1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tổng quan về incretin và các ứng dụng trong y dược

95 292 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 95
Dung lượng 3,39 MB

Nội dung

BỘ Y TẾ TRƢỜNG ĐẠI HỌC DƢỢC HÀ NỘI PHAN ANH ĐÀO TỔNG QUAN VỀ INCRETIN CÁC ỨNG DỤNG TRONG Y DƢỢC KHÓA LUẬN TỐT NGHIỆP DƢỢC SĨ HÀ NỘI – 2018 BỘ Y TẾ TRƢỜNG ĐẠI HỌC DƢỢC HÀ NỘI PHAN ANH ĐÀO Mã sinh viên: 1301079 TỔNG QUAN VỀ INCRETIN CÁC ỨNG DỤNG TRONG Y DƢỢC KHÓA LUẬN TỐT NGHIỆP DƢỢC SĨ Người hướng dẫn: TS Đào Thị Mai Anh Nơi thực hiện: Bộ mơn Hóa Sinh HÀ NỘI – 2018 LỜI CẢM ƠN Trong suốt thời gian thực khóa luận tốt nghiệp tơi nhận đƣợc nhiều bảo, lời khuyên hữu ích nhƣ động viên từ thầy cơ, gia đình bạn bè Lời đầu tiên, tơi xin bày tỏ lòng biết ơn sâu sắc tới giáo đáng kính TS Đào Thị Mai Anh, Bộ mơn Hóa Sinh- ngƣời tận tâm hƣớng dẫn, bảo tơi q trình thực hiện, bổ sung đóng góp ý kiến để tơi hồn thiện khóa luận Cơ dạy cho phƣơng pháp nghiên cứu khoa học hiệu quả, khơi gợi tinh thần làm việc khoa học mà bảo nhiều điều sống Tôi xin gửi lời cám ơn tới thầy cô Trƣờng Đại Học Dƣợc Hà Nội, đặc biệt thầy cô mơn Hóa Sinh, trƣờng Đại học Dƣợc Hà Nội Các thầy cô truyền đạt cho kiến thức quý báu nhƣ tạo điều kiện thuận lợi cho tơi q trình hồn thành khóa luận Tôi xin cảm ơn bạn bè anh chị ln sát cánh cho tơi góp ý chân thành hữu ích để tơi hồn thiện khóa luận Cuối cùng, tơi xin cám ơn gia đình ngƣời ln động viên, hỗ trợ tiếp thêm sức mạnh để tơi vƣợt qua khó khăn suốt thời gian thực khóa luận Hà Nội, ngày 18 tháng năm 2018 Sinh Viên Phan Anh Đào MỤC LỤC DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH ẢNH ĐẶT VẤN ĐỀ CHƢƠNG ĐẠI CƢƠNG VỀ CÁC INCRETIN 1.1 LỊCH SỬ NGHIÊN CỨU .3 1.1.1 Sự đời giả thiết trục điều hòa đƣờng ruột- insulin (entero-insular axis) 1.1.2.Nghiên cứu xác định thành phần incretin 1.1.3.Tình hình nghiên cứu incretin giai đoạn 1.2.ĐỊNH NGHĨA 1.3.PHÂN LOẠI CHƢƠNG GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE (GIP) 2.1.CẤU TRÚC PHÂN TỬ CỦA GIP 2.2 GEN MÃ HÓA CHO GIP 2.3 QÚA TRÌNH SINH TỔNG HỢP GIP 2.4 QUÁ TRÌNH BÀI TIẾT GIP CÁC YẾU TỐ ẢNH HƢỞNG .10 2.4.1 Vai trò chất dinh dƣỡng 10 2.4.2 Vai trò hormon yếu tố thần kinh 12 2.5 Q TRÌNH CHUYỂN HĨA THẢI TRỪ CỦA GIP .12 2.6 TÁC DỤNG SINH LÝ CỦA GIP .12 2.6.1 Trên tụy 13 2.6.2 Trên mô mỡ 14 2.6.3 Trên quan đƣờng tiêu hóa 15 2.6.4.Trên quan hệ tim mạch .15 2.6.5 Trên xƣơng 15 2.6.6 Trên hệ thần kinh trung ƣơng .16 2.7 CƠ CHẾ TRUYỀN TÍN HIỆU CỦA GIP 16 2.7.1 Receptor GIP 16 2.7.2 Cơ chế truyền tín hiệu chung GIP 17 2.7.3 Cơ chế tắt tín hiệu GIP 19 CHƢƠNG GLUCAGON-LIKE PEPTIDE (GLP – 1) 20 3.1 CẤU TRÚC PHÂN TỬ CỦA GLP-1 20 3.2 GEN MÃ HÓA CHO GLP-1 20 3.3 QUÁ TRÌNH SINH TỔNG HỢP GLP-1 21 3.4 QUÁ TRÌNH BÀI TIẾT GLP-1 CÁC YẾU TỐ ẢNH HƢỞNG 22 3.4.1 Vai trò chất dinh dƣỡng 23 3.4.2 Vai trò hormon yếu tố thần kinh 25 3.5 Q TRÌNH CHUYỂN HĨA THẢI TRỪ GLP-1 25 3.6 TÁC DỤNG SINH LÝ CỦA GLP-1 26 3.6.1 Trên tuyến tụy .26 3.6.2 Trên mô mỡ 27 3.6.3 Trên gan 27 3.6.4 Trên quan đƣờng tiêu hóa 27 3.6.5 Trên 28 3.6.6 Trên hệ miễn dịch 28 3.6.7 Trên hệ tim mạch 28 3.6.8 Trên xƣơng 29 3.6.9 Trên thận .29 3.6.10 Trên hệ thần kinh trung ƣơng ngoại vi 30 3.7 CƠ CHẾ TRUYỀN TÍN HIỆU CỦA GLP-1 .31 3.7.1 GLP-1 receptor .31 3.7.2 Cơ chế truyền tín hiệu chung GLP-1 .33 3.7.3 Cơ chế tắt tín hiệu GLP-1 36 CHƢƠNG VAI TRÒ CỦA CÁC INCRETIN TRONG MỘT SỐ BỆNH LÝ 37 4.1 TRONG BỆNH ĐÁI THÁO ĐƢỜNG .37 4.2 TRONG BỆNH BÉO PHÌ 39 4.3 TRONG BỆNH ALZHEIMER 40 4.4 TRONG BỆNH PARKINSON 42 4.5 TRONG HỘI CHỨNG CUSHING DO TĂNG TIẾT GIP 44 4.6 TRONG BỆNH GÃY XƢƠNG Ở PHỤ NỮ MÃN KINH 44 4.7 TRONG BỆNH THẬN .44 4.8 TRONG BỆNH GAN NHIỄM MỠ KHÔNG DO CỒN 46 4.9 TRONG BỆNH HEN CĨ LIÊN QUAN ĐẾN BÉO PHÌ 46 4.10 TRONG BỆNH KÉM HẤP THU .46 4.11 TRONG MỘT SỐ BỆNH TIM MẠCH 47 4.12 TRONG BỆNH BUỒNG TRỨNG ĐA NANG .48 4.13 TRONG BỆNH CONGENITAL HYPERINSULINISM (CHI) 48 4.14 TRONG CÁC TRƢỜNG HỢP TĂNG INSULIN QUÁ MỨC Ở NHỮNG BỆNH NHÂN THỰC HIỆN PHẪU THUẬT NỐI THÔNG RUỘT (ROUX-EN-Y GASTRIC BYPASS SURGERY) .48 CHƢƠNG CÁC LOẠI THUỐC THUỘC LIỆU PHÁP INCRETIN 50 5.1 CÁC THUỐC LIÊN QUAN ĐẾN GIP 50 5.2 CÁC THUỐC LIÊN QUAN ĐẾN GLP-1 52 5.3 CÁC THUỐC CHỦ VẬN TRÊN CẢ GIPR GLP-1R 55 5.4 CÁC CHẤT ỨC CHẾ DPP IV 56 5.5 NHÓM THUỐC CHỦ VẬN TRÊN GPR119 57 CHƢƠNG BÀN LUẬN 58 6.1 VỀ CÁC ĐẶC TÍNH HĨA SINH CỦA INCRETIN 58 6.2 VỀ VAI TRÒ ỨNG DỤNG CỦA INCRETIN TRONG Y DƢỢC 59 6.2.1 Về tiềm sử dụng incretin điều trị 59 6.2.2 Về tiềm nhóm thuốc 62 KẾT LUẬN 66 ĐỀ XUẤT 67 TÀI LIỆU THAM KHẢO DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT Tên viết tắt Tên viết tiếng Anh AC adenylate cyclase ADA American Diabetes Association Tên tiếng Việt Hiệp hội đái tháo đƣờng Mỹ AMPK AMP-activated protein kinase ATF-4 activating transcription factor-4 Bad Bcl-2-associated death promoter Bax Bcl2-associated X protein Bcl-2 B-cell lymphoma Bik Bcl2-interacting killer cAMP Cyclic adenosine monophosphate Casp-3 Caspase Casp-9 Caspase CHOP C/EBP (CCAAT/enhancer-binding protein)-homologous protein Cnr-1 Gi- coupled endocannabinoid receptor c-Raf Cellular Raf gene (rapidly accelerated fibrosarcom) CRE cAMP respond element Yếu tố đáp ứng với AMPv CREB cAMP response element binding protein Protein gắn với yếu tố đáp ứng với AMPv DPP IV ĐTĐ dipeptidyl peptidase IV protease Đái Tháo Đƣờng eIF2α eukaryote initiation factor α Epac2 cAMP-regulated guanine nucleotide exchange factor ERK Extracellular signal-regulated kinase FDA Food and Drug Administration Gadd34 growth arrest and DNA damage-inducible protein GEF II Guanine nucleotide exchange factor II GIP glucose-depepdent insulinotropic Polypeptide kích thích polypeptide tiết insulin phụ thuộc nồng độ glucose GIPR Glucose- dependent insulinotropic Receptor GIP polypeptide receptor GLP-1 glucagon-like peptide Peptid có cấu trúc tƣơng tự glucagon GLP-1R Glucagon-like peptide receptor Receptor GLP-1 GLUT Glucose transporter Kênh vận chuyển glucose GPR119/120 long chain fatty acid G-protein coupled Receptor cặp đôi với receptor 119/120 protein G acid béo chuỗi dài 119 120 IRS-2 Insulin receptor substrate KV Voltage-dependent K+ channel Kênh Kali phụ thuộc điện LPL Lipoprotein lipase MAPK Mitogen-activated protein kinase Mcl1 Myeloid cell leukemia protein NEP-24.11 Neutral endopeptidase 24.11 / neprilysin PAM peptidyl-glycine alpha-amidating monooxygenase PBOW Hydraulic pressure in Bowman Áp lực thủy tĩnh bọc Bowman PC1/3 prohormone convertase 1/3 PC2 prohormone convertase PDH Pyruvate dehydrogenase PGLO Hydraulic pressure in glomerular Áp lực thủy tĩnh cầu thận PI3K Phosphoinositide kinase PIP2 Phosphatidylinositol4,5-bisphosphate PKA Protein kinase A PKC Protein kinase C PLA2 Phospholipase A2 Rab2 Member RAS oncogene family Rim Rab-3 interacting molecule Rim Regulating synaptic membrane exocytosis ROS Reactive oxygen species Các gốc oxy hóa SGLT1/2 Sodium-gluco co-transporter Kênh đồng vận chuyển glucose natri VDCCs/ Cav Voltage-dependent calcium channels Kênh calci phụ thuộc điện DANH MỤC CÁC BẢNG STT Tên bảng Số trang Bảng 5.1 Các phƣơng pháp biến đổi cấu trúc thuốc chất chủ vận GIPR có cấu trúc tƣơng tự GIP 50 Bảng 5.2 Các phƣơng pháp biến đổi cấu trúc thuốc chủ vận GLP-1R 52 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Baggio L L., Drucker D J (2007), "Biology of incretins: GLP-1 and GIP", Gastroenterology, 132(6), pp 2131-57 Bailey Clifford J., Tahrani Abd A., et al (2016), "Future glucose-lowering drugs for type diabetes", The Lancet Diabetes & Endocrinology, 4(4), pp 350-359 Ballantyne G H., Gumbs A., et al (2005), "Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin", Obes Surg, 15(5), pp 692-9 Balsano F., Pitucco G., et al (1964), "NEW INTERPRETATION OF ORAL GLUCOSE TOLERANCE", The Lancet, 284(7364), pp 865 Beiroa D., Imbernon M., et al (2014), "GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK", Diabetes, 63(10), pp 3346-58 Bhat V K., Kerr B D., et al (2013), "A novel GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties", Biochem Pharmacol, 85(11), pp 165562 Bhat V K., Kerr B D., et al (2013), "A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice", Diabetologia, 56(6), pp 1417-24 Blaslov K., Bulum T., et al (2014), "Incretin based therapies: a novel treatment approach for non-alcoholic fatty liver disease", World J Gastroenterol, 20(23), pp 7356-65 Boylan Michael O., Jepeal Lisa I., et al (2006), "Sp1 or Sp3 binding is associated with cell-specific expression of the glucose-dependent insulinotropic polypeptide receptor gene", Am J Physiol Endocrinol Metab, 290, pp E1287– E1295 Brown D X., Evans M (2012), "Choosing between GLP-1 Receptor Agonists and DPP-4 Inhibitors: A Pharmacological Perspective", J Nutr Metab, 2012, pp 381713 Brown J C., Dryburgh J R., et al (1975), "Identification and actions of gastric inhibitory polypeptide", Recent Prog Horm Res, 31, pp 487-532 Brunton S (2014), "GLP-1 receptor agonists vs DPP-4 inhibitors for type diabetes: is one approach more successful or preferable than the other?", Int J Clin Pract, 68(5), pp 557-67 Bullock B P., Heller R S., et al (1996), "Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor", Endocrinology, 137(7), pp 2968-78 Campbell J E., Drucker D J (2013), "Pharmacology, physiology, and mechanisms of incretin hormone action", Cell Metab, 17(6), pp 819-37 Chai W., Zhang X., et al (2014), "Glucagon-like peptide recruits muscle microvasculature and improves insulin's metabolic action in the presence of insulin resistance", Diabetes, 63(8), pp 2788-99 Chia C W., Carlson O D., et al (2009), "Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type diabetes", Diabetes, 58(6), pp 1342-9 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Cho N H., Shaw J E., et al (2018), "IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045", Diabetes Res Clin Pract, 138, pp 271-281 Chu Z L., Carroll C., et al (2008), "A role for intestinal endocrine cellexpressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release", Endocrinology, 149(5), pp 2038-47 Clardy-James S., Chepurny O G., et al (2013), "Synthesis, characterization and pharmacodynamics of vitamin-B(12)-conjugated glucagon-like peptide-1", ChemMedChem, 8(4), pp 582-6 Clemmensen Christoffer, Smajilovic Sanela, et al (2013), "Oral l-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice", Endocrinology, 154(11), pp 3978-3983 Compta Y., Parkkinen L., et al (2014), "The significance of alpha-synuclein, amyloid-beta and tau pathologies in Parkinson's disease progression and related dementia", Neurodegener Dis, 13(2-3), pp 154-6 Creutzfeldt W (2005), "The [pre-] history of the incretin concept", Regul Pept, 128(2), pp 87-91 Creutzfeldt W (1979), "The incretin concept today", Diabetologia, 16(2), pp 75-85 Creutzfeldt W., Ebert R (1985), "New developments in the incretin concept", Diabetologia, 28(8), pp 565-573 D'Alessio D., Vahl T., et al (2004), "Effects of glucagon-like peptide on the hepatic glucose metabolism", Horm Metab Res, 36(11-12), pp 837-41 De Leon D D., Li C., et al (2008), "Exendin-(9-39) corrects fasting hypoglycemia in SUR-1-/- mice by lowering cAMP in pancreatic beta-cells and inhibiting insulin secretion", J Biol Chem, 283(38), pp 25786-93 de Wit H M., Te Groen M., et al (2016), "The placebo response of injectable GLP-1 receptor agonists vs oral DPP-4 inhibitors and SGLT-2 inhibitors: a systematic review and meta-analysis", Br J Clin Pharmacol, 82(1), pp 301-14 Deacon C F., Pridal L., et al (1996), "Glucagon-like peptide undergoes differential tissue-specific metabolism in the anesthetized pig", Am J Physiol, 271(3 Pt 1), pp E458-64 Dilan, Athauda, et al (2015), "The glucagon-like peptide (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action", pp Ding K H., Shi X M., et al (2008), "Impact of glucose-dependent insulinotropic peptide on age-induced bone loss", J Bone Miner Res, 23(4), pp 536-43 Ding K H., Zhong Q., et al (2004), "Glucose-dependent insulinotropic peptide: differential effects on hepatic artery vs portal vein endothelial cells", Am J Physiol Endocrinol Metab, 286(5), pp E773-9 Dong J Z., Shen Y., et al (2011), "Discovery and characterization of taspoglutide, a novel analogue of human glucagon-like peptide-1, engineered for sustained therapeutic activity in type diabetes", Diabetes Obes Metab, 13(1), pp 19-25 Drucker D J (2018), "Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1", Cell Metab, 27(4), pp 740-756 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 Drucker D J., Dritselis A., et al (2010), "Liraglutide", Nat Rev Drug Discov, 9(4), pp 267-8 Drucker Daniel J., Nauck Michael A (2006), "The incretin system: glucagonlike peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type diabetes", The Lancet, 368(9548), pp 1696-1705 Duffy A M., Holscher C (2013), "The incretin analogue D-Ala2GIP reduces plaque load, astrogliosis and oxidative stress in an APP/PS1 mouse model of Alzheimer's disease", Neuroscience, 228, pp 294-300 Egefjord L., Gejl M., et al (2012), "Effects of liraglutide on neurodegeneration, blood flow and cognition in Alzheimer s disease - protocol for a controlled, randomized double-blinded trial", Dan Med J, 59(10), pp A4519 Elrick H., Stimmler L., et al (1964), "PLASMA INSULIN RESPONSE TO ORAL AND INTRAVENOUS GLUCOSE ADMINISTRATION", J Clin Endocrinol Metab, 24, pp 1076-82 Ezcurra M., Reimann F., et al (2013), "Molecular mechanisms of incretin hormone secretion", Curr Opin Pharmacol, 13(6), pp 922-7 Faerch K., Torekov S S., et al (2015), "GLP-1 Response to Oral Glucose Is Reduced in Prediabetes, Screen-Detected Type Diabetes, and Obesity and Influenced by Sex: The ADDITION-PRO Study", Diabetes, 64(7), pp 2513-25 Faivre E., Gault V A., et al (2011), "Glucose-dependent insulinotropic polypeptide receptor knockout mice are impaired in learning, synaptic plasticity, and neurogenesis", J Neurophysiol, 105(4), pp 1574-80 Faivre E., Holscher C (2013), "Neuroprotective effects of D-Ala(2)GIP on Alzheimer's disease biomarkers in an APP/PS1 mouse model", Alzheimers Res Ther, 5(2), pp 20 Fayed N., Modrego P J., et al (2011), "Brain glutamate levels are decreased in Alzheimer's disease: a magnetic resonance spectroscopy study", Am J Alzheimers Dis Other Demen, 26(6), pp 450-6 Fehmann H C., Goke R., et al (1995), "Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide", Endocr Rev, 16(3), pp 390-410 Feng P., Zhang X., et al (2018), "Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson's disease", Neuropharmacology, 133, pp 385-394 Finan B., Clemmensen C., et al (2015), "Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multi-agonists", Mol Cell Endocrinol, 418 Pt 1, pp 42-54 Finan B., Ma T., et al (2013), "Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans", Sci Transl Med, 5(209), pp 209ra151 Finan B., Muller T D., et al (2016), "Reappraisal of GIP Pharmacology for Metabolic Diseases", Trends Mol Med, 22(5), pp 359-376 Finan Brian, Clemmensen Christoffer, et al (2015), Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multiagonists, pp Frias J P., Bastyr E J., 3rd, et al (2017), "The Sustained Effects of a Dual GIP/GLP-1 Receptor Agonist, NNC0090-2746, in Patients with Type Diabetes", Cell Metab, 26(2), pp 343-352.e2 68 69 70 71 72 73 74 75 76 77 78 79 80 81 Frossing S., Nylander M., et al (2018), "Effect of liraglutide on ectopic fat in polycystic ovary syndrome: A randomized clinical trial", Diabetes Obes Metab, 20(1), pp 215-218 Fulurija A., Lutz T A., et al (2008), "Vaccination against GIP for the treatment of obesity", PLoS One, 3(9), pp e3163 Garg G., McGuigan F E., et al (2016), "Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: An association analysis of polymorphisms and bone in young and elderly women", Bone Rep, 4, pp 2327 Gault V A., Bhat V K., et al (2013), "A novel glucagon-like peptide-1 (GLP1)/glucagon hybrid peptide with triple-acting agonist activity at glucosedependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice", J Biol Chem, 288(49), pp 35581-91 Gault V A., Kerr B D., et al (2011), "Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type diabetes and obesity", Clin Sci (Lond), 121(3), pp 107-17 Gejl M., Gjedde A., et al (2016), "In Alzheimer's Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial", Front Aging Neurosci, 8, pp 108 Gil-Lozano M., Mingomataj E L., et al (2014), "Circadian secretion of the intestinal hormone GLP-1 by the rodent L cell", Diabetes, 63(11), pp 3674-85 Gjesing A P., Ekstrom C T., et al (2012), "Fasting and oral glucose-stimulated levels of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are highly familial traits", Diabetologia, 55(5), pp 1338-45 Gogebakan O., Andres J., et al (2012), "Glucose-dependent insulinotropic polypeptide reduces fat-specific expression and activity of 11betahydroxysteroid dehydrogenase type and inhibits release of free fatty acids", Diabetes, 61(2), pp 292-300 GOKE.R, FEHMANN.H.C, et al (1991), "Glucagon-like peptide-I (7-36) amide is a new incretin/enterogastrone candidate ", European Journal of Clinical Investigation, 21, pp 135-144 Graaf Cd, Donnelly D., et al (2016), "Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes", Pharmacol Rev, 68(4), pp 954-1013 Greenfield J R., Farooqi I S., et al (2009), "Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type diabetic subjects", Am J Clin Nutr, 89(1), pp 106-113 Gribble F M., Williams L., et al (2003), "A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line", Diabetes, 52(5), pp 1147-54 Grmek Mirko Drazen (1989), "First Steps in Claude Bernard’s Discovery of the Glycogenic Function of the Liver", Diabetes Its Medical and Cultural History: Outlines — Texts — Bibliography, von Engelhardt Dietrich, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 306-319 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Guo C., Huang T., et al (2016), "Glucagon-like peptide improves insulin resistance in vitro through anti-inflammation of macrophages", Braz J Med Biol Res, 49(12), pp e5826 GUSTAVSON STEPHANIE, AARON BURSTEIN, et al (2014), "", vTv, pp H Roger, Unger, et al (1969), "EnteroInsular axis", JAMA Network, 128, pp Hager M V., Johnson L M., et al (2016), "beta-Arrestin-Biased Agonists of the GLP-1 Receptor from beta-Amino Acid Residue Incorporation into GLP-1 Analogues", J Am Chem Soc, 138(45), pp 14970-14979 Han J., Sun L., et al (2014), "Novel coumarin modified GLP-1 derivatives with enhanced plasma stability and prolonged in vivo glucose-lowering ability", Br J Pharmacol, 171(23), pp 5252-64 Han R., Wang X., et al (2015), "Inhibition of dipeptidyl peptidase 8/9 impairs preadipocyte differentiation", Sci Rep, 5, pp 12348 Hara T., Hirasawa A., et al (2011), "Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders", J Pharm Sci, 100(9), pp 3594-601 He M., Guan N., et al (2012), "A continued saga of Boc5, the first non-peptidic glucagon-like peptide-1 receptor agonist with in vivo activities", Acta Pharmacol Sin, 33(2), pp 148-54 Hegazy S K (2015), "Evaluation of the anti-osteoporotic effects of metformin and sitagliptin in postmenopausal diabetic women", J Bone Miner Metab, 33(2), pp 207-12 Henriksen J H., de Muckadell O B (2000), "Secretin, its discovery, and the introduction of the hormone concept", Scand J Clin Lab Invest, 60(6), pp 46371 Herrmann C., Goke R., et al (1995), "Glucagon-like peptide-1 and glucosedependent insulin-releasing polypeptide plasma levels in response to nutrients", Digestion, 56(2), pp 117-26 Heymsfield S B., Wadden T A (2017), "Mechanisms, Pathophysiology, and Management of Obesity", N Engl J Med, 376(15), pp 1492 Hinke S A., Lynn F., et al (2003), "Glucose-dependent insulinotropic polypeptide (GIP): development of DP IV-resistant analogues with therapeutic potential", Adv Exp Med Biol, 524, pp 293-301 Holguin F (2013), "Arginine and nitric oxide pathways in obesity-associated asthma", J Allergy (Cairo), 2013, pp 714595 Holscher C (2018), "Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models", Neuropharmacology, pp Holscher C (2014), "The incretin hormones glucagonlike peptide and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer's disease", Alzheimers Dement, 10(1 Suppl), pp S47-54 Holscher C (2011), "Diabetes as a risk factor for Alzheimer's disease: insulin signalling impairment in the brain as an alternative model of Alzheimer's disease", Biochem Soc Trans, 39(4), pp 891-7 Holst J J (2011), "Postprandial insulin secretion after gastric bypass surgery: the role of glucagon-like peptide 1", Diabetes, 60(9), pp 2203-5 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 Huang X., Yang Z (2016), "Resistin's, obesity and insulin resistance: the continuing disconnect between rodents and humans", J Endocrinol Invest, 39(6), pp 607-15 Hwang J I., Yun S., et al (2014), "Molecular evolution of GPCRs: GLP1/GLP1 receptors", J Mol Endocrinol, 52(3), pp T15-27 Inagaki Nobuya, Seino Yutaka, et al (1989 The Endocrine Society), "Gastric Inhibitory Polypeptide: Structure and ChromosomalLocalization of the Human Gene", (Molecular Endocrinology 3, pp 1014-1021 Irwin N., Gault V A., et al (2005), "Antidiabetic potential of two novel fatty acid derivatised, N-terminally modified analogues of glucose-dependent insulinotropic polypeptide (GIP): N-AcGIP(LysPAL16) and NAcGIP(LysPAL37)", Biol Chem, 386(7), pp 679-87 Ismail S., Dubois-Vedrenne I., et al (2015), "Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by Nterminal acetylation of the agonist", Mol Cell Endocrinol, 414, pp 202-15 Iwasaki K., Harada N., et al (2015), "Free fatty acid receptor GPR120 is highly expressed in enteroendocrine K cells of the upper small intestine and has a critical role in GIP secretion after fat ingestion", Endocrinology, 156(3), pp 837-46 Jalewa J., Sharma M K., et al (2017), "A novel GLP-1/GIP dual receptor agonist protects from 6-OHDA lesion in a rat model of Parkinson's disease", Neuropharmacology, 117, pp 238-248 Jazvinscak Jembrek M., Slade N., et al (2018), "The interactions of p53 with tau and Ass as potential therapeutic targets for Alzheimer's disease", Prog Neurobiol, pp Jensen C B., Pyke C., et al (2018), "Characterization of the Glucagonlike Peptide-1 Receptor in Male Mouse Brain Using a Novel Antibody and In Situ Hybridization", Endocrinology, 159(2), pp 665-675 Jepeal L I., Fujitani Y., et al (2005), "Cell-specific expression of glucosedependent-insulinotropic polypeptide is regulated by the transcription factor PDX-1", Endocrinology, 146(1), pp 383-91 Ji C., Xue G F., et al (2016), "Neuroprotective effects of glucose-dependent insulinotropic polypeptide in Alzheimer's disease", Rev Neurosci, 27(1), pp 6170 Jin T (2008), "Mechanisms underlying proglucagon gene expression", J Endocrinol, 198(1), pp 17-28 Jones R M., Leonard J N., et al (2009), "GPR119 agonists for the treatment of type diabetes", Expert Opin Ther Pat, 19(10), pp 1339-59 Junker A E (2017), "The role of incretin hormones and glucagon in patients with liver disease", Dan Med J, 64(5), pp Kahles F., Meyer C., et al (2014), "GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering", Diabetes, 63(10), pp 3221-9 Kahn S E., Cooper M E., et al (2014), "Pathophysiology and treatment of type diabetes: perspectives on the past, present, and future", Lancet, 383(9922), pp 1068-83 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 Kawanami D., Matoba K., et al (2016), "Incretin-Based Therapies for Diabetic Complications: Basic Mechanisms and Clinical Evidence", Int J Mol Sci, 17(8), pp Khound Rituraj, Taher Jennifer, et al (2017), "GLP-1 Elicits an Intrinsic Gut– Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance", Arteriosclerosis, Thrombosis, and Vascular Biology, pp Kim S J., Nian C., et al (2007), "Resistin is a key mediator of glucosedependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes", J Biol Chem, 282(47), pp 34139-47 Koole C., Pabreja K., et al (2013), "Recent advances in understanding GLP-1R (glucagon-like peptide-1 receptor) function", Biochem Soc Trans, 41(1), pp 172-9 Kreymann B., Williams G., et al (1987), "Glucagon-like peptide-1 7-36: a physiological incretin in man", Lancet, 2(8571), pp 1300-4 Lau J., Bloch P., et al (2015), "Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide", J Med Chem, 58(18), pp 7370-80 Leech C A., Dzhura I., et al (2011), "Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic beta cells", Prog Biophys Mol Biol, 107(2), pp 236-47 Li N., Zhao Y., et al (2016), "Liraglutide ameliorates palmitate-induced endothelial dysfunction through activating AMPK and reversing leptin resistance", Biochem Biophys Res Commun, 478(1), pp 46-52 Li Y., Li L., et al (2016), "Incretin-based therapy for type diabetes mellitus is promising for treating neurodegenerative diseases", Rev Neurosci, 27(7), pp 689-711 Li Y., Liu W., et al (2017), "D-Ala2-GIP-glu-PAL is neuroprotective in a chronic Parkinson's disease mouse model and increases BNDF expression while reducing neuroinflammation and lipid peroxidation", Eur J Pharmacol, 797, pp 162-172 Li Y., Liu W., et al (2016), "Neuroprotective effects of a GIP analogue in the MPTP Parkinson's disease mouse model", Neuropharmacology, 101, pp 25563 Li Y., Zheng X., et al (2017), "Myricetin: a potent approach for the treatment of type diabetes as a natural class B GPCR agonist", Faseb j, 31(6), pp 26032611 Lindgren O., Mari A., et al (2009), "Differential islet and incretin hormone responses in morning versus afternoon after standardized meal in healthy men", J Clin Endocrinol Metab, 94(8), pp 2887-92 Lorenz M., Evers A., et al (2013), "Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity", Bioorg Med Chem Lett, 23(14), pp 4011-8 Lund A (2017), "On the role of the gut in diabetic hyperglucagonaemia", Dan Med J, 64(4), pp Luque M A., Gonzalez N., et al (2002), "Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes", J Endocrinol, 173(3), pp 465-73 Mabilleau G (2017), "Interplay between bone and incretin hormones: A review", Morphologie, 101(332), pp 9-18 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 Mabilleau Guillaume (2015), "Incretins and bone friend or foe", Current Opinion in Pharmacology 22, pp 72–78 MacDonald P E., El-Kholy W., et al (2002), "The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion", Diabetes, 51 Suppl 3, pp S434-42 Malde A K., Srivastava S S., et al (2007), "Understanding interactions of gastric inhibitory polypeptide (GIP) with its G-protein coupled receptor through NMR and molecular modeling", J Pept Sci, 13(5), pp 287-300 Mazzocchi G., Rebuffat P., et al (1999), "Gastric inhibitory polypeptide stimulates glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase-dependent signaling pathway", Peptides, 20(5), pp 589-94 Mazzuco T L., Chabre O., et al (2007), "Aberrant GPCR expression is a sufficient genetic event to trigger adrenocortical tumorigenesis", Mol Cell Endocrinol, 265-266, pp 23-8 McClean P L., Irwin N., et al (2008), "(Pro(3))GIP[mPEG]: novel, longacting, mPEGylated antagonist of gastric inhibitory polypeptide for obesitydiabetes (diabesity) therapy", Br J Pharmacol, 155(5), pp 690-701 McIntosh Christopher H S., Widenmaier Scott, et al (2009), "Chapter 15 Glucose‐Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP)", 80, pp 409-471 McKinnon C M., Ravier M A., et al (2006), "FoxO1 is required for the regulation of preproglucagon gene expression by insulin in pancreatic alphaTC1-9 cells", J Biol Chem, 281(51), pp 39358-69 Meier J J., Goetze O., et al (2004), "Gastric inhibitory polypeptide does not inhibit gastric emptying in humans", Am J Physiol Endocrinol Metab, 286(4), pp E621-5 Meier J J., Nauck M A., et al (2004), "Secretion, degradation, and elimination of glucagon-like peptide and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects", Diabetes, 53(3), pp 654-62 Menendez-Gonzalez M., Padilla-Zambrano H S., et al (2018), "Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer's Disease", Front Aging Neurosci, 10, pp 100 Mentlein R (2009), "Mechanisms underlying the rapid degradation and elimination of the incretin hormones GLP-1 and GIP", Best Pract Res Clin Endocrinol Metab, 23(4), pp 443-52 Mima Akira, Hiraoka-Yamomoto Junko, et al (2012), "Protective Effects of GLP-1 on Glomerular Endothelium and Its Inhibition by PKCb Activation in Diabetes", 61, pp 2967-2979 Mitchell P D., Salter B M., et al (2017), "Glucagon-like peptide-1 receptor expression on human eosinophils and its regulation of eosinophil activation", Clin Exp Allergy, 47(3), pp 331-338 Mortensen K., Christensen L L., et al (2003), "GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine", Regul Pept, 114(2-3), pp 189-96 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 Moss C E., Marsh W J., et al (2012), "Somatostatin receptor and cannabinoid receptor activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents", Diabetologia, 55(11), pp 3094-103 Murphy M P., LeVine H., 3rd (2010), "Alzheimer's disease and the amyloidbeta peptide", J Alzheimers Dis, 19(1), pp 311-23 Muscelli E., Mari A., et al (2008), "Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type diabetic patients", Diabetes, 57(5), pp 1340-8 Muskiet M H A., Tonneijck L., et al (2017), "GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes", Nat Rev Nephrol, 13(10), pp 605-628 Nadkarni P., Chepurny O G., et al (2014), "Regulation of glucose homeostasis by GLP-1", Prog Mol Biol Transl Sci, 121, pp 23-65 Nauck M (2016), "Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors", Diabetes Obes Metab, 18(3), pp 203-16 Nauck M A., Bartels E., et al (1992), "Lack of effect of synthetic human gastric inhibitory polypeptide and glucagon-like peptide [7-36 amide] infused at near-physiological concentrations on pentagastrin-stimulated gastric acid secretion in normal human subjects", Digestion, 52(3-4), pp 214-21 Nguyen D V., Linderholm A., et al (2017), "Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma", Pharmacol Ther, 180, pp 139-143 Nunez D J., Bush M A., et al (2014), "Gut hormone pharmacology of a novel GPR119 agonist (GSK1292263), metformin, and sitagliptin in type diabetes mellitus: results from two randomized studies", PLoS One, 9(4), pp Nyberg J., Anderson M F., et al (2005), "Glucose-dependent insulinotropic polypeptide is expressed in adult hippocampus and induces progenitor cell proliferation", J Neurosci, 25(7), pp 1816-25 Nylander M., Frossing S., et al (2017), "Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: a randomized clinical trial", Reprod Biomed Online, 35(1), pp 121-127 O'Harte F P., Gault V A., et al (2002), "Improved stability, insulin-releasing activity and antidiabetic potential of two novel N-terminal analogues of gastric inhibitory polypeptide: N-acetyl-GIP and pGlu-GIP", Diabetologia, 45(9), pp 1281-91 Opie E L (1901), "THE RELATION OE DIABETES MELLITUS TO LESIONS OF THE PANCREAS HYALINE DEGENERATION OF THE ISLANDS OE LANGERHANS", J Exp Med, 5(5), pp 527-40 Opinto G., Natalicchio A., et al (2013), "Physiology of incretins and loss of incretin effect in type diabetes and obesity", Arch Physiol Biochem, 119(4), pp 170-8 Ørskov C (1992), "Glucagon-like peptide-1, a new hormone of the enteroinsular axis", Diabetologia, 35(8), pp 701-711 Orskov C., Rabenhoj L., et al (1994), "Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans", Diabetes, 43(4), pp 535-9 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 Oya M., Kitaguchi T., et al (2013), "The G protein-coupled receptor family C group subtype A (GPRC6A) receptor is involved in amino acid-induced glucagon-like peptide-1 secretion from GLUTag cells", J Biol Chem, 288(7), pp 4513-21 Paratore S., Ciotti M T., et al (2011), "Gastric inhibitory polypeptide and its receptor are expressed in the central nervous system and support neuronal survival", Cent Nerv Syst Agents Med Chem, 11(3), pp 210-22 Pinto A., Bonucci A., et al (2018), "Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer's Disease", 7(5), pp Plamboeck A., Holst J J., et al (2005), "Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide in the anaesthetised pig", Diabetologia, 48(9), pp 1882-90 Poreba M A., Dong C X., et al (2012), "Role of fatty acid transport protein in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells", Am J Physiol Endocrinol Metab, 303(7), pp E899-907 Portron A., Jadidi S., et al (2017), "Pharmacodynamics, pharmacokinetics, safety and tolerability of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 after single subcutaneous administration in healthy subjects", 19(10), pp 1446-1453 Powell D R., DaCosta C M., et al (2013), "Improved glycemic control in mice lacking Sglt1 and Sglt2", Am J Physiol Endocrinol Metab, 304(2), pp E117-30 Preitner F., Ibberson M., et al (2004), "Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors", J Clin Invest, 113(4), pp 635-45 Pujadas G., Drucker D J (2016), "Vascular Biology of Glucagon Receptor Superfamily Peptides: Mechanistic and Clinical Relevance", Endocr Rev, 37(6), pp 554-583 Qatanani M., Lazar M A (2007), "Mechanisms of obesity-associated insulin resistance: many choices on the menu", Genes Dev, 21(12), pp 1443-55 Qian F., Mathias N., et al (2009), "Pulmonary delivery of a GLP-1 receptor agonist, BMS-686117", Int J Pharm, 366(1-2), pp 218-20 Rao Akhilesh, Nistala Ravi (2014), Is There a Role for the Incretin System in Blood Pressure Regulation?, pp Ravn P., Madhurantakam C., et al (2013), "Structural and pharmacological characterization of novel potent and selective monoclonal antibody antagonists of glucose-dependent insulinotropic polypeptide receptor", J Biol Chem, 288(27), pp 19760-72 Reimer R A., Darimont C., et al (2001), "A human cellular model for studying the regulation of glucagon-like peptide-1 secretion", Endocrinology, 142(10), pp 4522-8 Reitz C., Mayeux R (2014), "Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers", Biochem Pharmacol, 88(4), pp 640-51 Rendell M S (2016), "Albiglutide: a unique GLP-1 receptor agonist", Expert Opin Biol Ther, 16(12), pp 1557-1569 Rocca A S., Brubaker P L (1999), "Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion", Endocrinology, 140(4), pp 1687-94 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 Rogliani P., Calzetta L., et al (2016), "Glucagon-Like Peptide Receptor: A Novel Pharmacological Target for Treating Human Bronchial Hyperresponsiveness", Am J Respir Cell Mol Biol, 55(6), pp 804-814 Rosenfeld L (2002), "Insulin: discovery and controversy", Clin Chem, 48(12), pp 2270-88 Ruby L.C Hoo , Jessica Y.S Chu, et al (2010), "Functional identification of an intronic promoter of the human glucose-dependent insulinotropic polypeptide gene", 463 pp 29–40 Salehi M., Aulinger B., et al (2010), "Effect of endogenous GLP-1 on insulin secretion in type diabetes", Diabetes, 59(6), pp 1330-7 SANCHO VERÓNICA, NUCHE BERNARDO, et al (2007), "The action of GLP-1 and exendins upon glucose transport in normal human adipocytes, and on kinase activity as compared to morbidly obese patients VERÓNICA SANCHO1, BERNARDO NUCHE1, LUIS ARNÉS1, JESÚS CANCELAS1, NIEVES GONZÁLEZ1, MARIANO DÍAZ-MIGUEL2, ANTONIO MARTÍNDUCE3, ISABEL VALVERDE1 and MARÍA L VILLANUEVAPACARRILLO1", INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 19, pp 961-966 Sanford M (2014), "Dulaglutide: first global approval", Drugs, 74(17), pp 2097-103 Scheen A J (2014), "[Bydureon: first once weekly GLP-1 receptor agonist (exenatide LAR)]", Rev Med Liege, 69(4), pp 214-9 Schirra J., Sturm K., et al (1998), "Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans", J Clin Invest, 101(7), pp 1421-30 Schmitt C., Portron A., et al (2017), "Pharmacodynamics, pharmacokinetics and safety of multiple ascending doses of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 in people with type diabetes mellitus", Diabetes Obes Metab, 19(10), pp 1436-1445 Schwenk R W., Baumeier C., et al (2015), "GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice", Diabetologia, 58(3), pp 604-14 Seino Y., Fukushima M., et al (2010), "GIP and GLP-1, the two incretin hormones: Similarities and differences", J Diabetes Investig, 1(1-2), pp 8-23 Seino Y., Ogata H., et al (2015), "Fructose induces glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1 and insulin secretion: Role of adenosine triphosphate-sensitive K(+) channels", J Diabetes Investig, 6(5), pp 522-6 Seino Yusuke, Maekawa Ryuya, et al (2016), "Carbohydrate-induced secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1", Journal of Diabetes Investigation, 7, pp 27-32 Sekar R., Singh K., et al (2016), "Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon", Int Rev Cell Mol Biol, 326, pp 279-341 Selles M C., Oliveira M M., et al (2018), "Brain Inflammation Connects Cognitive and Non-Cognitive Symptoms in Alzheimer's Disease", J Alzheimers Dis, pp 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 Sharma S., Mells J E., et al (2011), "GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy", PLoS One, 6(9), pp e25269 Shimohama S (2000), "Apoptosis in Alzheimer's disease an update", Apoptosis, 5(1), pp 9-16 Shu L., Matveyenko A V., et al (2009), "Decreased TCF7L2 protein levels in type diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function", Hum Mol Genet, 18(13), pp 238899 Speliotes E K., Willer C J., et al (2010), "Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index", Nat Genet, 42(11), pp 937-48 Su H., He M., et al (2008), "Boc5, a non-peptidic glucagon-like Peptide-1 receptor agonist, invokes sustained glycemic control and weight loss in diabetic mice", PLoS One, 3(8), pp e2892 Sun F., Wu S., et al (2015), "Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type diabetes: a systematic review and network meta-analysis", Clin Ther, 37(1), pp 225-241.e8 Svegliati-Baroni G., Saccomanno S., et al (2011), "Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis", Liver Int, 31(9), pp 1285-97 Tai J., Liu W., et al (2018), "Neuroprotective effects of a triple GLP1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer's disease", Brain Res, 1678, pp 64-74 Takamatsu Y., Ho G., et al (2017), "Combined immunotherapy with "antiinsulin resistance" therapy as a novel therapeutic strategy against neurodegenerative diseases", NPJ Parkinsons Dis, 3(4), pp 016-0001 Ten Kulve J S., van Bloemendaal L., et al (2016), "Decreased Hypothalamic Glucagon-Like Peptide-1 Receptor Expression in Type Diabetes Patients", J Clin Endocrinol Metab, 101(5), pp 2122-9 Thondam S K., Daousi C., et al (2017), "Glucose-dependent insulinotropic polypeptide promotes lipid deposition in subcutaneous adipocytes in obese type diabetes patients: a maladaptive response", Am J Physiol Endocrinol Metab, 312(3), pp E224-e233 Tonneijck Lennart, Muskiet Marcel H.A., et al ( 2017), "Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment", J Am Soc Nephrol, 28, pp 1023–1039 Tramutola A., Arena A., et al (2017), "Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer's disease pathology", Expert Rev Neurother, 17(1), pp 59-75 Trujillo J M., Nuffer W., et al (2015), "GLP-1 receptor agonists: a review of head-to-head clinical studies", Ther Adv Endocrinol Metab, 6(1), pp 19-28 Trümper A., Trümper K., et al (2002), Mechanisms of mitogenic and antiapoptotic signaling by glucose-dependent insulinotropic polypeptide in β(INS1)-cells, pp 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 Tsai B., Yue S., et al (2007), "A novel element regulates expression of the proximal human proglucagon promoter in islet cells", Gen Comp Endocrinol, 151(2), pp 230-9 Tsimihodimos V., Elisaf M (2018), "Effects of incretin-based therapies on renal function", Eur J Pharmacol, 818, pp 103-109 Tsukiyama K., Yamada Y., et al (2006), "Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion", Mol Endocrinol, 20(7), pp 1644-51 Turcot V., Lu Y., et al (2018), "Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity", 50(1), pp 26-41 Tysnes O B., Storstein A (2017), "Epidemiology of Parkinson's disease", J Neural Transm (Vienna), 124(8), pp 901-905 Tzotzas T., Karras S N., et al (2017), "Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists in the Treatment of Obese Women with Polycystic Ovary Syndrome", Curr Vasc Pharmacol, 15(3), pp 218-229 Uccellatore A., Genovese S., et al (2015), "Comparison Review of ShortActing and Long-Acting Glucagon-like Peptide-1 Receptor Agonists", Diabetes Ther, 6(3), pp 239-56 Ugleholdt R., Poulsen M L., et al (2006), "Prohormone convertase 1/3 is essential for processing of the glucose-dependent insulinotropic polypeptide precursor", J Biol Chem, 281(16), pp 11050-7 Underwood C R., Knudsen L B., et al (2013), "Development of a cysteinedeprived and C-terminally truncated GLP-1 receptor", Peptides, 49, pp 100-8 Usdin T B., Mezey E., et al (1993), "Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain", Endocrinology, 133(6), pp 2861-70 Ussher J R., Drucker D J (2014), "Cardiovascular actions of incretin-based therapies", Circ Res, 114(11), pp 1788-803 van Bloemendaal L., Ten Kulve J S., et al (2014), "Effects of glucagon-like peptide on appetite and body weight: focus on the CNS", J Endocrinol, 221(1), pp T1-16 Vangaveti Venkat, Shashidhar Venkatesh, et al (2010), "Free fatty acid receptors: emerging targets for treatment of diabetes and its complications", 1, pp 165 175 Vella Adrian (2012), "Mechanism of Action of DPP-4 Inhibitors—New Insights", The Journal of Clinical Endocrinology & Metabolism, 97(8), pp 2626-2628 Vila M., Jackson-Lewis V., et al (2001), "The role of glial cells in Parkinson's disease", Curr Opin Neurol, 14(4), pp 483-9 Vilsboll T., Agerso H., et al (2006), "The elimination rates of intact GIP as well as its primary metabolite, GIP 3-42, are similar in type diabetic patients and healthy subjects", Regul Pept, 137(3), pp 168-72 Vilsboll T., Knop F K., et al (2003), "The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype", J Clin Endocrinol Metab, 88(10), pp 4897-903 Wang R., Reddy P H (2017), "Role of Glutamate and NMDA Receptors in Alzheimer's Disease", J Alzheimers Dis, 57(4), pp 1041-1048 Wang T., Ma X., et al (2017), "The effect of glucose-dependent insulinotropic polypeptide (GIP) variants on visceral fat accumulation in Han Chinese populations", Nutr Diabetes, 7(5), pp e278 Wang X., Liu H., et al (2015), "Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1", Int J Endocrinol, 651757(10), pp 20 Wettergren A., Wojdemann M., et al (1997), "The inhibitory effect of glucagon-like peptide-1 (GLP-1) 7-36 amide on gastric acid secretion in humans depends on an intact vagal innervation", Gut, 40(5), pp 597-601 Wheeler M B., Gelling R W., et al (1999), "Characterization of the carboxylterminal domain of the rat glucose-dependent insulinotropic polypeptide (GIP) receptor A role for serines 426 and 427 in regulating the rate of internalization", J Biol Chem, 274(35), pp 24593-601 White J W., Saunders G F (1986), "Structure of the human glucagon gene", Nucleic Acids Res, 14(12), pp 4719-30 Willard Francis S., Sloop Kyle W (2012), "Physiology and Emerging Biochemistry of the Glucagon-Like Peptide-1 Receptor", Experimental Diabetes Research, 2012, pp 12 Wu T., Bound M J., et al (2013), "Effects of taurocholic acid on glycemic, glucagon-like peptide-1, and insulin responses to small intestinal glucose infusion in healthy humans", J Clin Endocrinol Metab, 98(4), pp E718-22 Wu T., Rayner C K., et al (2016), "Incretins", Handb Exp Pharmacol, 233, pp 137-71 Xiao Changting, Dash Satya, et al (2014), "Sitagliptin, a DPP-4 Inhibitor, Acutely Inhibits Intestinal Lipoprotein Particle Secretion in Healthy Humans", Diabetes, 63(7), pp 2394-2401 Yabe D., Kuroe A., et al (2015), "Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients", J Diabetes Complications, 29(3), pp 413-21 Yaqub Tahir, Tikhonova Irina G., et al (2010), "Identification of Determinants of Glucose-Dependent Insulinotropic Polypeptide Receptor That Interact with N-Terminal Biologically Active Region of the Natural Ligand", Molecular Pharmacology, 77(4), pp 547-558 Yokoi N., Gheni G., et al (2016), "beta-Cell glutamate signaling: Its role in incretin-induced insulin secretion", J Diabetes Investig, Suppl 1, pp 38-43 Yuan Z., Li D., et al (2017), "A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of Parkinson's disease", Eur J Pharmacol, 812, pp 82-90 Zheng T., Yang L., et al (2015), "Plasma DPP4 Activities Are Associated With Osteoporosis in Postmenopausal Women With Normal Glucose Tolerance", J Clin Endocrinol Metab, 100(10), pp 3862-70 243 Xiao C., Dash S., et al (2015), "Gut Peptides Are Novel Regulators of Intestinal Lipoprotein Secretion: Experimental and Pharmacological Manipulation of Lipoprotein Metabolism", Diabetes, 64(7), pp 2310-8 ... 58 6.1 VỀ CÁC ĐẶC TÍNH HĨA SINH CỦA INCRETIN 58 6.2 VỀ VAI TRÒ ỨNG DỤNG CỦA INCRETIN TRONG Y DƢỢC 59 6.2.1 Về tiềm sử dụng incretin điều trị 59 6.2.2 Về tiềm nhóm thuốc...BỘ Y TẾ TRƢỜNG ĐẠI HỌC DƢỢC HÀ NỘI PHAN ANH ĐÀO Mã sinh viên: 1301079 TỔNG QUAN VỀ INCRETIN VÀ CÁC ỨNG DỤNG TRONG Y DƢỢC KHÓA LUẬN TỐT NGHIỆP DƢỢC SĨ Người... chế tác dụng) incretin Tổng hợp phân tích đƣợc vai trò, ứng dụng incretin lĩnh vực Y Dƣợc CHƢƠNG ĐẠI CƢƠNG VỀ CÁC INCRETIN 1.1 LỊCH SỬ NGHIÊN CỨU Lịch sử nghiên cứu incretin trình xuyên suốt từ

Ngày đăng: 29/06/2018, 11:32

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Abdul-Ghani M., DeFronzo R. A. (2017), "Is It Time to Change the Type 2 Diabetes Treatment Paradigm? Yes! GLP-1 RAs Should Replace Metformin in the Type 2 Diabetes Algorithm", 40(8), pp. 1121-1127 Sách, tạp chí
Tiêu đề: Is It Time to Change the Type 2 Diabetes Treatment Paradigm? Yes! GLP-1 RAs Should Replace Metformin in the Type 2 Diabetes Algorithm
Tác giả: Abdul-Ghani M., DeFronzo R. A
Năm: 2017
2. Abushouk A. I., Negida A., et al. (2017), "Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: Future applications in Parkinson's disease", Biomed Pharmacother, 85, pp. 635-645 Sách, tạp chí
Tiêu đề: Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: Future applications in Parkinson's disease
Tác giả: Abushouk A. I., Negida A., et al
Năm: 2017
3. Ahlqvist E., Osmark P., et al. (2013), "Link between GIP and osteopontin in adipose tissue and insulin resistance", Diabetes, 62(6), pp. 2088-94 Sách, tạp chí
Tiêu đề: Link between GIP and osteopontin in adipose tissue and insulin resistance
Tác giả: Ahlqvist E., Osmark P., et al
Năm: 2013
4. Al-Sabah S. (2016), "Molecular Pharmacology of the Incretin Receptors", Med Princ Pract, 25 Suppl 1, pp. 15-21 Sách, tạp chí
Tiêu đề: Molecular Pharmacology of the Incretin Receptors
Tác giả: Al-Sabah S
Năm: 2016
5. Ambati S., Duan J., et al. (2011), "GIP-dependent expression of hypothalamic genes", Physiol Res, 60(6), pp. 941-50 Sách, tạp chí
Tiêu đề: GIP-dependent expression of hypothalamic genes
Tác giả: Ambati S., Duan J., et al
Năm: 2011
6. Amisten S., Salehi A., et al. (2013), "An atlas and functional analysis of G- protein coupled receptors in human islets of Langerhans", Pharmacol Ther, 139(3), pp. 359-91 Sách, tạp chí
Tiêu đề: An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans
Tác giả: Amisten S., Salehi A., et al
Năm: 2013
7. An Zhibo, Prigeon Ronald L., et al. (2013), "Improved Glycemic Control Enhances the Incretin Effect in Patients With Type 2 Diabetes", The Journal of Clinical Endocrinology & Metabolism, 98(12), pp. 4702-4708 Sách, tạp chí
Tiêu đề: Improved Glycemic Control Enhances the Incretin Effect in Patients With Type 2 Diabetes
Tác giả: An Zhibo, Prigeon Ronald L., et al
Năm: 2013
8. Anini Y., Brubaker P. L. (2003), "Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells", Endocrinology, 144(7), pp.3244-50 Sách, tạp chí
Tiêu đề: Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells
Tác giả: Anini Y., Brubaker P. L
Năm: 2003
9. Ara¨²jo Lis Marina de Mesquita, Feguri Sumaya, et al. (2016), "Extra Glycemic Impacts of GLP-1 Receptor Agonists: Benefits of a Class Effect?", Open Journal of Endocrine and Metabolic Diseases, Vol.06No.01, pp. 15 Sách, tạp chí
Tiêu đề: Extra Glycemic Impacts of GLP-1 Receptor Agonists: Benefits of a Class Effect
Tác giả: Ara¨²jo Lis Marina de Mesquita, Feguri Sumaya, et al
Năm: 2016
10. Arnold S. E., Arvanitakis Z., et al. (2018), "Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums", Nat Rev Neurol, 14(3), pp. 168-181 Sách, tạp chí
Tiêu đề: Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums
Tác giả: Arnold S. E., Arvanitakis Z., et al
Năm: 2018
11. Arroyo-Johnson C., Mincey K. D. (2016), "Obesity Epidemiology Worldwide", Gastroenterol Clin North Am, 45(4), pp. 571-579 Sách, tạp chí
Tiêu đề: Obesity Epidemiology Worldwide
Tác giả: Arroyo-Johnson C., Mincey K. D
Năm: 2016
12. Ashrafian H., Athanasiou T., et al. (2011), "Diabetes resolution and hyperinsulinaemia after metabolic Roux-en-Y gastric bypass", Obes Rev, 12(5), pp. e257-72 Sách, tạp chí
Tiêu đề: Diabetes resolution and hyperinsulinaemia after metabolic Roux-en-Y gastric bypass
Tác giả: Ashrafian H., Athanasiou T., et al
Năm: 2011
13. Asmar M., Simonsen L., et al. (2010), "Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans", Diabetes, 59(9), pp. 2160-3 Sách, tạp chí
Tiêu đề: Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans
Tác giả: Asmar M., Simonsen L., et al
Năm: 2010
14. Athauda D., Foltynie T. (2016), "The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action", Drug Discov Today, 21(5), pp. 802-18 Sách, tạp chí
Tiêu đề: The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action
Tác giả: Athauda D., Foltynie T
Năm: 2016
15. Aviles-Olmos I., Dickson J., et al. (2013), "Exenatide and the treatment of patients with Parkinson's disease", J Clin Invest, 123(6), pp. 2730-6 Sách, tạp chí
Tiêu đề: Exenatide and the treatment of patients with Parkinson's disease
Tác giả: Aviles-Olmos I., Dickson J., et al
Năm: 2013
16. Aviles-Olmos I., Dickson J., et al. (2014), "Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson's disease", J Parkinsons Dis, 4(3), pp. 337-44 Sách, tạp chí
Tiêu đề: Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson's disease
Tác giả: Aviles-Olmos I., Dickson J., et al
Năm: 2014
18. Baggio L. L., Drucker D. J. (2007), "Biology of incretins: GLP-1 and GIP", Gastroenterology, 132(6), pp. 2131-57 Sách, tạp chí
Tiêu đề: Biology of incretins: GLP-1 and GIP
Tác giả: Baggio L. L., Drucker D. J
Năm: 2007
19. Bailey Clifford J., Tahrani Abd A., et al. (2016), "Future glucose-lowering drugs for type 2 diabetes", The Lancet Diabetes & Endocrinology, 4(4), pp.350-359 Sách, tạp chí
Tiêu đề: Future glucose-lowering drugs for type 2 diabetes
Tác giả: Bailey Clifford J., Tahrani Abd A., et al
Năm: 2016
20. Ballantyne G. H., Gumbs A., et al. (2005), "Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin", Obes Surg, 15(5), pp. 692-9 Sách, tạp chí
Tiêu đề: Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin
Tác giả: Ballantyne G. H., Gumbs A., et al
Năm: 2005
21. Balsano F., Pitucco G., et al. (1964), "NEW INTERPRETATION OF ORAL GLUCOSE TOLERANCE", The Lancet, 284(7364), pp. 865 Sách, tạp chí
Tiêu đề: NEW INTERPRETATION OF ORAL GLUCOSE TOLERANCE
Tác giả: Balsano F., Pitucco G., et al
Năm: 1964

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w