Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
278,82 KB
Nội dung
ơng 1: Kiến thức chuẩn bị Tác giả trình bày kiến thức tập lồi, hàm lồi hàm lồi suy rộng Các kiến thức sử dụng để nghiên cứu vấn đề chương Chương 2: Ánh xạ đơn điệu suy rộng Nội dung chương tập trung trình bày định nghĩa ánh xạ đơn điệu đơn điệu chặt, ánh xạ giả đơn điệu, ánh xạ giả đơn điệu chặt, ánh xạ tựa đơn điệu, ánh xạ đơn điệu mạnh giả đơn điệu mạnh Đồng thời nêu đặc trưng ánh xạ đơn điệu suy rộng ánh xạ đơn điệu suy rộng 1− chiều, mối liên hệ ánh xạ tựa đơn điệu ánh xạ giả đơn điệu, ánh xạ đơn điệu suy rộng khả vi, ánh xạ đơn điệu suy rộng affin Chương 3: Sự tồn nghiệm bất đẳng thức biến phân giả đơn điệu Ở luận văn trình bày vài ứng dụng vào nghiên cứu tồn nghiệm bất đẳng thức biến phân Tác giả luận văn xin bày tỏ lòng kính trọng biết ơn sâu sắc tới Footer Page of 12 Header Page of 12 PGS.TS Nguyễn Năng Tâm hướng dẫn tận tình tác giả hồn thành luận văn Tác giả xin bày tỏ lòng biết ơn chân thành đến thầy phản biện dành thời gian đọc đóng góp nhiều ý kiến quý báu cho tác giả Tác giả xin trân trọng cảm ơn ban lãnh đạo khoa Toán – Cơ – Tin học, khoa Sau đại học thầy cô giáo trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội trang bị kiến thức, tạo điều kiện thuận lợi cho tác giả suốt thời gian tác giả học tập trường Cuối cùng, tác giả xin cảm ơn gia đình, bạn bè đồng nghiệp quan tâm, động viên chia sẻ để tác giả hồn thành luận văn Hà Nội, ngày 20 tháng 11 năm 2015 Tác giả luận văn Đức Minh Thiêm Footer Page of 12 Header Page of 12 Chương Kiến thức chuẩn bị Chương trình bày số nội dung tập lồi, hàm lồi hàm lồi suy rộng, bao hàm hàm tựa lồi hàm giả lồi Những nội dung trình bày chương chủ yếu chọn tài liệu [2] 1.1 Không gian Euclide Tập hợp Rn := {x = (x1 , , xn )T : x1 , , xn ∈ R} với hai phép toán (x1 , , xn )T + (y1 , , yn )T := (x1 + y1 , , xn + yn )T λ(x1 , , xn )T := (λx1 , , λxn )T , λ∈R lập thành không gian véc tơ Euclide n−chiều Nếu x = (x1 , , xn )T ∈ Rn xi gọi thành phần tọa độ thứ i x Véc tơ không không gian gọi gốc Rn kí hiệu đơn giản 0, = (0, , 0)T Trong Rn ta định nghĩa tích vơ hướng tắc , sau: với x = (x1 , , xn )T , y = (y1 , , yn )T ∈ Rn , n x, y = xi yi i=1 Footer Page of 12 Header Page of 12 Đơi ta ký hiệu xT y Khi với x = (x1 , , xn )T ∈ Rn ta định nghĩa n x := (xi )2 x, x = i=1 gọi chuẩn Euclide véc tơ x 1.2 Tập lồi Định nghĩa 1.1 Tập X ⊂ Rn gọi lồi, ∀x, y ∈ X, ∀λ ∈ R : ≤ λ ≤ ⇒ λx + (1 − λ) y ∈ X Mệnh đề 1.2 Cho Xα ⊂ Rn (α ∈ I) tập lồi, với I tập số Khi X = Xα lồi α∈I Mệnh đề 1.3 Cho tập Xi ⊂ Rn lồi, λi ∈ R (i = 1, 2, , m) Khi λ1 X1 + + λm Xm tập lồi Mệnh đề 1.4 Cho tập Xi ⊂ Rni lồi, (i = 1, 2, , m) Khi tích Đề X1 × × Xm tập lồi Rn1 × × Rnm Định nghĩa 1.5 Cho X ⊂ Rn Giao tất tập lồi chứa X gọi bao lồi (convex hull) tập X, kí hiệu coX Định nghĩa 1.6 Giả sử X ⊂ Rn Giao tất tập lồi đóng chứa X gọi bao lồi đóng tập X kí hiệu coX Mệnh đề 1.7 Cho X ⊂ Rn lồi Khi đó, i) Phần intX bao đóng X X tập lồi; ii) Nếu x1 ∈ intX, x2 ∈ X, {λx1 + (1 − λ)x2 : < x1 ≤ 1} ⊂ intX Footer Page of 12 Header Page 10 of 12 1.3 Hàm lồi Định nghĩa 1.8 Cho hàm f : X → R, X ⊂ Rn , R = R ∪ {−∞, +∞}, tập epi(f ) = {(x, α) ∈ X × R| f (x) ≤ α} , dom(f ) = {x ∈ X| f (x) < +∞} gọi đồ thị miền hữu hiệu f Định nghĩa 1.9 Cho X ⊂ Rn tập lồi, f : X → R Hàm f gọi lồi X đồ thị epi(f ) tập lồi Rn × R Nếu dom f = ∅ −∞ < f (x) với x ∈ X ta nói hàm f thường Hàm f gọi lõm X −f hàm lồi X Định lý 1.10 Giả sử f1 , , fm hàm lồi thường X Khi đó, tổng f1 + + fm hàm lồi Ta nhắc lại số đặc trưng tính chất hàm lồi biến khả vi Định lý 1.11 Cho ϕ : (a, b) → R i) Nếu ϕ khả vi (a, b) ϕ lồi (a, b) ϕ không giảm (a, b) ii) Nếu ϕ có đạo hàm bậc hai (a, b) ϕ lồi (a, b) ϕ (t) với t ∈ (a, b) iii) Nếu ϕ lồi [a, b] ϕ liên tục (a, b) Định lý 1.12 Cho X tập lồi không gian Rn f : X → R Khi đó, điều kiện sau tương đương: a) f (λx + (1 − λ) y) ≤ λf (x) + (1 − λ) f (y) ∀λ ∈ [0, 1] , ∀x, y ∈ X b) f (λx + (1 − λ) y) λf (x)+(1 − λ) f (y) ∀λ > 1, ∀x, y ∈ X cho λx + (1 − λ) y ∈ X Footer Page 10 of 12 Header Page 11 of 12 Tài liệu tham khảo [1] J P Crouzeix (1993), "Pseudomonotone Variational Inequalitiy Problems: Existence of Solutions", Mathematical Programming78, pp 305-314 [2] G Giorgi, A Guerraggio and J Thierfelder (2004), Mathematics of Optimization: Smooth and Nonsmooth Case ,Elsevier B.V Amsterdam The Netherlands [3] P T Harker, J S Pang (1990), "Finite Dimensional Inequality and Nonlinear Complementarity Problems: A Survey of Theory Algorithms and Applications", Mathematical Programming48, pp 161220 [4] S Karamadian and S Schaible (1990), "Seven Kinds of Monotone Maps", J Optim Theory and Applications66, pp 37-46 [5] S Karamadian (1976), "Complementarity problems over cones with monotone and pseudomonotone maps ", J Optim Theory and Applications18, pp 445-454 [6] S Karamadian, S Schaible and J P Crouzeix (1993), "Characterizations of Generalized Monotone Maps", J Optim Theory and Applications76, pp 399-413 [7] B T Kien, J.-C Yao and N D Yen (2008), "On the Solution Existence of Pseudomonotone Variational Inequalities", J Global Optim.41, pp 135-145 52 Footer Page 11 of 12 ... Header Page of 12 Chương Kiến thức chuẩn bị Chương trình bày số nội dung tập lồi, hàm lồi hàm lồi suy rộng, bao hàm hàm tựa lồi hàm giả lồi Những nội dung trình bày chương chủ yếu chọn tài liệu [2]... (x1 , , xn )T ∈ Rn xi gọi thành phần tọa độ thứ i x Véc tơ không không gian gọi gốc Rn kí hiệu đơn giản 0, = (0, , 0)T Trong Rn ta định nghĩa tích vơ hướng tắc , sau: với x = (x1 , , xn )T