Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
754,84 KB
Nội dung
ÔNCHẮCĐIỂM – MÔNTOÁN KỲ THI THPT QUỐC GIA 2018Đềsố02 Câu 1: Câu 2: Trong hàm số sau, hàm số hàm số chẵn? A y sin x B y cos x C y tan x x Phương trình cos có nghiệm 5 5 k 2 k 2 A x B x C x D y cot x 5 k 4 D x 5 k 4 Câu 3: Ở vòng chung kết U23 Châu Á 2018 , trận bán kết U23 Việt Nam U23 Qatar hai đội đá luân lưu tranh vé vào đá trận chung kết Huấn luyện viên Park Hang Seo chọn cầu thủ để đá luân lưu Quang Hải, Xuân Trường, Đức Chinh, Văn Đức, Văn Thanh Hỏi huấn luyện viên có cách xếp đặt thứ tự đá luân lưu cho Quang Hải người đá đầu tiên? A 24 (cách) B 120 (cách) C 20 (cách) D (cách) Câu 4: Chọn ngẫu nhiên số có hai chữ số từ số 00 đến 99 Xác suất đểsố lẻ chia hết cho A 0,12 B 0,06 C 0,07 D 0, 05 Câu 5: Cho cấp số nhân un có u1 3 , q A Thứ C Thứ Câu 6: Câu 7: 96 Số số hạng thứ cấp số này? 243 B Thứ D Không phải số hạng cấp số Giới hạn có kết ? 3x 3 x A lim B lim x 1 x x 1 x C lim x 1 10 9 Có tiếp tuyến với đồ thị hàm số y A Câu 9: D lim Tính đạo hàm hàm số y x A y 20 x x B y 10 x Câu 8: 3 x x 1 x x2 B C y 10 x x D y 20 x x 9 x 1 biết hệ số góc tiếp tuyến ? 2x C D Cho hàm số y x x m 1 x 2m Cm Tìm m để tiếp tuyến có hệ số góc nhỏ 1 đồ thị Cm song song với đường thẳng : y x 2 11 A m B m C m D m 11 Câu 10: Trong mặt phẳng với hệ trục tọa độ Oxy Cho phép vị tự tâm I 2;3 tỉ số k 2 biến điểm M 7; thành M có tọa độ A 10; B 20;5 C 18; D 10;5 Câu 11: Cho hình chóp S ABCD có đáy ABCD hình thoi Có cạnh hình chóp chéo với đường thẳng CD A B C D Câu 12: Cho hình chóp S ABCD , có đáy ABCD hình bình hành Gọi O giao điểm AC BD , M trung điểm cạnh SA Mệnh đề sau SAI? A OM // SBC B OM // SCD C BC // SAD D OM // SAC Câu 13: Cho tứ diện ABCD có AB , BC , BD vng góc với đơi Tìm mệnh đề sai A AB CD B BC AD C BD AC D CD AC Câu 14: Cho hình chóp S ABCD , đáy ABCD hình vng có cạnh a SA ABCD Biết SA a Tính góc SC mặt phẳng ABCD A 30 B 45 C 60 D 75 Câu 15: Cho hình lập phương ABCD.A B C D có cạnh a Tính khoảng cách BB A O với O tâm hình vng ABCD A a B a C a D a Câu 16: Cho hàm số y f x có bảng biến thiên sau x y 1 0 y 3 Tìm giá trị cực đại yCĐ giá trị cực tiểu yCT hàm số cho A yCĐ yCT 3 B yCĐ 3 yCT 1 C yCĐ 1 yCT D yCĐ yCT Câu 17: Sốđiểm cực trị đồ thị hàm số y x x là: A B C D Câu 18: Hàm số sau đồng biến khoảng (; )? A y x3 x B y x 1 x2 C y x 1 x2 D y x3 x Câu 19: Cho hàm số y ax bx c có đồ thị hình vẽ bên Mệnh đề đúng? A a 0, b 0, c B a 0, b 0, c C a 0, b 0, c Câu 20: Tìm tất giá trị thực tham số m để hàm số y biến A 1 m B m 1 D a 0, b 0, c x mx (2m 3) x m đồng C m D 1 m Câu 21: Đường thẳng d : y m cắt đồ thị C : y x x bốn điểm phân biệt A 4 m 3 B m 4 Câu 22: Tìm tập xác định D hàm số y log D 4 m C m 3 x log x log x 1 2 A D 1;3 Câu 23: Viết biểu thức A B D 1;1 C D ;3 m a ta m ? b 2 C D 15 b3a , a, b dạng lũy thừa a b 15 B D D 1; 15 Câu 24: Phương trình log x log ( x 1) có tập nghiệm là: A 1;3 B 1;3 Câu 25: Nếu đặt t lg x phương trình A t 3t C 2 D 1 trở thành phương trình nào? lg x lg x B t 2t C t 2t D t 3t Câu 26: Hỏi phương trình 3.2 x 4.3x 5.4 x 6.5x có tất nghiệm thực? A B C D Câu 27: Cho hai hàm số f , g liên tục đoạn [a; b] số thực k tùy ý Trong khẳng định sau, khẳng định sai? A b b b a a a f ( x) g ( x) dx f ( x)dx g ( x)dx b b a a C kf ( x )dx k f ( x)dx B D b a a b f ( x)dx f ( x)dx b b a a xf ( x)dx x f ( x)dx Câu 28: Diện tích hình phẳng giới hạn đồ thị hàm số y e2x , trục hoành hai đường thẳng x , x A e6 2 B e6 2 Câu 29: Nguyên hàm hàm số f ( x) C e6 3 D e6 3 2x A f x dx 2x C B f x dx C f x dx 2x C D f x dx 2 2x C 2x C Câu 30: Tích phân I dx có giá trị sin x A ln B ln Câu 31: Cho hàm số y f x liên tục , C b ln f x dx 2016, a D 1 ln b f x dx 2017 c c f x dx Tính a c c A f x dx 4023 B Câu 32: Biết x 1 C a a f x dx c f x dx 1 c D a f x dx a x2 dx a ln b ln với a , b số hữu tỷ Tính tổng a b 4x A 1 B C D Câu 33: Nếu cho z z số thực khác , mệnh đề sau đúng? A z z B z zi C z; z số thực D Phần ảo z phần ảo z Câu 34: Cho hai số phức z1 3i; z2 i Tìm z1 z2 ? A 13 B 10 C 15 D Câu 35: Cho số phức z thỏa mãn điều kiện i z i z 2i Giá trị 4z i A 26 B 30 C 17 D 15 Câu 36: Tìm tham số thực m để phương trình z m z có nghiệm z i A B C D 2 Câu 37: Một lăng trụ có đáy đa giác n cạnh Trong mệnh đề sau đây, mệnh đề đúng: A Số đỉnh gấp đôi số mặt B Số đỉnh lăng trụ 2n C Số cạnh lăng trụ n D Số mặt lăng trụ n Câu 38: Số mặt hình đa diện ln A Nhỏ số đỉnh đa diện C Lớn số đỉnh đa diện B Lớn D Là số chẵn Câu 39: Cho khối chóp tứ giác có tất cạnh a Tính độ dài đường cao khối chóp A a B a C a D a Câu 40: Cho hình chóp S ABC có đáy ABC tam giác vuông cân A Mặt bên SBC tam giác vuông cân S nằm mặt phẳng vng góc với đáy Tính thể tích khối chóp S ABC , biết AB a a3 A V a3 B V a3 C V a3 D Câu 41: Cho khối nón có bán kính đáy r chiều cao gấp lần bán kính đáy Tính thể tích khối nón cho A 3 B 3 C 2 D 6 Câu 42: Tính diện tích xung quanh hình trụ có bán kính đáy r độ dài đường sinh l A 5 B 5 D 5 C 2 Câu 43: Hình nón có thiết diện qua trục tam giác tích V S hình nón là: A S a B S 4 a C S 2 a Câu 44: Tính diện tích mặt cầu biết bán kính mặt cầu R A S 2 3 a Diện tích xung quanh B S 4 D S a 2 D S C S 2 Câu 45: Trong không gian với hệ tọa độ Oxyz , cho hai điểm A 2; 1;3 B 0;3;1 Tọa độ trung điểm đoạn thẳng AB là: A 1;1; B 2; 4; 2 C 2; 4; D 2; 2; Câu 46: Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng P : x y z Điểm thuộc P A M 2; 1;1 B N 0;1; 2 C P 1; 2; D Q 1; 3; 4 Câu 47: Trong không gian với hệ tọa độ Oxyz , cho mặt cầu S : x 1 y z Tâm I 2 bán kính R S : A I 1; 2; ; R B I 1; 2; ; R C I 1; 2; ; R D I 1; 2; ; R Câu 48: Viết phương trình tham số đường thẳng d qua điểm A 0; 2;1 vng góc với mặt phẳng P : x y z 2t x A d : y 4t z 1 t 2t x B d : y 4t z 1 t x 2t C d : y 4t z 1 t Câu 49: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng : x 2t D d : y 4t z 1 t x y z 1 Phương trình mặt 1 phẳng P qua A 1; 0; vuông góc với A 2 x y z B x y z C x y z D x y z Câu 50: Trong không gian với hệ trục tọa độ Oxyz , phương trình mặt cầu S có tâm nằm đường x y 1 z 1 Q :x y là: thẳng d : tiếp xúc với hai mặt phẳng P : 2x z , A S : x 1 y z 3 B S : x 1 y z 3 C S : x 1 y z 3 D S : x 1 y z 3 2 B 2222 BẢNG ĐÁP ÁN 1.B 11.A 21.A 31.C 41.B C 2.D 12.D 22.A 32.B 42.A 3.A 13.D 23.D 33.D 43.C 4.B 14.B 24.C 34.A 44.A 5.B 15.C 25.A 35.C 45.A 6.B 16.A 26.C 36.C 46.D 7.A 17.C 27.D 37.D 47.A 8.C 18.A 28.B 38.B 48.B 9.C 19.A 29.A 39.A 49.D 10.B 20.A 30.C 40.A 50.A HƯỚNG DẪN GIẢI Câu 1: [1D1-1] Trong hàm số sau, hàm số hàm số chẵn? A y sin x B y cos x C y tan x Lời giải D y cot x Chọn B Nhắc lại kiến thức + Hàm số y sin x hàm số lẻ + Hàm số y cos x hàm số chẵn + Hàm số y tan x hàm số lẻ Câu 2: + Hàm số y cot x hàm số lẻ x [1D1-2] Phương trình cos có nghiệm 5 5 5 k 2 k 2 k 4 A x B x C x 6 D x 5 k 4 Lời giải Chọn D x 5 5 x x k 2 x k 4 cos cos 22 Câu 3: [1D2-1] Ở vòng chung kết U23 Châu Á 2018 , trận bán kết U23 Việt Nam U23 Qatar hai đội đá luân lưu tranh vé vào đá trận chung kết Huấn luyện viên Park Hang Seo chọn cầu thủ để đá luân lưu Quang Hải, Xuân Trường, Đức Chinh, Văn Đức, Văn Thanh Hỏi huấn luyện viên có cách xếp đặt thứ tự đá luân lưu cho Quang Hải người đá đầu tiên? A 24 (cách) B 120 (cách) C 20 (cách) D (cách) Lời giải Chọn A Quang Hải đá Số cách xếp số hốn vị cầu thủ lại Vậy số cách xếp đặt thứ tự 4! 24 cách Câu 4: [1D2-3] Chọn ngẫu nhiên số có hai chữ số từ số 00 đến 99 Xác suất đểsố lẻ chia hết cho A 0,12 B 0,06 C 0,07 Lời giải D 0, 05 Chọn B Phép thử : Chọn số có hai chữ số từ số 00 đến 99 Ta có n C100 100 Biến cố A : Chọn số lẻ chia hết cho Ta có A 09; 27; 45; 63;81;99 n A P A Câu 5: n A 0, 06 n [1D3-2] Cho cấp số nhân un có u1 3 , q A Thứ C Thứ 96 Số số hạng thứ cấp số này? 243 B Thứ D Không phải số hạng cấp số Lời giải Chọn B Giả sử số 96 số hạng thứ n cấp số 243 Ta có: u1.q n1 Vậy số Câu 6: 96 2 3 243 3 n 1 96 n6 243 96 số hạng thứ cấp số 243 [1D4-1] Giới hạn có kết ? 3x 3 x A lim B lim C lim x 1 x x 1 x x 1 x D lim x 1 3 x 2 x Lời giải Chọn B lim x 1 Câu 7: 3x 3x 3x 3 ; lim 3 ; lim 3 ; lim x 1 x x 1 x x 1 x x2 [1D5-1] Tính đạo hàm hàm số y x 10 A y 20 x x B y 10 x 9 C y 10 x x D y 20 x x Lời giải 9 Chọn A 10 y x 10 x x 20 x x Câu 8: [1D5-2] Có tiếp tuyến với đồ thị hàm số y x 1 biết hệ số góc tiếp tuyến 2x ? A B C Lời giải D Chọn C y x 5 Gọi x0 hồnh độ tiếp điểm Ta có f x0 x0 1 x x 4 x0 5 Vậy có tiếp tuyến thỏa đề Câu 9: [1D5-3] Cho hàm số y x x m 1 x 2m Cm Tìm m để tiếp tuyến có hệ số góc nhỏ 1 đồ thị Cm song song với đường thẳng : y x 2 11 A m B m C m D m 11 Lời giải Chọn C y 3x x m 2 7 Ta có y x m m 3 3 Tiếp tuyến điểm có hồnh độ x có hệ số góc nhỏ hệ số góc k m 3 1 Ta lại có tiếp tuyến song song với đường thẳng : y x k m 2 m Câu 10: 11 [1H1-2] Trong mặt phẳng với hệ trục tọa độ Oxy Cho phép vị tự tâm I 2;3 tỉ số k 2 biến điểm M 7; thành M có tọa độ A 10; Chọn B B 20;5 C 18; Lời giải D 10;5 x 20 x kx 1 k a x 2 7 1 Tọa độ điểm M là: y y ky 1 k b y 2.2 1 Câu 11: [1H2-1] Cho hình chóp S ABCD có đáy ABCD hình thoi Có cạnh hình chóp chéo với đường thẳng CD A B C D Lời giải Chọn A S A D O B C Có đường thẳng dựng cạnh hình chóp mà chéo với đường thẳng CD SA, SB Câu 12: [1H2-2] Cho hình chóp S ABCD , có đáy ABCD hình bình hành Gọi O giao điểm AC BD , M trung điểm cạnh SA Mệnh đề sau SAI? A OM // SBC B OM // SCD C BC // SAD D OM // SAC Lời giải Chọn D S M A D O B C D sai OM SAC Câu 13: [1H3-1] Cho tứ diện ABCD có AB , BC , BD vng góc với đơi Tìm mệnh đề sai A AB CD B BC AD C BD AC D CD AC Lời giải Chọn D A B C Tam giác ACD tam giác nhọn nên CD AC sai Câu 14: D [1H3-2] Cho hình chóp S ABCD , đáy ABCD hình vng có cạnh a SA ABCD Biết SA a Tính góc SC mặt phẳng ABCD A 30 B 45 C 60 D 75 Lời giải Chọn B S Ta có: SA ABCD SA AC SC ; ABCD SCA A D a ABCD hình vuông cạnh a AC a α Và SA a C B 45 Câu 15: [1H3-3] Cho hình lập phương ABCD.A B C D có cạnh a Tính khoảng cách BB A O với O tâm hình vng ABCD A a B a C a D Lời giải Chọn C OB OA OB AA C C Ta có: OB đoạn vuông OB BB góc chung BB A O Vậy d BB ; A O OB B' D' BD a 2 1 C B O D [2D1-1] Cho hàm số y f x có bảng biến thiên sau x y y C' A' A Câu 16: a 0 3 Tìm giá trị cực đại yCĐ giá trị cực tiểu yCT hàm số cho A yCĐ yCT 3 B yCĐ 3 yCT 1 C yCĐ 1 yCT D yCĐ yCT Lời giải Chọn A Câu 17: [2D1-1] Sốđiểm cực trị đồ thị hàm số y x x là: A B C D Lời giải Chọn C Ta có a.b nên đồ thị hàm số có cực trị Câu 18: [2D1-2] Hàm số sau đồng biến khoảng (; )? x 1 x 1 A y x3 x B y C y x2 x2 D y x3 x Lời giải Chọn A Loại đáp án B, C hàm biến có đồng biến đồng biến khoảng xác định Loại đáp án D phương trình y có hai nghiệm phân biệt Câu 19: [2D1-2] Cho hàm số y ax bx c có đồ thị hình vẽ bên Mệnh đề đúng? A a 0, b 0, c B a 0, b 0, c C a 0, b 0, c Lời giải Chọn A Nhìn hình dáng đồ thị hàm số a Đồ thị có điểm cực trị a, b dấu b Giao với trục Oy điểmnằm trục hoành c D a 0, b 0, c Câu 20: [2D1-3] Tìm tất giá trị thực tham số m để hàm số y đồng biến A 1 m B m 1 x mx (2m 3) x m C m D 1 m Lời giải Chọn A y ' x 2mx 2m Hàm số đồng biến y ' 0, x y m2 2m 1 m Câu 21: [2D1-2] Đường thẳng d : y m cắt đồ thị C : y x x bốn điểm phân biệt A 4 m 3 B m 4 D 4 m C m 3 Lời giải Chọn A Ta có x y x x; y x 1 Bảng biến thiên Đường thẳng d : y m cắt C bốn điểm phân biệt 4 m 3 Vậy Chọn 4 m 3 Câu 22: [2D2-3] Tìm tập xác định D hàm số y log x log x log x 1 2 A D 1;3 B D 1;1 C D ;3 D D 1; Lời giải Chọn A x 1 x 1 Hàm số xác định 3 x x x Vậy tập xác định D 1;3 x 1 x Câu 23: [2D2-2] Viết biểu thức b3a , a, b dạng lũy thừa a b m a ta m ? b A 15 B 15 C D 2 15 Lờigiải Chọn D Ta có Câu 24: 1 b a b 15 a a a 15 a a b a b b b b 15 [2D2-2] Phương trình log x log ( x 1) có tập nghiệm là: A 1;3 B 1;3 C 2 D 1 Lời giải Chọn C x x x PT x x 1 x log x( x 1) x x x 2 Câu 25: [2D2-2] Nếu đặt t lg x phương trình A t 3t B t 2t trở thành phương trình nào? lg x lg x C t 2t Lời giải D t 3t Chọn A Nếu đặt t lg x ta t t t t 4t 2t 10 t 2t t t 3t Câu 26: [2D2-3] Hỏi phương trình 3.2 x 4.3x 5.4 x 6.5x có tất nghiệm thực? A B C Lời giải D Chọn C x x x 2 3 4 pt 5 5 5 x x x 2 3 4 Xét hàm số f x liên tục 5 5 5 x x x 2 3 4 Ta có: f x ln ln ln 0, x 5 5 5 5 Do hàm số lng nghịch biến mà f , f 22 nên phương trình f x có nghiệm Câu 27: [2D3-2] Cho hai hàm số f , g liên tục đoạn [a; b] số thực k tùy ý Trong khẳng định sau, khẳng định sai? b A b b b f ( x) g ( x) dx f ( x)dx g ( x)dx a a b b a a B a a C kf ( x )dx k f ( x)dx a f ( x)dx f ( x )dx b b b a a xf ( x)dx x f ( x)dx D Lời giải Chọn D Ta có Câu 28: b b a a xf ( x)dx x f ( x)dx [2D3-2] Diện tích hình phẳng giới hạn đồ thị hàm số y e2x , trục hoành hai đường thẳng x , x A e6 2 B e6 2 e6 3 C D e6 3 Lời giải Chọn B 3 e6 Ta có e2 x đoạn [0;3] nên S e x dx e x dx e x 2 0 Câu 29: [2D3-2] Nguyên hàm hàm số f ( x) 2x A f x dx 2x C B f x dx C f x dx 2x C D f x dx 2 2x C 2x C Lời giải Chọn A Ta có 1 d 2x 1 dx 2x C 2x 2x Câu 30: [2D3-2] Tích phân I dx có giá trị sin x A ln B ln C Lời giải Chọn C ln D 1 ln x x cos sin dx 2 dx cot x tan x dx I x x 2 sin x 2sin cos 3 2 2 x x2 2 3 ln sin ln cos ln ln ln ln ln 2 2 2 Câu 31: [2D3-3] Cho hàm số y f x liên tục , b f x dx 2016, a b f x dx 2017 c c Tính f x dx a c c A f x dx 4023 a B c f x dx C a f x dx 1 c D a f x dx a Lời giải Chọn C b Ta có a c c b a f ( x )dx f ( x )dx f ( x )dx nên Câu 32: [2D3-3] Biết x 1 c f ( x)dx 2016 2017 1 a x2 dx a ln b ln với a , b số hữu tỷ 4x Tính tổng a b A 1 B C D Lời giải Chọn B 0 0 x2 1 x2 d x 1 x x 1 x 1 x 5 dx 1 x x dx ln x ln x 1 1 ln1 ln ln ln ln ln 2 1 Suy a ; b Vậy tổng a b 2 Câu 33: [2D4-1] Nếu cho z z số thực khác , mệnh đề sau đúng? A z z B z zi C z; z số thực D Phần ảo z phần ảo z Lời giải Chọn D z z số thực khác chúng có phần ảo đối Câu 34: [2D4-1] Cho hai số phức z1 3i; z2 i Tìm z1 z2 ? A 13 B 10 C 15 Lời giải D Chọn A Ta có: z1 z2 1 3i i 2i nên z1 z2 32 22 13 Câu 35: [2D4-2] Cho số phức z thỏa mãn điều kiện i z i z 2i Giá trị 4z i A 26 B 30 C 17 Lời giải D 15 Chọn C Ta có: i z i z 2i 2 2i z 2i z Câu 36: 2i 5 i z i z i 1 5i i 1 4i 17 2i 4 4 [2D4-2] Tìm tham số thực m để phương trình z m z có nghiệm z i A B C Lời giải D 2 Chọn C Thay z i vào phương trình, ta 1 i m 1 i 4 m m 2i i 2i m mi m m i 4 m Câu 37: [2H1-1] Một lăng trụ có đáy đa giác n cạnh Trong mệnh đề sau đây, mệnh đề đúng: A Số đỉnh gấp đôi số mặt B Số đỉnh lăng trụ 2n C Số cạnh lăng trụ n D Số mặt lăng trụ n Lời giải Chọn D Học sinh chọn lăng trụ tam giác để minh chứng câc đáp án Câu 38: [2H1-1] Số mặt hình đa diện ln A Nhỏ số đỉnh đa diện B Lớn C Lớn số đỉnh đa diện D Là số chẵn Lời giải Chọn B Khối tứ diện khối đa diện có số mặt nhỏ Khối lập phương có số mặt số đỉnh Khối bát diện có số mặt nhiều số đỉnh Khối chóp tứ giác có mặt Câu 39: [2H1-2] Cho khối chóp tứ giác có tất cạnh a Tính độ dài đường cao khối chóp A a a B a C D a Lời giải Chọn A S A D O B C Hình chóp tứ giác S ABCD có cạnh đáy a nên diện tích đáy a Gọi O tâm hình vng SO chiều cao hình chóp 2 a a AC SO SA2 AO SA2 a 2 Câu 40: [2H1-2] Cho hình chóp S ABC có đáy ABC tam giác vng cân A Mặt bên SBC tam giác vuông cân S nằm mặt phẳng vng góc với đáy Tính thể tích khối chóp S ABC , biết AB a A V a3 B V a3 C V a3 D a3 Lời giải Chọn A S A B I C Gọi I trung điểm BC Ta có SI SAB SI 1 1 BC AB a 2 a ; S ABC AB a 22 Vậy thể tích khối chóp VS ABC Câu 41: a3 a.a 3 [2H2-2] Cho khối nón có bán kính đáy r chiều cao gấp lần bán kính đáy Tính thể tích khối nón cho A 3 B 3 C 2 Lời giải D 6 Chọn B 1 Ta có S d r 3 , h 2r V Bh 3 3 3 Câu 42: [2H2-1] Tính diện tích xung quanh hình trụ có bán kính đáy r độ dài đường sinh l A 5 B 5 D 5 C 2 Lời giải Chọn A Áp dụng cơng thức tính diện tích xung quanh hình trụ: S xq 2 rl 2 2.2 8 Câu 43: [2H2-3] Hình nón có thiết diện qua trục tam giác tích V 3 a Diện tích xung quanh S hình nón là: A S a B S 4 a C S 2 a D S a Lời giải Chọn C Thiết diện trục tam giác nên hình nón có l 2R h R 3 1 a R h R 3 R3 a3 R a 3 Vậy diện tích xung quanh hình nón là: S xq Rl 2 a Lại có V Câu 44: [2H2-1] Tính diện tích mặt cầu biết bán kính mặt cầu R A S 2 B S 4 C S 2 Lời giải D S Chọn A 2 Ta có: S 4 R 4 2 Câu 45: [2H3-1] Trong không gian với hệ tọa độ Oxyz , cho hai điểm A 2; 1;3 B 0;3;1 Tọa độ trung điểm đoạn thẳng AB là: A 1;1; B 2; 4; 2 C 2; 4; Lời giải Chọn A Tọa độ trung điểm đoạn thẳng AB điểm 1;1; D 2; 2; Câu 46: [2H3-1] Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng P : x y z Điểm thuộc P A M 2; 1;1 B N 0;1; 2 C P 1; 2; D Q 1; 3; 4 Lời giải Chọn D Dễ thấy 2.1 3 4 điểm Q thuộc P Câu 47: [2H3-1] Trong không gian với hệ tọa độ Oxyz , cho mặt cầu S : x 1 y z 2 Tâm I bán kính R S : A I 1; 2; ; R B I 1; 2; ; R C I 1; 2; ; R D I 1; 2; ; R Lời giải Chọn A Từ phương trình mặt cầu S suy mặt cầu S có tâm I 1; 2; bán kính R Câu 48: [2H3-2] Viết phương trình tham số đường thẳng d qua điểm A 0; 2;1 vng góc với mặt phẳng P : x y z 2t x A d : y 4t z 1 t 2t x B d : y 4t z 1 t x 2t C d : y 4t z 1 t x 2t D d : y 4t z 1 t Lời giải Chọn B x 2t Qua A 0; 2;1 d : nên d : y 4t vtcp u 2; 4; 1 z 1 t Câu 49: [2H3-2] Trong không gian với hệ tọa độ Oxyz , cho đường thẳng : x y z 1 Phương 1 trình mặt phẳng P qua A 1; 0; vng góc với A 2 x y z B x y z C x y z D x y z Lời giải Chọn D Mặt phẳng P qua A 1; 0; vng góc với nên P có vectơ pháp tuyến u 1;1; , có phương trình: 1 x 1 y z z y z Câu 50: [2H3-3] Trong không gian với hệ trục tọa độ Oxyz , phương trình mặt cầu S có tâm nằm x y 1 z tiếp xúc với hai mặt phẳng 1 Q :x y là: d : đường thẳng P : 2x z , A S : x 1 y z 3 B S : x 1 y z 3 C S : x 1 y z 3 D S : x 1 y z 3 2222 Lời giải Chọn A Gọi O tâm mặt cầu S , O d O t ;1 t ; t Mặt cầu tiếp xúc với hai mặt phẳng P Q nên 2.t t d O, P d O , Q 22 1 t 1 t 12 2 02 t t t Khi O 1; 2;3 R d O, P d O, Q Vậy S : x 1 y z 2 Hết 22 ... mệnh đề sau đây, mệnh đề đúng: A Số đỉnh gấp đôi số mặt B Số đỉnh lăng trụ 2n C Số cạnh lăng trụ n D Số mặt lăng trụ n Câu 38: Số mặt hình đa diện ln A Nhỏ số đỉnh đa diện C Lớn số đỉnh... [1D 3-2 ] Cho cấp số nhân un có u1 3 , q A Thứ C Thứ 96 Số số hạng thứ cấp số này? 243 B Thứ D Không phải số hạng cấp số Lời giải Chọn B Giả sử số 96 số hạng thứ n cấp số 243 Ta có:... Chọn A Quang Hải đá Số cách xếp số hốn vị cầu thủ lại Vậy số cách xếp đặt thứ tự 4! 24 cách Câu 4: [1D 2-3 ] Chọn ngẫu nhiên số có hai chữ số từ số 00 đến 99 Xác suất để số lẻ chia hết cho A