1. Trang chủ
  2. » Giáo án - Bài giảng

Bài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giải

32 213 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 720,62 KB

Nội dung

Bài tập VECTƠ TRONG KHÔNG GIAN Bài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giảiBài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giảiBài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giảiBài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giảiBài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giảiBài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giảiBài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giảiBài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giải

TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN CÁC DẠNG TỐN THƢỜNG GẶP VỀ PHÉP DỜI HÌNH- BIẾN HÌNH BÀI TỐN : QUỸ TÍCH CỦA ĐIỂM I.PHÉP TỊNH TIẾN Bài toán : Cho hình H , hình H có điểm M Tìm quỹ tích điểm M hình H có điểm A thay đổi ( Thường điểm A chạy đường (C ) cho sẵn ) Cách giải : - Dựa vào tính chất biết , ta tìm véc tơ cố dịnh nằm hình H ( Với điều kiện : véc tơ có phương song song với đường thẳng kẻ qua A ) - Sau dựa vào định nghĩa phép tịnh tiến ta suy M ảnh A qua phép tịnh tiến theo véc tơ cố định - Dựa vào tính chất thay đổi A ta suy giới hạn quỹ tích Ví dụ 1: Cho hai điểm B,C cố định nằm (O,R) điểm A thay đổi đường trịn Chứng minh trực tâm tam giác ABC nằm đường tròn cố định Giải - Kẻ đường kính BB’ Nếu H trực tâm của tam giác ABC AH=B’C Do C,B’ cố  định , B’C véc tơ cố định  AH  B ' C Theo định nghĩa phép tịnh tiến điểm A biến thành điểm H Nhưng A lại chạy (O;R)cho nên H chạy  đường tròn (O’;R) ảnh (O;R) qua phép tịnh tiến dọc theo v  B ' C - Cách xác định đường tròn (O’;R) Từ O kẻ đường thẳng song song với B’C Sau   dựng véc tơ : OO '  B ' C Cuối từ O’ quay đường trịn bán kính R từ tâm O’ ta đường trịn cần tìm Ví dụ Cho hình bình hành ABCD có hai đỉnh A,B cố định , đỉnh C chạy đường tròn (O;R) Tìm quỹ tích đỉnh D C thay đổi Giải :  - Theo tínhchất hình bình hành : BA=DC  AB  CD Nhưng theo giả thiết A,B cố định   , AB cố định Ví C chạy (O;R) , D ảnh C qua phép tịnh tiến theo AB , D chạy đường tròn O’ ảnh đường tròn O   - Cách xác định (O’) : Từ O kẻ đường thẳng // với AB , sau dựng véc tơ OO '  AB Từ O’ quay đường trịn bán kính R , đường trịn quỹ tích D Ví dụ Cho hai đường tròn (O;R) (O’;R’) với hai điẻm A,B Tìm điểm M   (O;R) điểm M’ (O’R’) cho MM '  AB Giải a Giả sử ta lấy điểm M (O;R) Theo giả thiết , M’ ảnh M qua phép tịnh  tiến theo véc tơ AB Nhưng M chạy (O;R) M’ chạy đường tròn ảnh (O;R) qua phép tịnh tiến Mặt khác M’ chạy (O’;R’) M’ giao đường trịn ảnh với đường tròn (O’;R’) b/ Tương tự : Nếu lấy M’ thuộc đường trịn (O’;R’) ta tìm N (O;R) giao (O;R) với đường tròn ảnh (O’;R’) qua phép tịnh tiến theo véc tơ AB c/ Số nghiệm hình số giao điểm hai đường tròn ảnh với hai đường tròn cho Trang Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Ví dụ Cho đường trịn (O) đường kính AB cố định Một đường kính MN thay đổi Các đường thẳng AM AN cắt tiếp tuyến B P,Q Tìm quỹ tích trực tâm tam giác MPQ NPQ ? Giải - Tam giác MPQ có QA đường cao , ta kẻ MM’ vng góc với PQ MM’ cắtQA trực tâm H OA đường trung bình tam giác MNH suy :     MH  2OA  BA Vậy phép tịnh tiến theo BA biến điểm M thành điểm H Nhưng M chạy (O;AB) H chạy đường tròn ảnh (O;AB) qua phép tịnh tiến  BA - Tương tự tam giác NPQ - Giới hạn quỹ tích Do M không trùng với A,B đường tròn ảnh bỏ hai điểm ảnh A,B PHÉP ĐỐI XỨNG TRỤC Bài tốn : Cho hình H điểm A thuộc hình H thay đổi Tìm quỹ tích điểm M A thay đổi Cách giải  Bước 1: Xét vị trí A M Sau dó tìm H có đường thẳng cố định trung trực đoạn thẳng AM ( Chính trục đối xứng )  Nếu A chạy đường (C ) , theo tính chất phép dối xứng trục , M chạy đường (C’) ảnh (C ) qua phép đối xứng trục Ví dụ ( Bài 10-tr13-HH11NC ) Cho hai điểm B,C cố định nằm đường tròn (O;R) điểm A thay đổi đường trịn Hãy dùng phép đối xứng trục để chứng minh trực tâm H nằm đường tròn cố định Giải - Vẽ hình Gọi H giao ba đường cao tam giác ABC Kéo dài AH cắt (O;R) H’ Nối CH’ - Chứng minh IH=IH’ Thật Ta có : A  BCH ' ( Góc nội tiếp chẵn cung BH’ ).(1) CH  AB  A  BCH   Từ (1) (2) suy : BCH  BCH ' CI  AH ' Mặt khác :  Chứng tỏ tam giác HCH’ tam giác cân Do BC vng góc với HH’ , BC đường trung trực HH’ Hay H H’ đối xứng qua BC Cho nên A chạy đường trịn (O;R) H’ chạy (O;R) H chạy đường tròn (O’;R) ảnh đường tròn (O;R) qua phép đối xứng trục BC - Giới hạn quỹ tích : Khi A trùng với B C tam giác ABC suy biến thành đường thẳng Vì đường trịn (O’;R) bỏ điểm ảnh B,C * Chú ý : Ta cịn có cách khác chứng minh H H’ đối xứng qua BC - Kẻ AA’ ( đường kính (O) ) suy BHCA’ hình bình hành , BC qua trung điểm I A’H - A’H’ song song với BC ( vng góc với AH ) - Từ suy BC đường trung bình tam giác AHH’ – Có nghĩa BC qua trung điểm HH’ Mặt khác AH vng góc với BC suy BC trục đối xứng HH’ , hay H H’ đối xứng qua BC Ví dụ Cho tam giác ABC có trực tâm H a/ Chứng minh đường trịn ngoại tiếp tam giác HAB,HBC,HCA có bán kính Trang Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN b/ Gọi O1 , O2 , O3 tâm đường trịn nói Chứng minh đường tròn qua ba điểm O1 , O2 , O3 đường tròn ngoại tiếp tam giác ABC Giải a/ Giả sử O1 tâm đường trịn ngoại tiếp tam giác HBC , theo taons ví dụ O1 ảnh (O) qua phép đối xứng trục BC Cho nên bán kính chúng Tương tự hai đường tròn ngoại tiếp hai tam giác lại có bán kính bán kính (O) b/ Ta hoàn toàn chứng minh O1 , O2 , O3 ảnh O qua phép đối xứng trục BC,CA,AB Vì bán kính đường trịn Mặt khác ta chứng minh tam giác ABC tam giác O1O2O3 PHÉP QUAY VÀ PHÉP ĐỐI XỨNG TÂM Bài tốn : Cho hình H điểm M thay đổi đường (C ) ( thuộc H ) Tìm quỹ tích điểm N M thay đổi Cách giải :  Bước 1: Tìm điểm I cố định cho I trung điểm MN  Bước 2: Dựa vào tính chất phép đối xứng tâm I ta suy quỹ tích N Ví dụ ( tốn 2-tr17-HH11NC) Cho đường trịn (O;R) hai điểm A,B cố định Với điểm M , ta xác định điểm M’    cho MM '  MA  MB Tìm quỹ tích điểm M’ điểm M chạy (O;R) Giải -Gọi I trung điểm của AB Theo tính chất véc tơ trung tuyến :    MA  MB  2MI , suy : MM '  2MI Có nghĩa I trung điểm MM’ - Ví A,B cố định , I cố định Do DI : M  M ' Nhưng M chạy (O;R) M’ ảnh M qua phép đối xứng tâm I chạy đường tròn ảnh (O;R) - Cách xác định (O’;R) sau : Nối IO kéo dài , đặt IO’=IO Sau lấy O’ làm tâm , quay đường trịn có bán kính R Ví dụ ( Bài 17-tr19-HH11NC) Cho hai điểm B,C cố định đường tròn (O;R)và điểm A thay đổi đường trịn Hãy dùng phép đối xứng tâm để chứng minh trực tâm H tam giác ABC nằm đường tròn cố định ( Hay : tìm quỹ tích H A thay đổi ) Giải - Vẽ hình theo giả thiết cho Nối đường kính AM , tìm vị trí H Ta thấy CH ∟AB MB∟AB suy CH//BM Tương tự BH//MC tứ giác BHCM hình bình hành , đoa hai đường chéo BC MH cắt trung điểm I BC - Do B,C cố định I cố định Vậy H ảnh M qua phép đối xứng tâm I Mặt khác M chạy (O;R) H chạy đường tròn (O’;R) ảnh (O;R) qua phép đối xứng tâm I Ví dụ ( Bài 34-tr10-BTHH11NC) Cho đường thẳng a điểm G không nằm a Với điểm A nằm a ta dựng tam giác ABC có tâm G Tìm quỹ tích hai điểm B C A chạy a? Giải Trang Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN - Vẽ hình Từ hình vẽ tính chất tam giác ta thấy góc AGC  AGB  1200 Như phép quay tâm G với góc quay   1200 bién A thành C biến A thành B Nhưng A chạy d B C chạy đường thẳng d’ ảnh d qua phép quay   1200 Ví dụ ( Bài 35-tr10-BTHH11NC) Cho đường tròn (O) tam giác ABC Một điểm M thay đổi (O) Gọi M điểm đối xứng với M qua A, M điểm đối xứng với M qua B M điểm đối xứng với M qua C Tìm quỹ tích điểm M ? Giải - Vẽ hình Từ hình vẽ ta có : Do M , M đối xứng qua B BM1  BM 1 - Vì M M đối xứng qua C : CM  CM (2) Từ (1) (2) chứng tỏ BC đường trung bình tam giác M1M M , có nghĩa BC// M1M (3) - Gọi D trung điểm M M AD đường trung bình tam giác MM1M  AD / / M1M (4) Từ (3) (4) suy AD//BC tứ giác ABCD hình bình hành Có nghĩa D cố định Như : DD : M  M Mà M chạy (O) M Chạy đường tròn (O’) ảnh (O) qua phép đối xứng tâm D PHÉP VỊ TỰ * Để giải tốn quỹ tích điểm M điểm A thay đổi đường (C ) cho sẵn Trước hết ta cần phải làm số việc sau Trong hình H cho , ta tìm điểm A thay đổi đường (C ) cho sẵn ( đường trịn , đường thẳng ) cho AM nằm đường thẳng qua điểm cố định I Gán cho A M với I haitam giác dồng dạng , từ tìm tỉ số khơng đối k  Viết đẳng thức véc tơ : IM  k IA để kết luận M ảnh A qua phép vị tự tâm I với tỉ số vị tự k Nếu A chạy (C ) M chạy (C’) ảnh (C ) qua phép vị tự tâm I tỉ số k Nêu cách dựng (C’) Ví dụ ( Bài 29-tr29-HH11NC) Cho đường tròn (O;R) điểm I cố định khác O Một điểm M thay đổi đường trịn Tia phân giác góc MOI cắt IM N Tìm quỹ tích điểm N Giải - Vẽ hình Từ hình vẽ tính chất đường phân giác chia cạnh đối diẹn làm hai doạn thẳng tỷ lệ với hai cạnh kề hai cạnh Ta có kết sau : * Do O,I cố định OI=a không đổi Gọi N chân đường phân giác góc MOI NI OI a NI a a      IN  IM NM OM R NM  NI a  R aR  a a  IM  IN  IM Hay :  IN  aR aR Vì I cố định V I ,k  : M  N Nhưng M chạy đường tròn (O;R) N ( N thuộc IM) , từ ta có : chạy đường tròn (C’) ảnh (O;R) qua phép vị tự tâm I tỉ số vị tự k * Cách xác định (O’;R’) sau   - Nối OI , tìm O’ cho : IO '  kOI , từ suy O’ - Bán kính R’ xác định công thức : k= R’/R suy : R’=kR Trang Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN ( Hoặc : lấy O’ làm tâm quay đường trịn có bán kính O’N ) Ví dụ ( Bài ƠN chƣơng I-tr35-HH11-NC) Cho đường trịn (O) có đường kính AB Gọi C điểm đối xứng với A qua B PQ đường kính thay đổi (O)khác với đường kính AB Đường thẳng CQ cắt PA ,PB M N a/ Chứng minh Q trung điểm CM , N trung điểm CQ b/ Tìm quỹ tích điểm M,N đường kính PQ thay đổi Giải a Vẽ hình Từ hình xẽ ta thấy : Nối AQ, BQ , C đối xứng với A qua B ta có B trung điểm AC : BA=BC (1) Mặt khác BQ vng góc với AQ ( góc nội tiếp chắn nửa đường trịn ) PA vng góc với AQ ( góc nội tiếp chắn ½ đường trịn ) suy PA // BQ BQ đường trung bình tam giác ACM , nghĩa Q trung điểm CM - Tương tự BN đường trung bình tam giác ACQ N trung điểm CQ : NC=NQ (2) b/ Từ (1) (2) ta có đẳng thức véc tơ :   1  CM  2CQ  VC ;2 : Q  M Cho nên M chạy đường tròn (O’) ảnh (O) qua phép vị tự tâm C , tỉ số vị tự     CN   CQ  V  : Q  N Vậy N chạy đường tròn (O’’) ảnh (O) qua  C   2 phép vị tự tâm C tỉ số k=1/2 - Hướng dẫn học sinh cách xác định hai tâm O’ O’’ Ví dụ ( Bài 9-tr35-HH11NC) Cho đường tròn (O;R) điểm A cố định Một dây cung thay đổi (O;R) có độ dài     m không đổi Tìm quỹ tích điểm G cho GA  GB  GC  Giảỉ * Vẽ hình cho học sinh Từ hình vẽ lấy I trung điểm BC , nối OI ( OI vuông góc với BC ) A điẻm cố định ( nằm (O) hay khơng cần nằm (O) Do B,O cố định , góc OIB vuông BC thay đổi I chạy đường trịn tâm O bán kính R’= R2  m2 ( Xét tam giác vuông BOI ) * Từ giả thiết G trọng tâm tam giác ABC Theo tính chất trọng tâm tam giác ta có :   AG   AG  AI  V  : I  G Do : G chạy đường tròn (O’) ảnh AI 3  A;   3 đường tròn (O;R’) qua phép vị tự tâm A ,tỉ số vị tự 2/3 Ví dụ ( Bài tốn 6-tr39-HH11CB) Cho tam giác ABC nội tiếp đường trịn (O)bán kính R , dỉnh B,C cố định A thay đổi (O) Chứng minh trọng tâm G tam giác ABC chạy đường tròn Giải - Vẽ hình , Gọi I trung điểm BC , I cố định B,C cố định Theo tính chất   trọng tâm : IG  IA  IG  IA  VI3 : A  G Nhưng A chạy (O) G chạy (O’) ảnh (O) qua phép vị tự tâm I tỉ số 1/3 Trang Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN      IO '  IO   - Xác định (o’;R’) hệ :    O '; R    R '  R  Ví dụ Cho hai đường tròn (O;R) (O’;3R) tiếp xúc với A Nếu O biến thành O’ phép vị tự tâm A tỉ số vị tự ? Giải - Vẽ hình Từ  giả thiết : AO’=R’, AO=R suy AO’=3AO   Hay : AO '  3OA  VA3 : O  O ' Do tỉ số vị tự k=3 Ví dụ Cho đường trịn O điểm P cố định (O) Từ P kẻ tiếp tuyến thay đổi PBC Tìm quỹ tích trọng tâm G tam giác ABC ? Giải Vẽ hình Gọi I trung điểm BC theo tính chất đường kính qua điểm dây cung : OI vng góc với BC Như I nằm đường tròn đường kính OP Mặt khác theo tính chất trọng tâm , G nằm AI cách A khoảng 2/3 AI  , hay : AG  2  AI  VA3 : I  G Nhưng I chạy đường trịn đường kính OP G chạy đường tròn (O’) ảnh đường trịn đường kính OP qua phép vị tự tâm A tỉ số 2/3     AO '  AH - Cách xác định O’ hệ :  ( Với H trung điểm OP )  R '  OP  OP  3 Ví dụ Cho đường tròn (O;R) điểm I cố định với OI=2R M điểm di động O , phân giác góc IOM cắt IM M’ Tìm quỹ tích điểm M’ M chạy đường trịn O Giải - Vẽ hình Theo tính chất đường phân giác :   M 'I OI 2R IM ' 2 IM ' 2   2      IM '  IM  IM '  IM MM ' OM R IM ' M ' M  IM 3 Vậy : Qua phép vị tự tâm I tỉ số 2/3 biến điểm M thành điểm M’ , M chạy đường tròn (O;R) M’ chạy (O’;R’) ảnh (O;R) qua phép vị tự tâm I     IO '  IO - Để xác định (O’;R’) :  R '  R  Ví dụ Cho hai đường trịn (O) (O’) tiếp xúc với A , đường kính kẻ từ A cắt (O) ,(O’) theo thứ tự B,C Qua A vẽ đường thẳng d cắt (O);(O’) M,N Tìm quỹ tích giao điểm T BN CM , d thay đổi ? Giải Vẽ hình minh họa Căn hình vẽ , ta có phân tích : BM CN vng góc với đường thẳng d , suy BM//CN (1) Hai tam giác OCN đồng dạng với tam giác OBM : TN CN CA 2R ' R ' TN  TB R ' R BN R ' R R          k  BT  BN TB BM CB 2R R BT R BT R R ' R Trang Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN R   R BN  VBR  R ' : N  T Nhưng N chạy (O’;R’) T chạy Hay : BT  R  R' R đường tròn ảnh (O’) qua phép vị tự tâm B tỉ số k = R  R' ( HD học sinh cách tìm giới hạn quỹ tích ) Ví dụ ( Bài 73-tr17- Ơn CI-BTHH11-NC) Cho điểm P nằm đường tròn (O) Một đường thẳng thay đổi qua P , cắt (O)    hai điểm A,B Tìm quỹ tích điểm M cho PM  PA  PB Giải Vẽ hình minh họa choi học sinh Căn hình vẽ ta có phân tích : - Gọi I trung điểm AB Theo tính chất trung điểm dây cung OI vng góc với AB , có nghĩa I chạy đường trịn đường kính OP (1)     M phải nằm d - Theo quy tắc véc tơ trung tuyến ta có : PM  PA  PB  2MI    I,P nằm d Ví : PM=2MI=2(PM-PI) suy PM=2PI hay : PM  PI  VP2 : I  M Vậy phép vị tự tâm P biến điểm I thành thành M Nhưng I lại chạy (O;OP) M phải chạy đường trịn ảnh (O) qua phép vị tự tâm P tỉ số k=2 Ví dụ 10 Cho đường trịn (O) điểm P O M điểm thay đổi O H hình chiếu vng góc của O PM a/ Tìm quỹ tích trọng tâm G tam giác POM ? b/ Tìm quỹ tích điểm H trung điểm I PH ? c/ Tìm quỹ tích trọng tâm K tam giác OPH ? Giải Vẽ hình minh họa cho học sinh Từ hình vẽ phân tích cho HS biết : -Vì H hình chiếu O PM OH vng góc với PM , H nằm đường trịn O’ có đường kính OP - Gọi J trung điểm PO ( J tâm đường trịn O’) G phải nằm MJ theo   tính chất trọng tâm : JG  JM  VJ3 : M  G Nhưng M lại chạy đường tròn O G chạy đường tròn O’’ ảnh O qua phép vị tự tâm J tỉ số k=1/3   - Vì I trung điểm PH PI=1/2PH hay : PI  PH  VP2 : H  I Nhưng H OP lại chạy tâm J bán kính , I chạy đường tròn ảnh đường tròn tâm J qua phép vị tự tâm P tỉ số k= ½ - Trọng tâm K tam giác OPH phải nằm JH theo tính chất trọng tâm , ta có :   JK  JH  VJ3 : H  K Do K chạy đường tròn ảnh đường tròn tâm J bán OP kính qua phép vị tự tâm J tỉ số k=1/3 Ví dụ 11 Cho đường trịn O điểm A nằm O , M điểm di động đường tròn O a/ Tìm quỹ tích trung điểm I AM ? b/ Đường trung trực AM cắt đường tròn O P P’ Tìm quỹ tích chân đường vng góc H kẻ từ O đến PP’ ? Trang Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TOÁN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN c/ Tìm quỹ tích tâm đường tròn ngoại tiếp tam giác APP’ ? Giải - Vẽ hình minh họa cho học sịnh Từ hình vẽ cho học sinh số kết :  * Vì I trng điểm AM : AI   AM  VA2 : M  I Như qua phép vị tự tâm A tỉ số ½ biến M thành I , M chạy đường tròn O , I chạy đường tròn ảnh O qua phép vị tự tâm A tỉ số k=1/2 * Đường trung trực AM phải qua I vng góc với AM II BÀI TỐN TÌM ĐIỂM TỊNH TIẾN VÉC TƠ TÌM ĐIỂM M TRÊN ĐƢỜNG THẲNG D SAO CHO KHOẢNG CÁCH MA+MB NGẮN NHẤT ( A,B- CỐ ĐỊNH CHO TRƢỚC ) Cách giải  Bước 1: Tìm điểm A’ đối xứng với điểm A qua đường thẳng d ( Khi đường thẳng d đường trung trực AB , suy M thuộc d MA=MA’ )  Bước 2: Kẻ đường thẳng A’B , đường thằng cắt d M M điểm  Bước 3: Chứng minh nhận xét : Vì MA+MB=MA’+MB=A’B ( khơng đổi) A cố dịnh , A’ cố định , suy A’B không đổi Chú ý : Trường hợp xảy A,B nằm trái phía với d Ngồi : Có trường hợp biến thể thay đường thẳng d hai đường thẳng // cách đoạn cho trước không đổi Ví dụ Hai thơn nằm hai vị trí A,B cách sông ( Xem hai bờ sống hai đường thẳng song song ) Người ta dự kién xây cầu bắc qua sông (MN) làm hai đoạn thẳng AM BN Tìm vị trí M,N cho AM+BN ngắn Giải   - Vì khoảng cách hai bờ sống không đổi, MN  U - Tìm A’ ảnh A qua phép tịnh tiến theo U Khi AMNA’ hình bình hành : A’N=AM - Do : MA+NB ngắn Vì : MA+NB=A’N+NB Ví dụ Cho hình chữ nhật ABCD Trên tia đối tia AB lấy điểm P , tia đối tia CD lấy điểm Q Hãy xác định điểm M BC điểm N AD cho MN//CD PN+QM nhỏ Giải - Giống toán khoảng cách hai cạnh hình chữ nhật khơng đổi ta thực theo cách tốn sau:   - Tìm ảnh điểm Q qua phép tịnh tiến theo CD  U  QQ ' Khi MN=QQ’ , suy MQ=NQ’ Cho nên PN+MQ=PN+NQ’ ngắn P,N,Q’ thẳng hàng - Các bước thực :    +/ Tìm Q’ cho : CD  U  QQ ' +/ Nối PQ’ cắt AD điểm N +/ Kẻ NM //CD cắt BC M Vậy tìm M,N thỏa mãn u cầu tốn  VIẾT PHƢƠNG TRÌNH CỦA ĐƢỜNG ( C ‘) QUA PHÉP TỊNH TIẾN THEO u   a; b  KHI BIẾT PHƢƠNG TRÌNH ĐƢỜNG (C ) Trang Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TOÁN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Cách giải :  Bước 1: lấy điểm M(x;y=f(x) ) (C )  Bước 2: Thay x,y vào công thức tọ độ phép tịnh tiến  Bước 3: Rút gọn ta có phương trình F(x;y)=0 Đó phương trình (C’ ) cần tìm  Ví dụ Trong mặt phẳng (Oxy) cho u  1; 2  a/ Viết phương trình ảnh đường trường hợp sau : +/Đường thẳng a có phương trình : 3x-5y+1=0 ? +/Đường thẳng b có phương trình : 2x+y+100=0 b/ Viết phương trình đường trịn ảnh đường trịn (C ) : x  y  4x  y   c/ Viết phương trình đường (E) ảnh (E) : d/ Viết phương trình ảnh (H) : x2 y2  1 x2 y2  1 16 Giải a/ Gọi M(x;y) thuộc đường cho M’(x’;y’) thuộc đường ảnh chúng x '  1 x  x  x '   y '  2  y  y  y ' Theo công thức tọa độ phép tịnh tiến ta có :  Thay x,y vào phương trình đường ta có : - Đường thẳng a’ : 3(x’-1)-5(y’+2)+1=0  3x’-5y’-12=0 - Đường thẳng b’ : 2(x’-1)+(y’+2)+100=0 hay : 2x’+y’+100=0 2 b/ Đường tròn (C’) :  x ' 1   y '    x ' 1  y '   hay : x  y  6x  y  10   x ' 1 c/ Đường (E’) :  x ' 1 d/ Đường (H’): 16  y '    y '    x  1 1  x  1 1 16  y  2   y  2  1 1 PHÉP ĐỐI XỨNG TRỤC CHO ĐƢỜNG THẲNG d VÀ HAI ĐIỂM A,B TÌM ĐIỂM M THUỘC d SAO CHO MA+MB NHỎ NHẤT ( Khi A,B hai điểm nằm phía d ), MA  MB ĐẠT GIÁ TRỊ LỚN NHẤT( A,B nằm hai phía d ) Cách giải :  Bước 1: Tìm điẻm A’ đối xứng với A qua đường thẳng d  Bước 2: Nối A’B , đường thẳng cắt d M Là điểm cần tìm  Bước 3: Chứng minh M điểm Ví dụ (Bài 9-tr13- HH11NC) Cho góc nhọn xOy điểm A nằm góc Hãy tìm điểm B Ox , điểm C Oy cho tam giác ABC có chu vi nhỏ Giải - Tìm A’ đối xứng với A qua Oy , B’ đối xứng với A qua Ox - Nối A’B’ cắt Ox B , cắt Oy C Đó hai điểm cần tìm Trang Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TOÁN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN - Chứng minh B,C hai điểm cần tìm Thật : Do A’ đối xứng với A qua Oy , CA=CA’ (1) Mặt khác : B’ đối xứng với A qua Ox ta có BA=BB’ (2) Gọi P chu vi tam giác ABC P=CA+CB+BA =CA’+CB+BB’=A’B’ ( từ (1) (2) ) Ví dụ 2: Cho đường thẳng d hai điểm A,B nằm phía với d Tìm điểm M d cho MA+MB đạt giá trị nhỏ ? Giải - Tìm điểm A’ đối xứng với A qua d - Nối A’B cắt d M M điểm cần tìm - Thật : Vì A’ đối xứng với A qua d MA=MA’ (1) Do : MA+MB=MA’+MB=A’B - Giả sử tồn M’ khác M thuộc d : M’A+M’B=M’A’+M’B  A ' B Dấu xảy A’M’B thẳng hàng Nghĩa M trùng với M’ Ví dụ Cho đường thẳng d hai điểm A,B ( nằm hai phía d ) Tìm điểm M d cho MA  MB đạt GTLN Giải - Gọi A’ điểm đối xứng với A qua d - Nối A’B cắt d M M điểm cần tìm - Thật : MA  MB  MA ' MB  A ' B Giả sử tồn điểm M’ khác với M d , : M ' A  M ' B  M ' A ' M ' B  A ' B Dấu xảy M’A’B thẳng hàng , nghĩa M trùng với M’ Ví dụ Cho hai đường trịn (O;R) (O’;R’) đường thẳng d a/ Hãy tìm hai điểm M M’ nằm hai đường trịn cho d đường trung trực đoạn thẳng MM’ b/ Hãy xác định điểm I d cho tiếp tuyến IT với (O;R) tiếp tuyến IT’ với (O’;R’) tạo thành góc TIT’ nhận đường thẳng d đường phân giác ngồi Giải Vẽ hình : a/ Giả sử M nằm (O;R) M’ nằm (O’;R’) tỏa mãn u cầu tốn - Vì d trung trực MM’ M’ nằm đường tròn (C’) ảnh đường tròn (O;R) qua phép đối xứng trục d Mặt khác M’ lại nằm (O’;R’) M’ giao (C’) với (O’;R’) - Từ suy cách tìm :  Tìm hai đường tròn ảnh hai đường tròn cho qua phép đối xứng trục d ( Lần lượt (C’) (C’’)  Hai đường tròn cắt hai đường tròn cho M1 , M Sau kẻ hai đường thẳng d’’ d’’’ qua M1 , M cắt (O;R) (O’;R’) M '1; M '2  Các điểm cần tìm  M 1M '1   M M '2  b/ Nếu MT MT’ nhận d phân giác ngồi góc TIT’ MT MT’ đối xứng qua d Từ suy cách tìm : - Gọi d’ ảnh MT qua phép đối xứng d nghĩa d’ tiếp tuyến đường tròn (C ) ảnh (O;R) qua phép đối xứng trục d Mặt khác d’ tiếp tuyến (O’;R’) Cho d’ tiếp tuyến chung (C ) với (O’;R’) Từ ta suy cách tìm M :  Tìm (C ) ảnh (O;R) qua phép đối xứng trục d Trang 10 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN trịn (O;R) ( M chạy (O) ) Mặt khác N lại thuộc (O’;R’) N giao (O’’) với (O’;R’) Từ suy cách dựng +/ Dựng đường tròn (O’’) ảnh đường tròn (O) : Nối OA , đặt OA=O’’A +/ Đường tròn (O’’) cắt đường tròn (O’) N Nối NA cắt (O) M - Giới hạn quỹ tích : Số nghiệm hình số giao điểm (O’’) cắt (O’) Ví dụ ( Bài 18-tr19-HH11NC) Cho đường tròn (O;R) , đường thẳng d điểm I Tìm điểm A (O;R) điểm B d cho I trung điểm đoạn thẳng AB Giải - Vẽ hình Do I trung điểm AB B ảnh A qua phép đối xứng tâm I Mặt khác A chạy (O;R) B chạy đường tròn (O’’) ảnh (O) qua phép đối xứng tâm I Nhưng B lại nằm d B giao d với (O’’) -Từ suy cách tìm Nối IO đặt IO=IO’’ , sau dựng đường trịn (O’’) bán kính R , cắt d B Nối BI cắt (O;R) A - Giới hạn quỹ tích : Số nghiệm hình số giao điểm (O’’) với d PHÉP VỊ TỰ Để xác định điểm M ta xem ảnh điểm A biết qua phép vị tự , xem M giao của đường cố định với ảnh đường biết qua phép vị tự Ví dụ Cho tam giác ABC có hai góc B,C nhọn Dựng hình chữ nhật DEEG có EF=2DE với hai đỉnh D,E nằm BC hai đỉnh F,G nẵm hai cạnh AC AB Giải - Vẽ hình ( thỏa mãn u cầu tốn ) * Phân tích : + Giả sử hình chữ nhật dựng xong , AB lấy điểm G’ , dựng hình chữ nhật G’F’E’F’ có E’F’=2D’E’ hai đỉnh D’,E’ thuộc BC , nối BF’ cắt AC F , ta có : BG GD 2GF GF    Chứng tỏ B,F’F thẳng hàng Ta có BG ' GD ' 2G ' F ' G ' F ' thể xem hình chữ nhật DEFG ảnh hình chữ nhật D’E’F’G’ qua phép vị tự tâm B tỉ số vị tự : BG  k Từ suy cách dựng BG ' * Cách dựng : - Lấy điểm G’ tùy ý AB , sau dựng hình chữ nhật G’F’E’D’ có E’F’=2 D’E’, hai đỉnh D’E’ nẵm BC - Nối BF’ cắt AC F , đường thẳng qua F song song với BC cắt AB G Gọi D E hình chiếu G F BC Thì hình chữ nhật DEFG hình chữ nhật cần dựng * Chứng minh : Thật : Vì GF //G’F’ , GD//G’D’ nên : GF BG GD   Từ suy : G ' F ' BG ' G ' D ' GD G ' D '   Như hình chữ nhật dựng thỏa mãn yêu cầu toán GF G ' F ' Ví dụ ( Bài 1.25-tr33-BTHH11CB) Cho nửa đường trịn đường kính AB Hãy dựng hình vng có hai đỉnh nằm nửa đường trịn , hai đỉnh cịn lại nằm đường kính AB nửa đường trịn Giải Vẽ hình , từ hình vẽ ta có bước sau * Phân tích Trang 18 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Giả sử hình vng MNPQ dựng xong thỏa mãn yêu cầu toán ( với M,N nẵm AB , P,Q nằm nửa đường tròn ).Gọi O trung điểm AB Nối OQ OP, dựng hình vng M’N’P’Q’ cho M’,N’ nằm AB O trung điểm M’N’ Khi ta có :  OQ OP PQ   k OQ ' OP ' P ' Q ' Ta xem MNPQ ảnh M’N’P’Q’ qua phép vị tự tâm O tỉ số k= PQ Từ suy P 'Q ' : * Cách dựng - Dựng hình vng M’N’P’Q’ ( có M’N’ thuộc AB O trung điểm M’N’ ) - Nối OP’ OQ’ chúng cắt (O,AB) P Q - Hình chiếu P Q AB N M Khi MNPQ hình vng cần dựng * Chứng minh : Do M’N’P’Q’ hình vuông , M’N’//AB Tam giác OM’N’ đồng dạng với tam giác OPQ suy : PQ OP OQ PN QM   k  P ' Q ' OP ' OQ ' P'N ' Q'M ' Ví dụ ( Bài 1.26-tr33-BTHH11CB) Cho góc nhọn Oxy điểm C nằm góc Tìm Oy điểm A cho khoảng cách từ A đến trục Ox = AC Giải - Vẽ hình Căn vào hình vẽ ta có phân tích sau * Phân tích : Gọi B hình chiếu A Ox theo đầu tam giác ABC tam giác cân đỉnh A ( AB=AC ) Giả sử tam giác A’B’C tam giác cân đỉnh A’ có A’B’ vng góc với Ox Dễ dàng nhận thấy hai tam giác đồng dạng ta có : AC OC AB  k  Ta coi tam giác ABC ảnh tam giác A’B’C’ qua phép vị tự A ' C ' OC ' A' B ' tâm OP tỉ số vị tự k Từ suy cách dựng : * Cách dựng : - Nối OC , sau Oy lấy điểm A’ , tìm B’ hình chiếu A’ Ox ( kẻ A’B’ vng góc với Ox) - Dùng com pa lấy A’ làm tâm , quay cung trịn có bán kính A’B’ cắt OC C’ - Từ C kẻ hai đường thẳng song song với hai cạnh A’C’ C’B’ chúng cắt hai cạnh Oy Ox A B Tam giác ABC tam giác cần tìm * Chứng minh : Giống cách phân tích Ví dụ ( Bài tập O.11-tr76-BTHH10 –T6-2000) Cho tam giác nhọn ABC Hãy dựng hình vng MNPQ cho M,N nằm cạnh BC , P,Q nằm hai cạnh lại tam giác Giải - Vẽ hình Từ hình vẽ ta có cách phân tích : Gọi hình vng M’N’P’Q’ có cạnh M’N’ thuộc BC M’N’=N’P’=P’Q’=Q’M’ a cố định Nếu ta coi hình vng MNPQ ảnh phép vị tự tâm B với tỉ số vị tự : PQ PM PQ P ' Q '      PQ  PM Suy cách dựng P 'Q ' P ' N ' PM P ' N ' - Trên AB lấy điểm Q’ , kẻ đường thẳng qua Q’ vng góc với BC cắt BC M’ Sau đặt M’N’=A’M’ , dựng hình vuông M’N’P’Q’ Trang 19 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN - Nối BP’ cắt AC P , kẻ hai đường thẳng qua P // với N’P’ M’N’ chúng cắt BC AB N Q Cuối kẻ qua Q đường thẳng vng góc với BC cắt BC M ta hình vng MNPQ cần dựng * Chú ý : Ta có cách khác - Dựng hình vng BCM’N’ nằm tam giác ABC Gọi B’C’ giao AB AC với M’N’ Như phép vị tự tâm A tỉ số vị tự : k= AB biến tam giác AB ' AB’C’ thành tam giác ABC , Cho nên biến hình vng BCPQ thành hình vng MNPQ cần tìm Vì ta cần kẻ qua B’ C’ hai đường thẳng vuông góc với BC chúng cắt cạnh Ac AB điểm P Q , cắt BC N M Hình vng MNPQ tìm Ví dụ Gọi A giao hai đường đường tròn cắt O O’ Hãy dựng qua A đường thẳng cắt hai đường tròn B C cho AC=2AB Giải Vẽ hình minh họa Từ hình vẽ ta có phân tích sau - Từ giả thiết , ta có : AC  2 AB  VA2 : B  C Như phép vị tự tâm A biến B thành C Từ ta có cách dựng : - Dựng đường trịn ảnh đường tròn (O) qua phép vị tự tâm A tỉ số k=-2 Giao đường tròn ảnh với đường trịn (O’) C Đường thẳng AC đường thẳng d cần dựng - Chứng minh : Do C ảnh B qua phép vị tự tâm A tỉ số k=-2 AC=2AB Ví dụ Cho hai đường trịn (O) (O’) tiếp xúc ngồi với A( có bán kính khác ) Một điểm M nằm đường tròn (O) Dựng đường tròn qua M tiếp xúc với O O’ Giải - Vẽ hình minh họa cho học sinh Từ có phân tích - Gọi S tâm vị tự (O) (O’) ,N ảnh M qua phép vị tự tâm S M’ giao điểm thứ hai AN với (O’) , Gọi O’’ giao OM với O’M’ ( Chú ý : OM//O’N ) ta có : O '' M O '' M '   O ' N  O ' M ' nên O’’M=O’’M’ Chứng tỏ (O’’) tiếp O'N M 'O ' xúc với (O) (O’) M M’ - Cách dựng : Tìm tâm S ( kẻ tiếp tuyến chung O O’ cắt OO’ S Nối SA cắt (O’) N M’ O’ giao OM với O’M’ IV BÀI TOÁN CHỨNG MINH PHÉP QUAY VÀ PHÉP ĐỐI XỨNG TÂM Để làm dạng toán chứng minh ta cần phải kiến thức phép đối xứng tâm phép quay Đồng thời phải nhớ lại kiến thức tam giác , tứ giác : Hình bình hành , hình vng , hình chữ nhật Ví dụ ( Bài toán 1-tr17-HH11NC) Cho hai tam giác OAB OA’B’ Gọi C D trung điểm đoạn thẳng AA’ BB’ Chứng minh OCD tam giác ? Giải Xét phép quay tâm O với góc quay góc lượng giác ( OA,OB)= 600 Rõ ràng A biến thành B A’ biến thành B’ , phép quay biến đoạn thẳng AA’ thành Trang 20 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN đoạn thẳng BB’ Từ suy phép quay biến C thành D , OC=OD Vì góc quay 600 tam giác cân OCD tam giác Ví dụ ( Bài 43-tr11-BTHH11NC) Về phía ngồi tam giác ABC vẽ hình vng BCMN ACPQ có tâm O O’ a/ Chứng minh cố định hai điểm A,B cho C thay đổi đường thẳng NQ qua điểm cố định b/ Gọi I trung điểm AB Chứng minh IOO’ tam giác vuông cân Giải a/ Vẽ hình theo giả thiết cho Từ hình vẽ , giải cho học sinh tốn phụ : Cho hai điểm A,B cố dịnh , với điểm M với hai phép quay tâm A , tâm B có góc quay phép hợp hai phép quay phép đối xứng mà tâm đối xứng đỉnh gốc vng tam giác vng cân OAB ( O tâm đối xứng ) - Như : QA : C  N QB : C  Q  NQ qua tâm đối xứng H xác định cách dựng tam giác vuông cân HAB b/ Tương tự : QO : C  B ; QO ' : C  A  AB qua tâm đối xứng I xác định tam giác vuông cân OO’I ( với I đỉnh góc vng ) Như tam giác O’OI tam giác vuông cân PHÉP VỊ TỰ Ta hay gặp toán chứng minh đường thẳng qua điểm cố định , hay điểm nằm đường trịn cố định , hình vng …tóm lại hình H cố định Khi ta cần chứng minh đường thẳng qua tâm vị tự hai hình H H’ chứng minh M nằm đường trịn ảnh hình H qua phép vị tự tâm I tỉ số k Ví dụ Cho hai đường tròn (O ) ( O2 ) ngồi , đường trịn (O) thay đổi tiếp xúc với  O1 ; R1  tiếp xúc với  O2 ; R2  Chứng minh đường thẳng nối hai tiếp điểm qua điểm cố định Giải Vẽ hình minh họa cho học sinh Từ hình vẽ , phân tích cho học sinh thấy : O1O  O2O  O Kẻ O2 M '/ /O1M Thì ta có O1M  O2 M ' MM’ qua tâm vị tự ngồi hai đường trịn Do : O2 M ' O2 N R '   k O1M O1M R * Gọi M,N thứ tự hai tiếp điểm (O) với hai đường tròn  O1 ; R1  ;  O2 ; R2  Thì * Hai tam giác : ONM đồng dạng với O2 NM ' suy : ON ON OM ON      ON  OM Vậy MN qua tâm vị tự cố định O2 N O2 M ' OM O2 M ' hai đường tròn :  O1 ; R1  ;  O2 ; R2  Ví dụ Cho hai đường tròn O O’ tiếp xúc ngồi với A Một góc vng xAy quay xung quanh A , tia Ax cắt O M , tia Ay cắt O M’ Chứng minh đường thẳng MM’ qua điểm cố định Giải Trang 21 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN   Nối MM’ cắt O’ N ta thấy : O ' N song song chiều với AM Tương tự A’     giaocủa OO’ với với O’ ta thấy : A ' M ' / / AM  OM / / O ' M ' Suy MM’ qua tâm vị tự hai đường trịn Ví dụ Cho tam giác nhọn ABC với trọng tâm G Gọi A’,B’,C’ trung điểm cạnh BC,CA,AB a/ Phép vị tự biến A thành A’,B thành B’ C thành C’ ? b/ Chứng minh tâm O đường tròn ngoại tiếp tam giác ABC trực tâm tam giác A’B’C’   c/ Gọi H trực tâm tam giác ABC , chứng minh : GO   GH Suy G,O,H nằm đường thẳng ( Đường thẳng Ơ-le ) Giải a/ Theo tính chất trọng tâm tam giác : 1          2 GA '   GA  VG : A  A '; GA '   GA  VG : A  A '; GB '   GB  VG : B  B ' 2    GC '   GC  VG : C  C ' Như phép vị tự tâm G tỉ số k=-1/2 biến ba điểm A,B,C thành ba điểm A’,B,C’ b/ Vì O giao ba đường trung trực , OB’ ∟AC , AC//A’C’ OB’∟A’C’ Chứng tỏ OB’ đường cao tam giác A’B’C’ Tương tự OA’ OC’ O trực tâm tam giác A’B’C’ c/ Do tam giác A’B’C’ ảnh tam giác ABC qua phép vị tự tâm G tỉ số k=-1/2 cho   nên H biến thành O : GO   GH PHẦN BÀI TẬP TỰ LUYỆN TỊNH TIẾN VÉC TƠ Bài Cho hai đường trịn khơng đồng tâm (O;R) (O’;R’) điểm A (O;R)   Xác định điểm M (O;R) diểm N (O’;R’) cho MN  OA Bài ( Làm tập 4;5;6 – HH11NC-trang 9) Bài ( Làm tập : 2;3- HH11CB-trang ) GỢI Ý    : M  N Do N nằm đường trịn ảnh (O;R) Mặt Bài Vì : MN  OA  TOA khác N lại nằm (O’;R’) N giao đường trịn ảnh với với (O’;R’) Từ suy cách tìm : - Vè đường trịn tâm A bán kính R , đường tròn náy cắt (O’;R’) N - Kẻ đường thẳng d qua N song song với OA , suy d cắt (O;R) M Bài a/ Bài 4-trang 9-HH11NC   AB  U - Vì A,B cố định suy :         : M  M ' - Từ giả thiết : MM '  MA  MB  MM '  MB  MA  AB Chứng tỏ : T AB - Nhưng M chạy (O;R) M’ chạy đường tròn (O’;R) ảnh (O;R) b/ Bài  x '  x cos  y1 sin   a  x2'  x2cos  y2 sin   a ; N ' ' - Tọa độ M’ N’ : M '  1'  y1  x1 sin   y1cos  b  y2  x2 sin   y2cos  b - Khoảng cách d M,N khoảng cách d’ M’N’ Trang 22 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Ta có : MN   x2  x1    y2  y1  M 'N '   x2  x1  2  cos   sin     y  y1   cos 2  sin    2  x2  x1    y2  y1  2 - Phép F phép dời hình x '  x  a Đây công thức phép tịnh tiến y'  y b - Khi :    sin   0; cos    c/ Bài - Nếu F1 : M  x; y   M '  y;  x  ; N  x '; y '  N '  y ';  x ' khoảng cách hai điểm MN M’N’ : MN   x ' x    y ' y  ; M ' N '   y ' y     x ' x  Chứng tỏ MN=M’N’cho nên phép dời hình - Nếu : F2 : M ( x; y )  M '  2x; y  ; N  x '; y '   N '  2x '; y '  Khi khoảng cách hai điểm 2 2 : MN   x ' x    y ' y  ; M ' N '   x ' x    y ' y  - Rõ ràng : MN< M’N’ : Do khơng phải phép dời hình theo định nghĩa : Phép dời hình phép biến hình biến hai điểm thành hai điểm mà không làm thay đổi khoảng cách chúng Bài a/ Bài 2- trang - Từ B C kẻ đường thẳng // với AG Sau đặt BB’=CC’=AG ( Tứ giác BCC’B’ hình bình hành ) - A’ trùng với G Tam giác GB’C’ ảnh tam giác ABC qua phép tịnh tiến theo véc tơ AG   - Nếu D ảnh phép tịnh tiến theo véc tơ AG : AG  AD  D phải trùng với G b/ Bài 3-trang 2 2  xA '     A '  2;7  tọa độ  yA'    - Theo công thức tọa độ phép tịnh tiến : A '    xB '  1   2  B '   2;3  yB '    điểm B '   - Nếu gọi M(x;y) thuộc đường thẳng d M’(x’;y’) thuộc đường thẳng d’ : ảnh đường thẳng d qua phép tịnh tiến theo véc tơ v theo cơng thức tọa độ củ phép tịnh tiến x '  x 1  x  x '  Thay vào phương trình d : (x’+1)-2(y’-2)+3=0  y '  y   y  y ' ta có : M '  Hay d’: x’-2y’+8=0 PHÉP ĐỐI XỨNG TRỤC Bài Gọi m đường phân giác ngồi góc A tam giác ABC Chứng minh với điểm M m , chu vi tam giác MBC không nhỏ chu vi tam giác ABC Bài Cho (E) với hai tiêu điểm F1 , F2 Gọi M điểm nằm (E) không nằm đường thẳng F1F2 m phân giác đỉnh M tam giác M F1F2 Chứng minh m cắt (E) M ( đường thẳng m gọi tiếp tuyến E M ) Bài Cho đường tròn (C ) : x  y  6x  y   Tìm phương trình đường tròn (C’) qua phép đối xứng trục d : x-y-0 Bài Cho hai đường thẳng d : x-y+2=0 d’: 3x+4y-1=0 Tìm đường thẳng m ảnh đường thẳng d qua phép đối xừng trục d’ Trang 23 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Bài Cho đường thẳng d: x+y-2=0 hai điểm A(-4;-3) ,B(2;-1) Tìm điểm M d cho MA+MB đạt giá trị nhỏ Bài Cho hai điểm A(4;3) B(-2;0) Tìm đường thẳng d : x+y-2=0 điểm M cho MA  MB đạt gía trị lớn Bài 7.( Bài 39-tr106-BTHH10NC) Cho tam giác ABC có đỉnh A  ;  Hai đường phân giác hai góc B C lần 5   lượt có phương trình x-2y-1=0 x+3y-1=0 Viết phương trình cạnh BC tam giác GỢI Ý CÁCH GIẢI Bài Kẻ đường phân giác ngồi góc A Tìm điểm C’ đối xứng với C qua m T a có : MB+MC=MB+MC’  BC ' Mà BC’=AB+AC Suy MB+MC+BC  AB  AC  BC Đó điều phải chứng minh Bài Giả sử trục lớn (E) 2a , tức M nằm E : MF1  MF2  2a Theo cách chứng minh , M’ nằm phân giác m : M ' F1  M ' F2  MF1  MF2  2a Dấu xảy M’ trùng với M Vậy M’ khác M M’ khơng nằm E Suy m cắt E điểm M Bài Đường trịn (C ) có tâm I(3;-1) bán kính R=3 Gọi I’ tâm đường tròn (C’) Nếu I I’ đối xứng qua d ta có hệ : x   y 1  x  y  x      I '   0;   x  y 1  0  x  y  4 y    2 Vậy đường tròn (C’): x   y    đối xứng với (C ) qua trục đối xứng d Bài Gọi A giao d d’ tọa độ A nghiệm hệ : x  y    x  1   A   1;1 Trên d lấy điểm M(0;2) Tìm M’(x;y) ảnh  3x  y   y 1  M qua phép đối xứng trục d’ ( có U   4; 3 Khi tọa độ M’ nghiệm hệ : 33  4 x   y    x  4x  y      33  25    x 1   y      M '   ;   25 25  3x  y    y  3              25 Khi đường thẳng m đối xứng với d qua d’ đường thẳng AM’ qua A(-1;1) có véc  x 1 y 1  19    Hay đường thẳng ;   / /U   8; 19  suy (m) : 19  25 25  tơ phương AM '   (m) : 19x-8y+27=0 Bài Tìm tọa độ A’(x;y) đối xứng với A(-4;-3) qua phép đối xứng trục d: x+y-2=0  x    y  3  x  y 1  x      A '   5;6  Suy hệ :  x  y   20  x  y  11  y    2   Lập đường thẳng (A’B) qua A’(5;6) có véc tơ phương A ' B   3; 7  / /U   3;7   x   3t tR  y   7t Do (A’B):  Vậy M giao (A’B) với d tọa độ M nghiệm hệ : Trang 24 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN  t   10  x   3t  23    23   M   ;   y   7t   x  10  10 10  x  y       y   10  Bài Tương tự cách làm tập , ta có tạo độ A’(x;y) đối xứng với A(4;3) qua d nghiệm hệ   x    y  3  x  x  y     A'   ;  :  x    y       2 2 x  y          y          3  Đường thẳng (A’B) qua B(-2;0) có véc tơ phương : A ' B    ;   / /U   7;3 2   x  2  7t t  R Điểm M cần tìm giao (A’B) với d , tọa  y  3t  t  x    t     4 6 độ M nghiệm hệ :  y  3t  x   M   ;  5 5 x  y      y   Do (A’B):  Bài Tìm tọa độ hai điểm M,N ảnh A qua phép đối xứng trục hai đường phân giác hai góc B C , M,N phải nằm BC Từ đường thẳng (BC) đường thẳng (MN) : y+1=0 PHẦN BÀI TẬP TỔNG HỢP Bài Trong Oxy cho M (2 ; 3), tìm ảnh điểm M qua phép đối xứng qua đường thẳng y - x = Bài mặt phẳng Oxy, cho đường trịn (C) có phương trình: = 4, tìm phương trình đường trịn (C’) ảnh ( C) qua phép vị tự tâm O tỉ số k = Bài Cho hình vng ABCD tâm O Phép quay Q có tâm quay O góc quay giá trị , phép quay Q biến hình vng ABCD thành ?  Với  Bài Nếu IA  AB phép vị tự tâm I biến A thành B theo tỉ số k bao nhiêu? Bài 2: Cho đường tròn (C ) : x  y  x  y   Tìm phương trình đường trịn đối xứng với (C ) qua đường thẳng (d ) : x  y  Bài Cho hai đường thẳng (k ) : 3x  y   , (l ) : x  y  Phép đối xứng tâm I biến (k ) thành (k ') : 3x  y   , (l ) thành (l ') : x  y   Tìm tọa độ I Bài Tìm phương trình đường thẳng đối xứng với đường thẳng () : 3x  y   qua điểm I  1;  Trang 25 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Bài 7: Cho đường trịn (C ) :  x  1   y    Ảnh (C ) qua phép vị tự VO2 đường trịn (C ') có phương trình 2 Bài Trong mặt phẳng Oxy cho điểm M( 2;1) Phép dời hình có cách thực  liên tiếp phép đối xứng qua tâm O phép tịnh tiến theo vectơ v(2;3) biến M thành điểm N Tìm tọa độ điểm N Bài Trong mặt phẳng Oxy cho điểm M(1;2) Phép đồng dạng có cách thực liên tiếp phép vị tự tâm O, tỉ số vị tự k = -2 phép đối xứng tâm O biến M thành điểm N Tìm tọa độ N Bài 10 Trong mặt phẳng với hệ tọa độ Oxy, cho điểm I(1;1) đường thẳng d: x+ y + = Phép đối xứng tâm I biến đường thẳng d thành đường thẳng d’ , tìm phương trình d’ Bài 11Trong mặt phẳng Oxy, cho điểm E(-3;5) vectơ v = ( 1; - 2) Phép tịnh tiến theo vectơ v biến điểm F , tìm tọa độ điểm F Bài 12 Trong mă ̣t phẳ ng Oxy cho (d): 2x  y   Phép vị tự tâm O tỉ số k  biế n đường thẳ ng d thành đường thẳ ng d’ , tìm phương trình d’ Bài 13 Trong mă ̣t phẳ ng Oxy, điể m A(3;1) , tìm ảnh của điể m A qua phé p đố i xứng qua đường thẳng y   x Bài 14 Cho tam giác ABC , O tâm đường tròn ngoại tiếp tam giác Với giá trị sau góc  phép quay Q(O;  ) biến tam giác ABC thành ? Bài 15ho đường trịn (C) có phương trình: x2+ y2 -2x + 6y - = Ảnh (C) qua phép vị tự V(O; ) đường trịn (C') ,tìm phương trình ( C’) Bài 16 Cho điểm M(4;-3) Gọi M' = Q(o;900)(M) Tọa độ M ? Bài 17 Cho đường trịn (C) có phương trình: x2+ y2 -2x + 6y - = Ảnh (C) qua phép vị tự V(0;  ) đường trịn (C'), tìm phương trình ( C’) Bài 18Cho đường thẳng (D) qua hai điểm A(1;3) B(-2;5) Phép đối xứng tâm I(2;3) biến đường thẳng (D) thành đường thẳng (D1) Hãy viết phương trình đường thẳng (D1) Bài 19 cho hình lục giác ABCDEF Tìm trục tâm đối xứng hình Bài 20 cho tam giác ABC Tìm trục tâm đối xứng hình Bài 21 Trong mặt phẳng Oxy cho M (2 ; -3), Tìm tọa độ điểm ảnh điểm M qua phép đối xứng qua đường thẳng y - 2x = Bài 22 Trong mặt phẳng Oxy cho bốn điểm A(-3;2), B(1;-2), C(2;5), D(-1;-3) Gọi A1  ảnh A qua phép tịnh tiến theo vectô BC Gọi A2 ảnh A1 qua phép đối xứng t âm D.Tìm tọa độ A2 Bài 23 Trong ̣ tru ̣c to ̣a đô ̣ Oxy.Gọi V phép vị tự tâm O tỉ số -2 T phép tịnh tiến  theo vecto u  (1;2) , F phép hợp thành V T Tìm ảnh của đường thẳ ng (d) 3x – 8y = qua F Trang 26 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TOÁN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Bài 24 Trong mă ̣t phẳ ng Oxy Tìm ảnh đường tròn (C):(x – 2)2 + (y – 4)2 = 16 qua viê ̣c  thực hiê ̣n liên tiế p ÐOy T với v  ( 2;3) v  Bài 25 Trong mặt phẳng Oxy cho A  2, 1 ; B  3,  Tìm ảnh A, B đường thẳng AB qua phép đối xứng : a) Trục Ox b) Trục Oy Bài 26Trong mặt phẳng Oxy cho đường thẳng d ,phương trình : x  y   a) Viết phương trình đường thẳng d’ ảnh d qua phép đối xứng trục Oy b/ Tìm tọa độ điểm O’ ảnh gốc tọa độ O qua phép đối xứng trục d Bài 27Trong mặt phẳng Oxy cho đường thẳng d, phương trình : x  y   đường tròn :  C  :  x     y  3  2 a/ Viết phương trình đường trịn  C '  ảnh  C  qua phép đối xứng trục Ox b/Viết phương trình đường trịn  C '  ảnh  C  qua phép đối xứng trục d Bài 28 Tìm ảnh tam giác ABC qua phép đối xứng tâm G, biết G trọng tâm tam giác ABC Bài 29 Trong mặt phẳng tọa độ Oxy cho điểm A(2,-2) đường thẳng d có phương trình : 2x + y – = a Tìm ảnh A d qua phép đối xứng tâm O b Tìm ảnh d qua phép đối xứng tâm A Bài 30 Trong phẳng tọa độ Oxy cho điểm A 1,  ; B  3,  ; C  3, 2  a Tìm ảnh A, B, C qua phép đối xứng tâm O b Viết phương trình đường trịn ngoại tiếp tam giác ABC c Viết phương trình đường tròn ảnh đường tròn ngoại tiếp tam giác ABC qua phép đối xứng tâm A Bài 31 Cho tam giác ABC trọng tâm G a Tìm ảnh điểm B qua phép quay tâm A góc quay 900 b Tìm ảnh đường thẳng BC qua phép quay tâm A góc quay 900 c Tìm ảnh tam giác ABC qua phép quay tâm G góc quay 900 Bài 32 Trong mặt phẳng tọa độ Oxy cho điểm A(2,-2) đường thẳng d có phương trình : 2x + y–1=0 a./ Tìm ảnh A d qua phép quay tâm O góc quay 900 b/ Tìm ảnh d qua phép quay tâm A góc quay 900 Bài 33 Trong mặt phẳng tọa độ Oxy cho đường trịn có phương trình : x  y  x  y   Viết phương trình đường tròn ảnh đường tròn cho qua phép quay tâm O góc quay 900 , - 900 Bài 34 Dựng ảnh hình vng ABCD qua phép dời hình có cách thực liên tiếp phép đối xứng tâm A phép quay tâm A góc quay 900 Bài 35 Trong hệ trục tọa độ Oxy, cho đường thẳng (d): 3x + y – = Trang 27 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Tìm phương trình đường thẳng (d’) ảnh (d) qua phép dời hình có cách thực liên tiếp phép đối xứng trục Ox phép tịnh tiến theo vec tơ  v   2, 3 Bài 36 Cho tam giác ABC vuông A, G trọng tâm tam giác Tìm ảnh tam giác ABC qua phép vị tự : a/Tâm G, tỉ số b/ Tâm G, tỉ số c/Tâm A, tỉ số - Bài 37 Cho tam giác ABC Dựng ảnh có cách thực liên tiếp phép vị tự tâm A tỉ số phép đối xứng tâm B Bài 38 Trong mặt phẳng Oxy, cho điểm I(1,2) đường trịn tâm I, bán kính Viết phương trình đường tròn ảnh đường tròn qua phép đồng dạng có cách thực liên tiếp : a/Phép quay tâm O, góc 450 phép vị tự tâm O, tỉ số b/ Phép đối xứng trục Oy phép vị tự tâm O tỉ số c/ Phép đối xứng tâm O phép vị tự tâm O tỉ số -2 Bài 39 Trong mặt phẳng tọa độ Oxy, cho điểm A(1, -3) đường thẳng d có phương 2 trình : 2x + y – = 0, đường trịn (C) có phương trình : x  y  x  y   a Tìm tọa độ điểm A’ phương trình d’ ảnh A d qua phép đối xứng trục Ox b Viết phương trình đường trịn  C ' ảnh (C) qua phép đối xứng tâm A Bài 40 : Trong mặt phẳng Oxy cho M (2 ; 3), tìm ảnh điểm M qua phép đối xứng qua đường thẳng y - x = Bài 41: Trong mặt phẳng Oxy, cho đường trịn (C) có phương trình: = 4, tìm phương trình đường trịn (C’) ảnh ( C) qua phép vị tự tâm O tỉ số k = Bài 42: Cho hình vng ABCD tâm O Phép quay Q có tâm quay O góc quay Với giá trị , phép quay Q biến hình vng ABCD thành ?   Bài 43: Nếu IA  AB phép vị tự tâm I biến A thành B theo tỉ số k bao nhiêu? Bài 44: Cho đường tròn (C ) : x  y  x  y   Tìm phương trình đường trịn đối xứng với (C ) qua đường thẳng (d ) : x  y  Bài 45 : Cho hai đường thẳng (k ) : 3x  y   , (l ) : x  y  Phép đối xứng tâm I biến (k ) thành (k ') : 3x  y   , (l ) thành (l ') : x  y   Tìm tọa độ I Bài 46 : Tìm phương trình đường thẳng đối xứng với đường thẳng () : 3x  y   qua điểm I  1;  Trang 28 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TOÁN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Bài 47 : Cho đường tròn (C ) :  x  1   y    Ảnh (C ) qua phép vị tự VO2 đường 2 trịn (C ') có phương trình Bài 48 : Trong mặt phẳng Oxy cho điểm M( 2;1) Phép dời hình có cách thực liên tiếp phép đối xứng qua tâm O phép tịnh tiến theo vectơ v(2;3) biến M thành điểm N Tìm tọa độ điểm N Bài 49: Trong mặt phẳng Oxy cho điểm M(1;2) Phép đồng dạng có cách thực liên tiếp phép vị tự tâm O, tỉ số vị tự k = -2 phép đối xứng tâm O biến M thành điểm N Tìm tọa độ N Bài 50: Trong mặt phẳng với hệ tọa độ Oxy, cho điểm I(1;1) đường thẳng d: x + y + = Phép đối xứng tâm I biến đường thẳng d thành đường thẳng d’ , tìm phương trình d’ Bài 51Trong mặt phẳng Oxy, cho điểm E(-3;5) vectơ v = ( 1; - 2) Phép tịnh tiến theo vectơ v biến điểm F , tìm tọa độ điểm F Bài 52: Trong mă ̣t phẳ ng Oxy cho (d): 2x  y   Phép vị tự tâm O tỉ số biế n đường thẳ ng d thành đường thẳ ng d’ , tìm phương trình d’ k2 Bài 53: Trong mă ̣t phẳ ng Oxy , điể m A(3;1) , tìm ảnh của điể m A qua phép đố i xứng qua đường thẳng y   x Bài 54: Cho tam giác ABC , O tâm đường trịn ngoại tiếp tam giác Với giá trị sau góc  phép quay Q(O;  ) biến tam giác ABC thành ? Bài 55: Cho đường trịn (C) có phương trình: x2+ y2 -2x + 6y - = Ảnh (C) qua phép vị tự V(O; ) đường trịn (C') ,tìm phương trình ( C’) Bài 56 Cho M'(4;-3) Gọi M' = Q(o;900)(M) Tọa độ M ? Bài 57: Cho đường trịn (C) có phương trình: x2+ y2 -2x + 6y - = Ảnh (C) qua phép vị tự V(0;  ) đường trịn (C'), tìm phương trình ( C’) Bài 58 Cho đường thẳng (D) qua hai điểm A(1;3) B(-2;5) Phép đối xứng tâm I(2;3) biến đường thẳng (D) thành đường thẳng (D1) Hãy viết phương trình đường thẳng (D1) Bài 59: cho hình lục giác ABCDEF Tìm trục tâm đối xứng hình Bài 60: cho tam giác ABC Tìm trục tâm đối xứng hình Trang 29 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Bài 61:: Trong mặt phẳng Oxy cho M (2 ; -3), Tìm tọa độ điểm ảnh điểm M qua phép đối xứng qua đường thẳng y - 2x = Bài 62: Trong mặt phẳng Oxy cho bốn điểm A(-3;2), B(1;-2), C(2;5), D(-1;-3) Gọi A1  ảnh A qua phép tịnh tiến theo vectô BC Gọi A2 ảnh A1 qua phép đối xứng t âm D.Tìm tọa độ A2 Bài 63: Trong ̣ tru ̣c to ̣a đô ̣ Oxy.Gọi V phép vị tự tâm O tỉ số -2 T phép tịnh  tiến theo vecto u  (1;2) , F phép hợp thành V T Tìm ảnh đường thẳng (d) -3x – 8y = qua F Bài 64:: Trong mă ̣t phẳ ng Oxy Tìm ảnh đường trịn (C):(x – 2)2 + (y – 4)2 = 16 qua viê ̣c  thực hiê ̣n liên tiế p ÐOy T với v  ( 2;3) v  Bài 65:: Trong mặt phẳng Oxy cho A  2, 1 ; B  3,  Tìm ảnh A, B đường thẳng AB qua phép đối xứng : c) Trục Ox d) Trục Oy Bài 66: Trong mặt phẳng Oxy cho đường thẳng d ,phương trình : x  y   a) Viết phương trình đường thẳng d’ ảnh d qua phép đối xứng trục Oy b/ Tìm tọa độ điểm O’ ảnh gốc tọa độ O qua phép đối xứng trục d : Bài 67 Trong mặt phẳng Oxy cho đường thẳng d, phương trình : x  y   vàđường tròn C  :  x  2   y  3  a/ Viết phương trình đường trịn  C '  ảnh  C  qua phép đối xứng trục Ox b/Viết phương trình đường trịn  C '  ảnh  C  qua phép đối xứng trục d Bài 68: Tìm ảnh tam giác ABC qua phép đối xứng tâm G, biết G trọng tâm tam giác ABC Bài 69: Trong mặt phẳng tọa độ Oxy cho điểm A(2,-2) đường thẳng d có phương trình : 2x + y – = a Tìm ảnh A d qua phép đối xứng tâm O b Tìm ảnh d qua phép đối xứng tâm A Bài 70:Trong mặt phẳng tọa độ Oxy cho điểm A 1,  ; B  3,  ; C  3, 2  a Tìm ảnh A, B, C qua phép đối xứng tâm O b Viết phương trình đường trịn ngoại tiếp tam giác ABC c Viết phương trình đường trịn ảnh đường tròn ngoại tiếp tam giác ABC qua phép đối xứng tâm A Trang 30 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Bài 71 Cho tam giác ABC trọng tâm G a Tìm ảnh điểm B qua phép quay tâm A góc quay 900 b Tìm ảnh đường thẳng BC qua phép quay tâm A góc quay 900 c Tìm ảnh tam giác ABC qua phép quay tâm G góc quay 900 Bài 72: Trong mặt phẳng tọa độ Oxy cho điểm A(2,-2) đường thẳng d có phương trình : 2x + y–1=0 a./ Tìm ảnh A d qua phép quay tâm O góc quay 900 b/ Tìm ảnh d qua phép quay tâm A góc quay 900 Bài 73: Trong mặt phẳng tọa độ Oxy cho đường trịn có phương trình : x  y  x  y   Viết phương trình đường trịn ảnh đường trịn cho qua phép quay tâm O góc quay 900 , - 900 Bài 74: Dựng ảnh hình vng ABCD qua phép dời hình có cách thực liên tiếp phép đối xứng tâm A phép quay tâm A góc quay 900 Bài 75: Trong hệ trục tọa độ Oxy, cho đường thẳng (d): 3x + y – = Tìm phương trình đường thẳng (d’) ảnh (d) qua phép dời hình có cách thực liên tiếp phép đối xứng trục Ox phép tịnh tiến theo vec tơ  v   2, 3 Bài 76 Cho tam giác ABC vuông A, G trọng tâm tam giác Tìm ảnh tam giác ABC qua phép vị tự : a/Tâm G, tỉ số b/ Tâm G, tỉ số c/Tâm A, tỉ số - Bài 77: Cho tam giác ABC Dựng ảnh có cách thực liên tiếp phép vị tự tâm A tỉ số phép đối xứng tâm B Bài 78 rong mặt phẳng Oxy, cho điểm I(1,2) đường trịn tâm I, bán kính Viết phương trình đường trịn ảnh đường trịn qua phép đồng dạng có cách thực liên tiếp : a/Phép quay tâm O, góc 450 phép vị tự tâm O, tỉ số b/ Phép đối xứng trục Oy phép vị tự tâm O tỉ số c/ Phép đối xứng tâm O phép vị tự tâm O tỉ số -2 Bài 79 Trong mặt phẳng tọa độ Oxy, cho điểm A(1, -3) đường thẳng d có phương 2 trình : 2x + y – = 0, đường trịn (C) có phương trình : x  y  x  y   a Tìm tọa độ điểm A’ phương trình d’ ảnh A d qua phép đối xứng trục Ox b Viết phương trình đường tròn  C ' ảnh (C) qua phép đối xứng tâm A Trang 31 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN TỔNG HỢP CÁC DẠNG TỐN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Trang 32 Sƣu tầm biên soạn - Nguyễn Đình Sỹ - ĐT: 0985.270.218 WWW.DAYHOCTOAN.VN ... 2;1) Phép dời hình có cách thực  liên tiếp phép đối xứng qua tâm O phép tịnh tiến theo vectơ v(2;3) biến M thành điểm N Tìm tọa độ điểm N Bài Trong mặt phẳng Oxy cho điểm M(1;2) Phép đồng dạng có. .. CÁC DẠNG TOÁN VỀ PHÉP DỜI HÌNH - BIẾN HÌNH WWW.DAYHOCTOAN.VN Bài 7: Cho đường trịn (C ) :  x  1   y    Ảnh (C ) qua phép vị tự VO2 đường tròn (C '') có phương trình 2 Bài Trong mặt phẳng. .. học giải PHÉP QUAY VÀ PHÉP ĐỐI XỨNG TÂM TÌM ẢNH CỦA MỘT HÌNH CÁCH GIẢI Sử dụng định nghĩa , tính chất phép quay phép đối xứng tâm với biểu thức tọa độ chúng Ví dụ ( Bài 1-tr15-HH11CB) Trong mặt

Ngày đăng: 02/06/2018, 09:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w