tại I a) Chứng minh rằng nếu từ I ta hạ đờng vuông góc xuống... - Ôn tập và kiểm tra hình học 9) Cho ba điểm A, B, C cố định với B nằm giữa A và C Một đờng tròn (O) thay đổi đi qua B và C Vẽ đờng kính MN vuông góc với BC tại D ( M nằm trên cung nhỏ BC).Tia AN cắt đờng tròn (O) Tại một điểm thứ hai là F Hai dây BC và MF cắt nhau tại E Chứng minh rằng: a) Tứ giác DEFN nội tiếp đợc b) AD AE = AF AN c) Đờng thẳng MF đi qua một điểm cố định Bài 9: (Bài 133/100 - Ôn. .. A, O', N thẳng hàng và MA là tiếp tuyến của đờng tròn ngoại tiếp tam giác ACD Bài 11: (Bài 2- Đề 1/102 - Ôn tập và kiểm tra hình học 9) Cho tam giác ABC vuông ở A ( AB < AC), đờng cao AH Trên đoạn thẳng HC lấy D sao cho HD = HB Vẽ CE vuông góc với AD ( E AD) a) Chứng minh rằng AHEC là tứ giác nội tiếp b) Chứng minh AB là tiếp tuyến của đờng tròn ngoại tiếp tứ giác AHEC c) Chứng minh rằng CH là tia... tại D CP cắt (O) tại điểm thứ hai I, AB cắt IQ tại K a) Chứng minh tứ giác PDKI nội tiếp b) Chứng minh: CI.CP = CK.CD c) Chứng minh IC là phân giác ngoài của tam giác AIB d) A, B, C cố định, (O) thay đổi nhng vẫn luôn qua A, B Chứng minh rằng IQ luôn đi qua điểm cố định 25 Bài 2: (Bài 3/16 Hà Huy Bằng) Cho tam giác đều ABC nội tiếp (O ; R) M di động trên AB N di động trên tia đối của tia CA sao cho BM . tiết) 11 Dạng 1: Giải hệ phơng trình cơ bản và đa đợc về dạng cơ bản. .11 Dạng 2: Giải hệ bằng phơng. hai phơng trình bậc nhất hai ẩn. Dạng 1: Giải hệ phơng trình cơ bản và đa đợc về dạng cơ bản Bài 1: Giải các hệ phơng trình 11    =− =−    =− =+

Ngày đăng: 07/08/2013, 01:26

TỪ KHÓA LIÊN QUAN

w