Để đáp ứng yêu cầu chịu lực bình thường, một thanh phải thỏa mãn điều kiện bền và cứng, như đã được trình bày trong các chương trước đây.Tuy nhiên, trong nhiều trường hợp, thanh còn phải thỏa mãn thêm điều kiện ổn định. Đó là khả năng duy trì hình thức biến dạng ban đầu nếu bị nhiễu (nhiễu xãy ra trong thời gian ngắn) Trong thực tế, nhiễu có thể là các yếu tố sai lệch so với sơ đồ tính như: độ cong ban đầu, sự nghiêng hoặc lệch tâm của lực tác dụng...Bài toán ổn định mang ý nghĩa thực tế rất lớn. Ta định nghĩa một cách khái quát: độ ổn định của kết cấu là khả năng duy trì, và bảo toàn được dạng cân bằng ban đầu trước các nhiễu có thể xãy ra. Khái niệm ổn định có thể minh họa bằng cách xét sự cân bằng của quả cầu trên các mặt lõm, lồi và phẳng trên H.11.1.Để đáp ứng yêu cầu chịu lực bình thường, một thanh phải thỏa mãn điều kiện bền và cứng, như đã được trình bày trong các chương trước đây.Tuy nhiên, trong nhiều trường hợp, thanh còn phải thỏa mãn thêm điều kiện ổn định. Đó là khả năng duy trì hình thức biến dạng ban đầu nếu bị nhiễu (nhiễu xãy ra trong thời gian ngắn) Trong thực tế, nhiễu có thể là các yếu tố sai lệch so với sơ đồ tính như: độ cong ban đầu, sự nghiêng hoặc lệch tâm của lực tác dụng...Bài toán ổn định mang ý nghĩa thực tế rất lớn. Ta định nghĩa một cách khái quát: độ ổn định của kết cấu là khả năng duy trì, và bảo toàn được dạng cân bằng ban đầu trước các nhiễu có thể xãy ra. Khái niệm ổn định có thể minh họa bằng cách xét sự cân bằng của quả cầu trên các mặt lõm, lồi và phẳng trên H.11.1.Để đáp ứng yêu cầu chịu lực bình thường, một thanh phải thỏa mãn điều kiện bền và cứng, như đã được trình bày trong các chương trước đây.Tuy nhiên, trong nhiều trường hợp, thanh còn phải thỏa mãn thêm điều kiện ổn định. Đó là khả năng duy trì hình thức biến dạng ban đầu nếu bị nhiễu (nhiễu xãy ra trong thời gian ngắn) Trong thực tế, nhiễu có thể là các yếu tố sai lệch so với sơ đồ tính như: độ cong ban đầu, sự nghiêng hoặc lệch tâm của lực tác dụng...Bài toán ổn định mang ý nghĩa thực tế rất lớn. Ta định nghĩa một cách khái quát: độ ổn định của kết cấu là khả năng duy trì, và bảo toàn được dạng cân bằng ban đầu trước các nhiễu có thể xãy ra. Khái niệm ổn định có thể minh họa bằng cách xét sự cân bằng của quả cầu trên các mặt lõm, lồi và phẳng trên H.11.1.
Bài giảng Sức Bền Vật Liệu Chương 11 ỔN ĐỊNH CỦA THANH THẲNG CHỊU NÉN ĐÚNG TÂM I.KHÁI NIỆM VỀ SỰ ỔN ĐỊNH CỦA TRẠNG THÁI CÂN BẰNG Để đáp ứng yêu cầu chịu lực bình thường, phải thỏa mãn điều kiện bền cứng, trình bày chương trước đây.Tuy nhiên, nhiều trường hợp, phải thỏa mãn thêm điều kiện ổn định Đó khả trì hình thức biến dạng ban đầu bị nhiễu (nhiễu xãy thời gian ngắn) Trong thực tế, nhiễu yếu tố sai lệch so với sơ đồ tính như: độ cong ban đầu, nghiêng lệch tâm lực tác dụng Bài toán ổn định mang ý nghĩa thực tế lớn Ta định nghĩa cách khái quát: độ ổn định kết cấu khả trì, bảo tồn dạng cân ban đầu trước nhiễu xãy Khái niệm ổn định minh họa cách xét cân cầu mặt lõm, lồi phẳng H.11.1 H.11.1 Sự cân vị trí cầu Nếu cho cầu chuyển dịch nhỏ (gọi nhiễu) từ vị trí ban đầu sang vị trí lân cận bỏ nhiễu thì: -Trên mặt lõm, cầu quay vị trí ban đầu: cân vị trí ban đầu ổn định - Trên mặt lồi, cầu chuyển động xa vị trí ban đầu: cân vị trí ban đầu khơng ổn định -Trên mặt phẳng, cầu giữ nguyên vị trí mới: cân vị trí ban đầu phiếm định Hiện tượng tương tự xảy cân trạng thái biến dạng hệ đàn hồi.Chẳng hạn với chịu nén Trong điều kiện lý tưởng (thanh thẳng tuyệt đối, lực P hồn tồn tâm ) giữ hình dạng thẳng, co ngắn chịu nén tâm Nếu cho điểm đặt lực P chuyển vị bé lực ngang R gây (bị nhiễu), sau bỏ lực P P > Pth P< Pth P = Pth xảy trường hợp biến dạng sau: R R R + Nếu lực P nhỏ giá trị Pth đó, gọi lực tới hạn, tức P < Pth, phục hồi lại trạng thái biến dạng thẳng Ta nói làm việc trạng thái cân ổn định + Nếu P > Pth chuyển vị tăng TT tới hạn TTmất ổn định TT ổn định bị cong thêm Sự cân trạng thái thẳng ( = 0) không ổn định Chương 11: ổn định Lê đức Thanh T06/2016 Bài giảng Sức Bền Vật Liệu Ta nói trạng thái ổn định Trong thực tế có chuyển vị chuyển sang hình thức biến dạng bị uốn cong, khác trước tính chất, bất lợi điều kiện chịu lực + Ứng với P = Pth giữ nguyên chuyển vị trạng thái biến dạng cong Sự cân trạng thái thẳng phiếm định Ta nói trạng thái tới hạn H.11.2 giới thiệu thêm vài kết cấu bị ổn định dầm chịu uốn, vành tròn chịu nén đều… Khi xảy ổn định dù dẫn tới sụp đổ tồn kết cấu.Tính chất phá hoại ổn định đột ngột nguy hiểm Trong lịch sử ngành xây dựng xảy thảm họa sập cầu ổn định dàn chịu q>q P > Pth nén cầu Mekhelstein Thụy Sĩ(1891),cầu Lavrentia Mỹ (1907) H 11.2 Các dạng ổn định Vì thiết kế chịu nén cần phải đảm bảo điều kiện ổn định, độc lập với điều kiện bền điều kiện cứng nêu trước Pth P N z P ôđ th Điều kiện ổn định: P P ôđ hay : kơđ kơđ th kơđ : Hệ số an tồn mặt ổn định, quy định, thường lớn hệ số an toàn độ bền P (hay Nz): Lực nén (nội lực nén ) II KHẢO SÁT ỔN ĐỊNH TRONG MIỀN ĐÀN HỒI 1- Tính lực tới hạn (Pth) có kết khớp hai đầu (Bài tốn Euler) Xét thẳng liên kết khớp hai đầu, chịu nén lực tới hạn Pth Khi bị nhiễu, bị uốn cong cân hình dạng H.11.3a Đặt hệ trục toạ độ (x,y, z) H.11.3a Xét mặt cắt có hồnh độ z Độ võng mặt cắt nầy y(z).Ta có phương trình vi phân đường đàn hồi: M y EI '' Với : mômen uốn M = Pth y(z) (từ điều kiện cân H.11.3b) P Thay (b) vào (a) y'' th y EI Đặt: Pth EI y'' 2 y Pth (11.1) (11.2) z L y(z) (11.3) Nghiệm tổng quát (c) là: z a) y A sin( z) B cos( z) (11.4) Các số A,B xác định từ điều kiện biên: y(0) = y(L) = Với: y(0) = y =A.0+ B.1 = B = Chương 11: ổn định Pth y Lê đức Thanh T06/2016 b) H 11.3 M Pth Bài giảng Sức Bền Vật Liệu y(L) = A sin( L) để tốn có nghĩa y( z) A , sin( L) n 2 phương trình có nghiệm L n , với n = 1, 2, 3, L Từ (c) (e) Pth n2 EI (11.5) L2 Thực tế, lực nén đạt đến giá trị tới hạn nhỏ theo (11.5) ứng với n =1 bị cong Vì vậy, giá trị ứng với n > ý nghĩa Ngồi ra, cong mặt phẳng có độ cứng uốn nhỏ Do đó, cơng thức tính lực tới hạn thẳng hai đầu liên kết khớp là: EImin Pth (11.6) L2 Đường đàn hồi tương ứng có dạng nửa sóng hình sine: z y A sin( ) (11.7) L với: A số bé, thể độ võng nhịp 2- Tính Pth có liên kết khác đầu Áp dụng phương pháp cho có liên kết khác hai đầu, ta m2 EImin cơng thức tính lực tới hạn có dạng chung: Pth (11.8) L2 với: m : số nửa sóng hình sine đường đàn hồi ổn định Đặt , gọi hệ số quy đổi, m Ta được: Pth EImin (L) (11.9) gọi chung công thức Euler Dạng ổn định hệ số có liên kết hai đầu khác thể m= m= 1,43 m=1/2 m= = 1/2 hình.11.4 = 0,7 = = 3- Ứng suất tới hạn Ứng suất thẳng chịu nén H 11.4 Dạng ổn định hệ số tâm lực Pth gọi ứng suất tới hạn xác định theo công thức: P EI 2E I th th A ( L) A L , với: imin A bán kính quán tính nhỏ tiết i diện L 2E Đặt: : gọi độ mảnh , th (11.10) imin Chương 11: ổn định Lê đức Thanh T06/2016 Bài giảng Sức Bền Vật Liệu Độ mảnh khơng có thứ nguyên, phụ thuộc vào chiều dài thanh, điều kiện liên kết đăc trưng hình học tiết diện; Như có độ mảnh lớn ơth dễ ổn định 4- Giới hạn áp dụng công thức Euler Iasinski ơ0 Công thức Euler xây dựng sở phương tl Hyperbola Euler trình vi phân đường đàn hồi, áp dụng vật liệu làm việc giai đoạn đàn hồi, tức ứng suất nhỏ giới hạn tỷ lệ: th Nếu đặt: 2 E tl hay: o 2 E tl 2 E tl λ1 (k) λ0 λ H 11.5 Ứng suất tới hạn kiện áp dụng công thức Euler là: o (11.11) o : gọi độ mảnh giới hạn số loại vật liệu Thí dụ: Thép xây dựng thơng thường o = 100, gỗ :o = 75; gang :o = 80 * Nếu o gọi độ mảnh lớn Như vậy, công thức Euler áp dụng cho có độ mảnh lớn III ỔN ĐỊNH NGỒI MIỀN ĐÀN HỒI 1- Ý nghĩa: Cơng thức Euler áp dụng vật liệu đàn hồi Đồ thị phương trình(11.10) hyperbola H.11.5, th tl Khi th tl vật liệu làm việc ngồi miền đàn hồi, cần thiết phải có cơng thức khác để tính Pth 2- Cơng thức thực nghiệm Iasinski Công thức Iasinski đề xuất dựa nhiều số liệu thực nghiệm, phụ thuộc vào độ mảnh - Thanh có độ mảnh vừa : 1 o : th a b (11.12) với: a b số phụ thuộc vật liệu, xác định thực nghiệm: Thép xây dựng:a =33,6kN/cm2; b = 0,147kN/cm2 Gỗ: a = 2,93kN/cm2; b = 0,0194kN/cm2 độ mảnh 1 xác định từ công thức: 1 a tl b , (lấy th TL ) (11.13) thực nghiệm cho thấy phạm vi giá trị 1 30 40 - Thanh có độ mảnh bé: Chương 11: ổn định 1 Lê đức Thanh T06/2016 Bài giảng Sức Bền Vật Liệu - Khi không ổn định mà đạt đến trạng thái phá hoại vật liệu Vì vậy, ta coi: th b vật liệu dòn th ch vật liệu dẻo lực tới hạn : Pth = th A Thí dụ.1 Tính Pth th cột làm thép số có mặt cắt ngang hình chữ số 22 Cột có liên kết khớp hai đầu Xét hai trường hợp: a) Chiều cao cột 3,0m b) Chiều cao cột 2,25m Biết: E = 2,1.104kN/cm2; tl = 21kN/cm2 ; o =100 Các số công thức Iasinski : a = 33,6kN/cm2, b = 0,147kN/cm2 Giải Tra bảng thép định hình(phụ lục)ta có số liệu P= 230kN thép No22: imin i y 2,27 cm; A 30,6 cm theo liên kết ta có + Trường hợp a) l 1.300 132 o 100 Độ mảnh : imin 2,27 Thanh có độ mảnh lớn, áp dụng công thức Euler E 2,1.104 th 11,88 kN / cm 2 132 Pth th A 11,88.30,6 363,62 kN + Trường hợp b) Độ mảnh : 1 l imin L= 3m I 1.225 99,11 0 2,27 a tl 33,6 21 85,7 b 0,147 1 Thanh có độ mảnh vừa, dùng công thức Iasinski: th a b 33,6 0,147.99 20,37 kN / cm Pth th A 20,37.30,6 623,32 kN Chú ý: - Nếu liên kết hai mặt phẳng quán tính giống cơng thức có dụng Imin imin - Nếu liên kết hai mặt phẳng qn tính khác ổn định cong mặt phẳng có độ mảnh lớn đại lượng I, i lấy mặt phẳng Thí dụ.2 Kiểm tra ổn định thép I.24 có A =34,8cm2, Iy = Imin =198cm4, iy = imin= 2,37cm, 0 = 100, Ix=3460cm4, ix=9,97cm, E = 2.104kN/cm2 , Kođ =2, Chương 11: ổn định Lê đức Thanh T06/2016 Bài giảng Sức Bền Vật Liệu Giải x Tính y xl ix yl iy 2.600 120,4 > 0 9,97 0,5.600 126,6 > 0 2,37 P P=150kN Dùng Euler: Lấy max để tính I.24a 2E (3,14) 2.10 Pth th A A 34,8 428kN (max ) (126,6) Pôđ Pth 428 214kN P 150kN (đã cho) K oñ L= m x Thanh thỏa điều kiện ổn định x y y y Ghi -Nếu tiết diện hình chữ nhật bxh: b d ix bh 12 h , bh 12 Ix A iy Iy A hb 12 b bh 12 h x D y d -Nếu tiết diện tròn đường kính d, hình vành khăn D,d : D d ix i y Ix A 64 d d , ix i y IX A d 64 D D d 1 2 D D d D Thí dụ.3 Kiểm tra điều kiện ổn định 0 =100, Kođ = 4, E =2.104kN/cm2 Giải imin b 12 10 12 2,89cm l imin P=200kN 1.400 138,4 2,89 > 0 dùng Euler Pth th A L= 4m 2E (3,14) 20000 A 150 1544,2kN 2 (138,4) P ôđ Pth 386,1, kN K od 200 kN Thí dụ.4 Xác địmh P để ổn định 15cm 10cm Thanh thỏa điều kiện ổn đinh Chương 11: ổn định Lê đức Thanh T06/2016 Bài giảng Sức Bền Vật Liệu Cho biết : Kođ = 2, E = 2.104kN/cm2,thép có đường kính d=8cm, 0 =100, Giải th l imin 0,7.300 105 0 E (3,14) 20000 17,9kN / cm 2 (105) Pơđ P th A K L= 3m d=8cm 17,9 450kN IV PHƯƠNG PHÁP THỰC HÀNH TÍNH ỔN ĐỊNH THANH CHỊU NÉN 1.Phương pháp tính: Thanh chịu nén cần phải thỏa : Điều kiện bền: o P [ ]n ; với: []n n Agyếu đó: n - hệ số an toàn độ bền Agyếu :diện tích tiết diện giảm ,kG/cm2 yếu(bị khoét lỗ); khơng 2400 kht lỗ Agyếu = A tiết diện nguyên 2000 Điều kiện ổn định: với: [ ]ôđ P [ ]ôđ A th kôđ 140 100 k =1,7 2400 Euler Hyperbola k = 3,5 k k đó: kơđ ( hay k)- hệ số an toàn Đường giới hạn ứng suất ổn định 100 15 20 25 Vì giảm yếu cục số 0 0 Hình.11.7 Hệ số an tồn kơđ cho thép tiết diện có ảnh hưởng khơng đáng kể đến ổn định chung Do tính chất nguy hiểm tượng ổn định xét đến yếu tố không tránh độ cong ban đầu, độ lệch tâm lực nén … nên chọn kôđ > n, k thay đổi phụ thuộc vào độ mảnh Thép xây dựng có kơđ =1,8 3,5 minh họa H.11.7; gang kôđ = 5,5; gỗ kôđ = 2,8 3,2 Để thuận tiện cho tính tốn thực hành, người ta đưa vào khái niệm hệ số uốn dọc hệ số giảm ứng suất cho phép định nghĩa sau: [ ]ôđ th n [ ]n o k < 1, hai tỉ số: Chương 11: ổn định th n k o Lê đức Thanh T06/2016 Bài giảng Sức Bền Vật Liệu từ đó: [ ]ơđ [ ] điều kiện ổn định trở thành: P P [ ]n , hay: [ ]n A A Hay viết: P Pôđ [ ]n A Điều kiện ổn định thoả, điều kiện bền khơng cần kiểm tra Vì < nên thường cần kiểm tra điều kiện ổn định đủ Hệ số = [ E, , k ] cho bảng sau Bảng hệ số thường gặp Độ mảnh 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Thép số 2,3,4 0,92 0,89 0,86 0,81 0,75 0,69 0,60 0,52 0,45 0,40 0,36 0,32 0,29 0,26 0,23 0,21 0,19 Trị số Thép Thép Gang số CK 0,89 0,87 0,69 0,86 0,83 0,54 0,82 0,79 0,44 0,76 0,72 0,34 0,70 0,65 0,26 0,62 0,55 0,20 0,51 0,43 0,16 0,43 0,35 0,36 0,30 0,33 0,26 0,29 0,23 0,26 0,21 0,24 0,19 0,21 0,17 0,19 0,15 0,17 0,14 0,16 0,13 Gỗ 0,87 0,80 0,71 0,60 0,48 0,38 0,31 0,25 0,22 0,18 0,16 0,14 0,12 0,11 0,10 0,09 0,08 Tuy nhiên, có giảm yếu cục liên kết bu lơng, đinh tán… cần kiểm tra hai điều kiện bền ổn định - Điều kiện bền: - Điều kiện ổn định: P [ ]n A P [ ]n A (a) (b) thực tế, thỏa (a) thường thỏa (b) Đối với tốn ổn định có ba toán: P 1.Kiểm tra điều kiện ổn định: [ ]n A 2.Xác định tải trọng cho phép: [P] A [ ]n Chương 11: ổn định Lê đức Thanh T06/2016 Bài giảng Sức Bền Vật Liệu Trong hai tốn trên, tiết diện biết nên suy hệ số theo trình tự: có : A, I 3.Chọn tiết diện: A P [ ]n l (tra bảng) I/ A Việc tìm A phải làm dần, cơng thức chứa hai biến: A (A) Trình tự tìm A sau: P o - Giả thiết: o = 0,5 ; tính được: Ao o [ ]n - Từ o tra bảng ta o' Nếu o' o Ao chọn o 'o Nếu o lấy: 1 P 1 1' 1 [ ]n thường lặp lại q trình tính khoảng -3 lần sai số tương đối hai lần tính đủ nhỏ ( 5%) lúc dừng lại kiểm tra lại điều kiện ổn định với tiết diện vừa tìm ' o A1 Thí dụ : Cho ABC tuyệt đối cứng chịu lực hình vẽ Thanh chống BK có tiết diện tròn làm vật liệu gỗ Hãy chọn d từ điều kiện ổn định Cho biết L=1m, q=5kN/m, P =10kN, [ ]n 1, kN / cm Giải q C A B NBK M / A N KB 5L 6qL 3L P 3L 2P 6L 3L d N KB 48kN K a) Chọn lần thứ nhất: Giả sử lấy 0,38 , A 2P P 3L 2L L P 48 105,26cm [ ]n 1.2 0,38 Ta tính d = 11,6cm , imin= 2,89cm , tính l imin 1.300 103,81 2,89 3,81 0,06 0,287 10 Hệ số khác nhiều với giả sử ban đầu nên ta phải chọn lại b) Chọn lần thứ hai: 48 0,38 0,287 119,76m suy d=12,35cm, imin= 3,09cm 0,334 A 0,334.1,2 1.300 97,09 nội suy từ bảng tra ta tìm Độ mảnh: 3,09 7.09 0,07 0,38 0,330 ≈ 0,334 10 Kiểm tra lại điều kiện ổn định: Từ bảng quan hệ ta nội suy 0,31 Chương 11: ổn định Lê đức Thanh T06/2016 Bài giảng Sức Bền Vật Liệu P [ ]n A 48 1, kN / cm2 = 1,2kN / cm2 0,330 119, 76 : Vậy ta chọn đường kính d=12.5cm Thí dụ Cho ABC có tiết diện hình chữ I.18 có Wx=143cm3, Ix= 1290cm4 chống BK tiết diện hình vành khăn có D=6cm, d=5cm chịu lực hình vẽ Kiểm tra điều kiện ổn định cột chống BK điều kiện bền ABC Cho: L=1m, cột chống vật liệu thép số có [ ] 16 kN / cm , q = 4kN/m, Giải M / A N KB 33 L 12qL2 qL2 N KB qL 4qL q C A a.Kiểm tra điều kiện ổn định 1.300 153,64 Tính : 1 ( ) 3.64 0,03 0,32 0,31 10 B NBK D 3L d K 2L L N od A 0,31 (6 52 ) 16 42,83kN N BK 33kN Nod BK b Điều kiện bền: max M xmax 1800 12,59kN / cm2 Wx 143 Thí dụ7 Cho dầm BCD tuyệt đối cứng, chống CK vật liệu gỗ tiết diện chữ nhật chịu lực hình vẽ Chọn [q ] từ điều kiện ổn định, [ ] n kN / cm P=qL P=qL q D B C Giải M / D N CK 3L 3L 4qL L qL L qL 4L 3,162 NCK 4,92qL h =12cm K .LBC 1 316,2 109,53 0,253 Tính: i 10 12 N od A 0,253 10 12 30,34kN L=1m b=10cm L Điều kiện ổn định : NCK N od CK 4,92qL 30,34kN q 6,17kN / m Chương 11: ổn định 10 Lê đức Thanh T06/2016 2L Bài giảng Sức Bền Vật Liệu Chọn q 6kN / m Thí dụ Cho BCK tuyệt đối cứng ,thanh treo CH có tiết diện tròn đường kính d,thanh chống KH tiết diện vành khăn,gối di động B chịu tác dụng lực H.3 1.Tìm q từ điều kiện bền điều kiện ổn định 2.Tìm chuyển vị đứng điểm Kvới q vừa tìm 3.Nếu thay gối tựa di động B gối cố định Hãy tính lại nội lực Cho:E=20000kN/cm2,vật liệu thép số có [ ] 16 kN / cm , Giải 1)Tìm nội lực M / K 0 N CM 2qL , M / C N a.Điều kiện bền CK : max Tính : KH M d2=2cm L 2qL2 q K C B P=2qL 2L 300 D=6cm H L=1m d=5cm L H.3 3qL 2,31qL N CM 2qL 16kN / cm q 25,12kN / m A CM 1.231 128, 28 0,373 N od 51, 4kN 1 ( ) b Điều kiện ổn định: N HK N od HK 2, 31qL 51, 4kN q 22, 26 kN / m Chọn : q=22kN/m 2)Chuyển vị đứng điểm K: KK / N KH LkH LKH 0,5785cm cos30 EAcos300 3)Nếu B gối cố định tốn siêu tĩnh (vì có 4ẩn số) -Phương trình cân tỉnh học: M / B N CM 3N KH 6qL M (1) q Điều kiện biến dạng : 2LCM KK / LKH LKH o cos30 2qL2 L B (2) K C C/ K/ 2L 30 H N KH L NCM L EACM EA KH Suy Chương 11: ổn định L=1m N CM 16 N KH (2/) 33 11 L H.3 Lê đức Thanh T06/2016 Bài giảng Sức Bền Vật Liệu Từ (2) (2/) Suy NCM 1,32qL N KH 2,7qL Chương 11: ổn định 12 Lê đức Thanh T06/2016 ... dạng cong Sự cân trạng thái thẳng phiếm định Ta nói trạng thái tới hạn H.11.2 giới thiệu thêm vài kết cấu bị ổn định dầm chịu uốn, vành tròn chịu nén đều… Khi xảy ổn định dù dẫn tới sụp đổ tồn... hoại ổn định đột ngột nguy hiểm Trong lịch sử ngành xây dựng xảy thảm họa sập cầu ổn định dàn chịu q>q P > Pth nén cầu Mekhelstein Thụy Sĩ(1891),cầu Lavrentia Mỹ (1907) H 11.2 Các dạng ổn định. .. A K oñ L= 3m d=8cm 17,9 450kN IV PHƯƠNG PHÁP THỰC HÀNH TÍNH ỔN ĐỊNH THANH CHỊU NÉN 1.Phương pháp tính: Thanh chịu nén cần phải thỏa : Điều kiện bền: o P [ ]n ; với: []n n