1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Transmission lines 2017b mk

53 161 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 536,39 KB

Nội dung

Nguyễn Công Phương Engineering Electromagnetics Transmission Lines Contents I II III IV V VI VII VIII IX X XI XII XIII XIV XV Introduction Vector Analysis Coulomb’s Law & Electric Field Intensity Electric Flux Density, Gauss’ Law & Divergence Energy & Potential Current & Conductors Dielectrics & Capacitance Poisson’s & Laplace’s Equations The Steady Magnetic Field Magnetic Forces & Inductance Time – Varying Fields & Maxwell’s Equations Transmission Lines The Uniform Plane Wave Plane Wave Reflection & Dispersion Guided Waves & Radiation Transmission Lines - sites.google.com/site/ncpdhbkhn Transmission Lines 10 Introduction The Transmission Line Equations Lossless Propagation Transmission Line Equations & Their Solutions in Phasor Form Wave Reflection at Discontinuities Voltage Standing Wave Ratio Transmission Lines of Finite Length Some Transmission Line Examples Graphical Method Transients Analysis Transmission Lines - sites.google.com/site/ncpdhbkhn Introduction I1 R1 R2 + + + V2 V1 – E − I2 D − N Ida Engineering Electromagnetics Springer 2015 Transmission Lines - sites.google.com/site/ncpdhbkhn The Transmission Line Equations (1) I1 I1 I2 I2 + + D – – dz I + dI I ( z,t ) + Rdz + Ldz V + dV v Cdz − Transmission Lines - sites.google.com/site/ncpdhbkhn Gdz − The Transmission Line Equations (2) I + dI I ( z,t ) + Rdz + Ldz V Cdz − V + dV Gdz −  I − ( I + dI ) − (Gdz )(V + dV ) − (Cdz )(V + dV )′ =  −V + ( Rdz ) I + ( Ldz ) I ′ + V + dV = dI  dV + ( Rdz ) i + ( Ldz ) =0  dt → dI + (Gdz )v + (Cdz ) dV =  dt ∂I  ∂V − = RI + L  ∂z ∂t → − ∂I = GV + C ∂V  ∂z ∂t Transmission Lines - sites.google.com/site/ncpdhbkhn The Transmission Line Equations (3) I + dI I ( z,t ) + Rdz Ldz v Cdz − + ∂I  ∂V − = RI + L  ∂z ∂t  − ∂I = GV + C ∂V  ∂z ∂t V + dV Gdz −  ∂ 2V ∂ 2V ∂V = LC + ( LG + RC ) + RGV  ∂z ∂t ∂t → 2 ∂ I ∂ I ∂V  = LC + ( LG + RC ) + RGI  ∂z ∂t ∂t Transmission Lines - sites.google.com/site/ncpdhbkhn Transmission Lines 10 Introduction The Transmission Line Equations Lossless Propagation Transmission Line Equations & Their Solutions in Phasor Form Wave Reflection at Discontinuities Voltage Standing Wave Ratio Transmission Lines of Finite Length Some Transmission Line Examples Graphical Method Transients Analysis Transmission Lines - sites.google.com/site/ncpdhbkhn Lossless Propagation (1) ∂I  ∂V − ∂z = RI + L ∂t ,  − ∂I = GV + C ∂V ∂t  ∂z  ∂2V ∂ 2V ∂V = LC + ( LG + RC ) + RGV  ∂z ∂t ∂t  2 ∂ I ∂ I ∂V  = LC + ( LG + RC ) + RGI  ∂z ∂t ∂t  ∂ 2V ∂I ∂ 2V  ∂V − ∂z = L ∂t  ∂z = LC ∂t R = 0, G = →  ,  2 ∂ I ∂ V ∂ I ∂ I − = C  = LC  ∂z  ∂z ∂t ∂t  z  z → V ( z , t ) = f1  t −  + f  t +  = V + + V −  v  v Transmission Lines - sites.google.com/site/ncpdhbkhn Lossless Propagation (2)  z  V ( z , t ) = f1  t −  + f  t +  v  z + − = V + V  v ∂f1 ∂f1 ∂(t − z / v) = = − f1′ ∂z ∂(t − z / v) dz v ∂f1 ∂f1 ∂(t − z / v) = = f1′ ∂t ∂(t − z / v) ∂t ∂2 f1 = f1′′, ∂t v ∂2 f1 = f1′′ ∂t → v= ∂2V ∂ 2V = LC ∂z ∂t Transmission Lines - sites.google.com/site/ncpdhbkhn LC 10 Graphical Method (1) 1+ Γ ZL − Z0 → Z L = Z0 Γ= ZL + Z0 1− Γ ZL = z L (normalized load impedance) Z0 1+ Γ → zL = 1− Γ + [ Re{Γ} + j Im{Γ}] → Re{z L } + j Im{ zL } = − [ Re{Γ} − j Im{Γ}] = − Re 2{Γ} − Im2{Γ} + j Im{Γ} [1 − Re{Γ}] + Im 2{Γ} Transmission Lines - sites.google.com/site/ncpdhbkhn 39 Graphical Method (2) Re{ z L} + j Im{z L } = − Re 2{Γ} − Im2{Γ} + j Im{Γ} [1 − Re{Γ}] + Im 2{Γ} Re{ zL } = − Re 2{Γ} − Im2{Γ} [1 − Re{Γ}] + Im2{Γ} → Re{ zL }[ Re{Γ} − 1] + Re ({Γ} − 1 +   (= 0) 1 − + Re{Γ}Im {Γ} + Im {Γ} + + Re{ zL } + Re{ zL } 2   Re{z L }  Re{z L }   + Im {Γ} =   →  Re{Γ} − + Re{z L }    + Re{z L }  Transmission Lines - sites.google.com/site/ncpdhbkhn =0 40 Graphical Method (3) Re{ z L} + j Im{z L } = − Re 2{Γ} − Im2{Γ} + j Im{Γ} [1 − Re{Γ}] + Im 2{Γ} 2   Re{ z L }  Re{ z L }   Re{Γ} −  + Im {Γ} =   + Re{ z L }    + Re{ z L }   (Re{Γ} − 1)2 +  Im{Γ} −  2   = Im{ z L }  Im { z L } Transmission Lines - sites.google.com/site/ncpdhbkhn 41 Graphical Method (4)   Re{ z L }  Re{ zL }   Re{Γ} −  + Im 2{Γ} =   + Re{ z L }    + Re{ zL }    ,0 & a radius of Equation of a circle, centered at  + Re{z L } + Re{ z }  L  r = Re{z L } Im{Γ} Re{Γ} Transmission Lines - sites.google.com/site/ncpdhbkhn 42 Graphical Method (5)   (Re{Γ} − 1) +  Im{Γ} −  = 21 Im{ zL }  Im {z L }   1  Equation of a circle, centered at 1,  & a radius of Im{ z } L  Im{ z L }  s = Im{ z L } Im{Γ} Re{Γ} Transmission Lines - sites.google.com/site/ncpdhbkhn 43 Graphical Method (6) Find the normalized load impedance ZL zL = = Re{z L } + j Im{ z L } Z0 Find the circle corresponding to Re{zL} Find the arc corresponding to Im{zL} The intersection of the circle & the arc is Γ Transmission Lines - sites.google.com/site/ncpdhbkhn 44 Graphical Method (7) Ex.: ZL = 25 + j100 Ω, Z0 = 50 Ω; Γ = ? Normalization: zL = (25 + j100)/50 = 0.5 + j2 The circle corresponds to 0.5 The arc corresponds to Γ is the intersection of the circle & the arc Γ = 0.52 + j0.64 Transmission Lines - sites.google.com/site/ncpdhbkhn 45 Transmission Lines - sites.google.com/site/ncpdhbkhn 46 Transmission Lines 10 Introduction The Transmission Line Equations Lossless Propagation Transmission Line Equations & Their Solutions in Phasor Form Wave Reflection at Discontinuities Voltage Standing Wave Ratio Transmission Lines of Finite Length Some Transmission Line Examples Graphical Method Transients Analysis Transmission Lines - sites.google.com/site/ncpdhbkhn 47 Transient Analysis (1) Γ= V+ V0 Z L − Z RL − Z = Z L + Z RL + Z I+ t=0 0V + Z0 RL = Z → Γ = V0 RL = → Γ = −1 Rg RL − z=0 z=L RL = ∞ → Γ = ΓL = Γg = RL − Z RL + Z Rg − Z Rg + Z VL V0 L/v Transmission Lines - sites.google.com/site/ncpdhbkhn t 48 L Transient Analysis (2) z (m) V1+ Γg t=0 L/v Z0 V0 RL Rg z=0 z=L VL = V1+ + V1− + V2+ + V2− + V3+ + V3− + 5L/v 6L/v = V1+ (1 + Γ L )(1 + Γg Γ L + Γ2g Γ L2 + ) 7L/v 1− Γ gΓ L 8L/v V1+ = V0 Z Rg + Z V2+ = Γ g Γ LV1+ V2− = Γ g Γ2LV1+ 4L/v = V1+ (1 + ΓL + Γg Γ L + Γ g Γ2L + Γ2g Γ L2 + ) = V1+ (1 + ΓL ) V1− = Γ LV1+ 2L/v 3L/v 9L/v 10L/v ΓL V3+ = Γ 2g Γ2LV1+ V3− = Γ 2g Γ3LV1+ V4+ = Γ 3g Γ3LV1+ V4− = Γ3g Γ4LV1+ V5+ = Γ 4g Γ4LV1+ V5− = Γ 4g Γ5LV1+ t (s) Transmission Lines - sites.google.com/site/ncpdhbkhn t (s) 49 L Transient Analysis (3) z (m) V1+ Γg t=0 L/v Z0 V0 RL Rg z=0 3L / z=L + − + − V +V +V +V V1+ +V1− 9L/v 3L 4v V3+ = Γ 2g Γ2LV1+ V3− = Γ 2g Γ3LV1+ V4+ = Γ 3g Γ3LV1+ V4− = Γ3g Γ4LV1+ V5+ = Γ 4g Γ4LV1+ 8L/v 0 V2− = Γ g Γ2LV1+ 6L/v 7L/v V1+ +V1− +V2+ V1+ V2+ = Γ g Γ LV1+ 4L/v 5L/v V3/4 V1− = Γ LV1+ 2L/v 3L/v 5L 4v 11L 4v 13L 4v t 10L/v ΓL 3L / V5− = Γ 4g Γ5LV1+ t (s) Transmission Lines - sites.google.com/site/ncpdhbkhn t (s) 50 L Transient Analysis (4) z (m) Γg t=0 L/v Z0 V0 RL Rg z=0 z=L I L = I1+ + I1− + I 2+ + I 2− + I 3+ + I3− + I1+ = V1+ / Z I1− = −V1− / Z0 I 2+ = V2+ / Z0 2L/v 3L/v I 2− = −V2− / Z0 4L/v 5L/v I 3+ = V3+ / Z0 I 3− = −V3+ / Z0 I 4+ = V4+ / Z0 6L/v 7L/v I 4− = −V4− / Z0 I 5+ = V5+ / Z0 8L/v 9L/v 10L/v ΓL I 5− = −V5− / Z0 t (s) Transmission Lines - sites.google.com/site/ncpdhbkhn t (s) 51 L Transient Analysis (5) z (m) Γg t=0 L/v Z0 V0 RL Rg z=0 z=L 3L / I1+ + − + I 2− = −V2− / Z0 I 3+ = V3+ / Z0 I 3− = −V3+ / Z0 I 4+ = V4+ / Z0 6L/v + I +I +I I1+ + I1− I 2+ = V2+ / Z0 4L/v 5L/v I3/4 I1− = −V1− / Z0 2L/v 3L/v − + − I +I + I +I 7L/v I 4− = −V4− / Z0 I 5+ = V5+ / Z0 8L/v 9L/v 0 3L 4v 5L 4v 11L 4v 13L 4v t 10L/v ΓL 3L / I1+ = V1+ / Z I 5− = −V5− / Z0 t (s) Transmission Lines - sites.google.com/site/ncpdhbkhn t (s) 52 Transient Analysis (6) Ex Rg = Z0 = 50 Ω, RL = 25 Ω, V0 = 10 V The switch is closed at time t = Determine the voltage at the load resistor and the current in the battery as functions of time ΓL = RL − Z0 25 − 50 = = −0.33 RL + Z0 25 + 50 Rg − Z 50 − 50 Γg = = =0 Rg + Z 50 + 50 V1+ = V0 10 Z0 = 50 = 5V Rg + Z0 50 + 50 t=0 Z0 V0 z (m) V1+ t (s) t (s) z (m) Γg V1+ I = = = 0.1A Z0 50 + 2L/v ΓL I1+ L/v V1− (−1.67) I =− =− = 0.033A Z0 50 ΓL V1− = Γ LV1+ 2L/v V1− = Γ LV1+ = (−0.33)5 = −1.67V − Rg Γg L/v RL I1− t (s) Transmission Lines - sites.google.com/site/ncpdhbkhn t (s) ... Wave Ratio Transmission Lines of Finite Length Some Transmission Line Examples Graphical Method Transients Analysis Transmission Lines - sites.google.com/site/ncpdhbkhn 28 Transmission Lines of... + RC ) + RGI  ∂z ∂t ∂t Transmission Lines - sites.google.com/site/ncpdhbkhn Transmission Lines 10 Introduction The Transmission Line Equations Lossless Propagation Transmission Line Equations... = Re{Vs ( z) e } = jω t Transmission Lines - sites.google.com/site/ncpdhbkhn 13 Transmission Lines 10 Introduction The Transmission Line Equations Lossless Propagation Transmission Line Equations

Ngày đăng: 17/05/2018, 15:58

TỪ KHÓA LIÊN QUAN