1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Gauss 2017b mk

57 147 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 57
Dung lượng 336,32 KB

Nội dung

Nguyễn Công Phương Engineering Electromagnetics Electric Flux Density, Gauss’ Law & Divergence Contents I II III IV V VI VII VIII IX X XI XII XIII XIV XV Introduction Vector Analysis Coulomb’s Law & Electric Field Intensity Electric Flux Density, Gauss’ Law & Divergence Energy & Potential Current & Conductors Dielectrics & Capacitance Poisson’s & Laplace’s Equations The Steady Magnetic Field Magnetic Forces & Inductance Time – Varying Fields & Maxwell’s Equations Transmission Lines The Uniform Plane Wave Plane Wave Reflection & Dispersion Guided Waves & Radiation Engineering Electromagnetics - sites.google.com/site/ncpdhbkhn Electric Flux Density, Gauss’ Law & Divergence Electric Flux Density Gauss’ Law Divergence Maxwell’s First Equation The Vector Operator The Divergence Theorem Electric Flux Density, Gauss’ Law & Divergence Electric Flux Density (1) • M Faraday (1837) • Phenomenon: the total charge on the outer sphere was equal in magnitude to the original charge placed on the inner sphere, regardless of the dielectric material between the spheres • Conclusion: there was a “displacement” from the inner sphere to the outer, independent of the medium: Ψ=Q • Ψ: electric flux Electric Flux Density, Gauss’ Law & Divergence Electric Flux Density (2) Sa = 4πa2 (m2) –Q a Density of the flux at the inner sphere: Ψ Q = 4π a 4π a +Q b Electric flux density: D r= a D r =b Q = a r 4π a Q = a r 4π b D a ≤ r≤ b Q = a r 4π r Electric Flux Density, Gauss’ Law & Divergence Electric Flux Density (3) –Q Q D= a (a < r < b) r 4π r b +Q r Q D= a r 4π r Q E= a r 4πε r (in free space) → D = ε 0E (in free space) E=∫ V ρv dv a r 4πε R → D=∫ Electric Flux Density, Gauss’ Law & Divergence V ρv dv a r 4π R Ex Electric Flux Density (4) Infinite uniform line charge of 10 nC/m lie along the x & y axes in free space Find D at (0, 0, 3) Electric Flux Density, Gauss’ Law & Divergence Ex Electric Flux Density (5) The x & y axes are charged with uniform line charge of 10 nC/m A point charge of 20nC is located at (3, 3, 0) The whole system is in free space Find D at (0, 0, 3) Electric Flux Density, Gauss’ Law & Divergence Ex Electric Flux Density (6) Given infinite uniform sheets (all parallel to x0y) at z = – 3, z = & z = Their surface charge density are nC/m2, nC/m2 & –9 nC/m2 respectively Find D at P(5, 5, 5) Electric Flux Density, Gauss’ Law & Divergence Electric Flux Density, Gauss’ Law & Divergence Electric Flux Density Gauss’ Law Divergence Maxwell’s First Equation The Vector Operator The Divergence Theorem Electric Flux Density, Gauss’ Law & Divergence 10 Maxwell’s First Equation (2) div D = ρ v • Apply to electrostatic & steady magnetic fields • The electric flux per unit volume leaving a vanishingly small volume unit is exactly equal to the volume charge density there Electric Flux Density, Gauss’ Law & Divergence 43 Maxwell’s First Equation (3) Ex Given D = 4xyax + z2ay C/m2, find ρv of the region about P(1,1,1) ρ v = div D ∂ ∂ ∂ ∂Dx ∂Dy ∂Dz = xy + z + = 4y div D = + + ∂x ∂y ∂z ∂x ∂y ∂z → ρv = y → ρ v , P = ρv = × = C/ m x = y = z =1 Electric Flux Density, Gauss’ Law & Divergence 44 Electric Flux Density, Gauss’ Law & Divergence Electric Flux Density Gauss’ Law Divergence Maxwell’s First Equation The Vector Operator The Divergence Theorem Electric Flux Density, Gauss’ Law & Divergence 45 ∇(1) ∂ ∂ ∂ ∇ = a x + a y + az ∂x ∂y ∂z ∂ ∂ ∂  ∇.D =  a x + a y + a z  ( Dx a x + Dy a y + Dz a z ) ∂y ∂z   ∂x ∂ ∂ ∂ = ( Dx ) + ( Dy ) + ( Dz ) ∂x ∂y ∂z ∂Dx ∂Dy ∂Dz = + + = div D ∂x ∂y ∂z → ∂Dx ∂Dy ∂Dz div D = ∇.D = + + ∂x ∂y ∂z Electric Flux Density, Gauss’ Law & Divergence 46 ∇(2) Ex Given D = e – x sinyax – e – x cosyay + 2zaz C/m2, find ∇.D ? Electric Flux Density, Gauss’ Law & Divergence 47 Electric Flux Density, Gauss’ Law & Divergence Electric Flux Density Gauss’ Law Divergence Maxwell’s First Equation The Vector Operator The Divergence Theorem Electric Flux Density, Gauss’ Law & Divergence 48 The Divergence Theorem (1) • Applies to any vector field for which the appropriate partial derivatives exist ∫ S D.dS = Q Q = ∫ ρv dv V ∇.D = ρ v → → ∫ ∫ S S D.dS = Q = ∫ ρv dv = ∫ ∇.Ddv V V D.dS = ∫ ∇.Ddv V • Theorem: the integral of the normal component of any vector field over a closed surface is equal to the integral of the divergence of this vector field throughout the volume enclosed by the closed surface Electric Flux Density, Gauss’ Law & Divergence 49 The Divergence Theorem (2) z Ex Given D = 4xyax + z2ay C/m2 & a rectangular parallelepiped Verify the divergence theorem ∫ S D.dS = ∫ ∇.DdV ( = Q) V Left side: ∫ S D.dS = ∫ ∫ front front +∫ z =3 y =2 =∫ z =0 back ∫ y =0 +∫ left +∫ +∫ top right D x=1 (dydza x ) = ∫ ∫ Dx →∫ front =∫ z =3 z =0 ∫ y =2 ydydz = ∫ y= z= z =0 z =3 z =0 x =1 x y +∫ bottom y =2 y =0 Dx x =1 dydz = (4 xy ) x =1 = y 8dz = 24 C Electric Flux Density, Gauss’ Law & Divergence 50 The Divergence Theorem (3) z Ex Given D = 4xyax + z2ay C/m2 & a rectangular parallelepiped Verify the divergence theorem ∫ S D.dS = ∫ ∇.DdV ( = Q) V Left side: ∫ S ∫ D.dS = ∫ back front =∫ z =3 z =0 ∫ +∫ back y =2 y= +∫ left +∫ right +∫ top D x =0 ( − dydza x ) = − z =3 Dx →∫ back x =0 x +∫ bottom ∫ ∫ z =0 y y =2 y =0 Dx x =0 dydz = (4 xy ) x =0 = =0 Electric Flux Density, Gauss’ Law & Divergence 51 The Divergence Theorem (4) z Ex Given D = 4xyax + z2ay C/m2 & a rectangular parallelepiped Verify the divergence theorem ∫ S D.dS = ∫ ∇.DdV ( = Q) V Left side: ∫ S D.dS = ∫ +∫ back front ∫ right =∫ z =3 z =0 ∫ +∫ left +∫ right x =1 D y=2 ( dxdza y ) = x =0 +∫ top +∫ z =3 x =1 z =0 x= →∫ right =∫ z= z= ∫ y =2 x =1 x= x bottom ∫ ∫ Dy y Dy y= = ( z2 ) dxdz y= = z2 z dxdz Electric Flux Density, Gauss’ Law & Divergence 52 The Divergence Theorem (5) z Ex Given D = 4xyax + z2ay C/m2 & a rectangular parallelepiped Verify the divergence theorem ∫ S D.dS = ∫ ∇.DdV ( = Q) V Left side: ∫ S D.dS = ∫ front ∫ left =∫ z =3 z =0 ∫ +∫ back x =1 x =0 +∫ left +∫ right +∫ Dy →∫ left = −∫ z =3 z =0 ∫ bottom z =3 z =0 x =0 ∫ x =1 x= y =0 x =1 x +∫ top D y =0 (− dxdza y ) = − ∫ y Dy y= = ( z2 ) dxdz y =0 = z2 z 2dxdz Electric Flux Density, Gauss’ Law & Divergence 53 The Divergence Theorem (6) z Ex Given D = 4xyax + z2ay C/m2 & a rectangular parallelepiped Verify the divergence theorem ∫ S D.dS = ∫ ∇.DdV ( = Q) V Left side: ∫ S D.dS = ∫ front +∫ +∫ back left ∫ top +∫ right =∫ bottom +∫ top x y +∫ bottom =0 Electric Flux Density, Gauss’ Law & Divergence 54 The Divergence Theorem (7) z Ex Given D = 4xyax + z2ay C/m2 & a rectangular parallelepiped Verify the divergence theorem ∫ S D.dS = ∫ ∇.DdV ( = Q) V Left side: ∫ S D.dS = ∫ front +∫ back = 24 + + ∫ z =3 z =0 +∫ +∫ left ∫ x =1 x =0 right +∫ top z dxdz − ∫ z =3 z =0 ∫ x y +∫ bottom x =1 x =0 z 2dxdz + + = 24 C Electric Flux Density, Gauss’ Law & Divergence 55 The Divergence Theorem (8) z Ex Given D = 4xyax + z2ay C/m2 & a rectangular parallelepiped Verify the divergence theorem ∫ S D.dS = ∫ ∇.DdV ( = Q) V Right side: ∫ V x y ∇.DdV ∂ ∂ ∂ ∂Dx ∂Dy ∂Dz = xy + z + = 4y ∇.D = + + ∂x ∂y ∂z ∂x ∂y ∂z z =3 y= → ∫ ∇.DdV = ∫ ydV = ∫z =0 ∫ y =0 V V =∫ z =3 z =0 ∫ y =2 y =0 ∫ x =1 x= ydxdydz z =3 ydydz = ∫z =0 8dz = 24 C Electric Flux Density, Gauss’ Law & Divergence 56 The Divergence Theorem (9) z Ex Given D = 4xyax + z2ay C/m2 & a rectangular parallelepiped Verify the divergence theorem ∫ S D.dS = ∫ ∇.DdV ( = Q) V ∫ Right side: ∇.DdV = 24 ∫V Left side: S D.dS = 24 C x y C Electric Flux Density, Gauss’ Law & Divergence 57 ... 8.854 × 10−12 ρ ρ Electric Flux Density, Gauss Law & Divergence = 6.37 ρ nC/m 22 z Gauss' Law (13) • The application of Gauss law (to find D) needs a gaussian surface • Problem: hard to find... respectively Find D at P(5, 5, 5) Electric Flux Density, Gauss Law & Divergence Electric Flux Density, Gauss Law & Divergence Electric Flux Density Gauss Law Divergence Maxwell’s First Equation The... Operator The Divergence Theorem Electric Flux Density, Gauss Law & Divergence 10 Gauss' Law (1) • Generalization of Faraday’s experiment • Gauss law: the electric flux passing through any closed

Ngày đăng: 17/05/2018, 15:58

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w