Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 32 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
32
Dung lượng
3,09 MB
Nội dung
CHỦ ĐỀ : QUAN Ệ VNG GĨC VÉCTƠ TRONG KHƠNGGIAN A TÓM TẮT LÝ THUYẾT Bài VECTƠ TRONG KHÔNGGIAN I KIẾN THỨC CƠ BẢN Định nghĩa phép tốn: Định nghĩa, tính chất phép tốn vectơ khơnggian xây dựng hoàn toàn tương tự mặt phẳng Phép cộng, trừ vectơ: uuur uuur uuur Quy tắc ba điểm: Cho ba điểm A, B, C bất kì, ta có: AB BC AC uuur uuur uuur Quy tắc hình bình hành: Cho hình bình hành ABCD, ta có: AB AD AC uuur uuur uuur uuuu r Quy tắc hình hộp: Cho hình hộp ABCD A ' B ' C ' D ' , ta có: AB AD AA ' AC ' Lưu ý: Điều kiện để hai vectơ phương: r r r r r r Hai vectơ a b ( b �0 ) � !k ��: a k b Điểm M chia đoạn thẳng AB theo tỉ số k ( k �1 ), điểm O tùy ý uuu r uuu r r OA kOB uuur uuur uuuu Ta có: MA k MB OM 1 k Trung điểm đoạn thẳng: Cho I trung điểm đoạn thẳng AB, điểm O tùy ý uu r uur r uuu r uuur uur Ta có: IA IB OA OB 2OI Trọng tâm tam giác: Cho G trọng tâm ABC, điểm O tùy ý uuu r uuur uuur r uuu r uuur uuur uuur Ta có: GA GB GC OA OB OC 3OG Sự đồng phẳng ba vectơ: Định nghĩa: Ba vectơ gọi đồng phẳng giá chúng song song với mặt phẳng r r r r r Điều kiện để ba vectơ đồng phẳng: Cho ba vectơ a, b, c , a b khơng phương r r r r r r Khi đó: a, b, c đồng phẳng � !m, n ��: c m.a n.b r r r r Cho ba vectơ a, b, c không đồng phẳng, x tùy ý r r r r Khi đó: !m, n, p ��: x m.a n.b p.c Tích vơ hướng hai vectơ: uuu r r uuur r Góc hai vectơ khơng gian: Ta có: AB u , AC v r r � � �1800 ) Khi đó: u, v BAC (00 �BAC Tích vơ hướng hai vectơ khơng gian: rr r r r r r r r Cho u , v �0 Khi đó: u.v u v cos u , v r r r r rr Với u v , quy ước: u.v r r r r r rr Với u , v �0 , ta có: u v � u.v II KỸ NĂNG CƠ BẢN Dạng 1: Chứng minh đẳng thức Phân tích vectơ Áp dụng cơng thức tính tích vơ hướng Áp dụng phép toán vectơ (phép cộng hai vectơ, phép hiệu hai vectơ, phép nhân vectơ với số) Áp dụng tính chất đặc biệt hai vectơ phương, trung điểm đoạn thẳng, trọng tâm tam giác uuu r r uuu r r B C , M trung điểm BB� Đặt CA a , CB b , Ví dụ: Cho hình lăng trụ ABC A��� uuur r AA ' c Khẳng định sau đúng? uuuur r r r uuuu r r r 1r uuuu r r r 1r uuuu r r r 1r A AM b a c B AM a c b C AM a c b D AM b c a 22 Hướng dẫn : uuuu r uuu r uuur Cần lưu ý tính chất M trung điểm AM AB AB� Khi : 2 uuuu r uuu r uuur uuu r uuu r uuur uuu r uuur uuur uuu r uuur r r 1r AM AB AB� AB AB BB� AB AA� AC CB AA� a b c 2222 Dạng 2: Chứng minh hai đường thẳng song song, ba điểm thẳng hàng, đường thẳng song song với mặt phẳng, tập hợp điểm đồng phẳng Ứng dụng điều kiện hai vectơ phương, ba vectơ đồng phẳng Ví dụ : Trong khônggian cho điểm O bốn điểm A, B, C, D không thẳng hàng Điều kiện cần đủ để A, B, C, D tạo thành hình bình hành là: uuu r uuur uuu r uuur uuu r uuu r uuur uuur r A OA OC OB OD B OA OB OC OD uuu r uuu r uuur uuur uuu r uuur uuu r uuur C OA OB OC OD D OA OC OB OD 22 Hướng dẫn: uuu r uuur uuur uuur Để A, B, C, D tạo thành hình bình hành AB CD AC BD Khi uuu r uuur uuu r uuur uuu r uuu r uuur uuur uuu r uuur uuu r uuur A OA OC OB OD � OA OB OD OC � BA CD AB DC uuu r uuu r uuur uuur r B OA OB OC OD : Với O trọng tâm tứ giác (hoặc tứ diện) ABCD uuu r uuu r uuur uuur uuu r uuur uuur uuu r uuu r uuur C OA OB OC OD � OA OC OD OB � CA BD 22 uuu r uuur uuu r uuur uuu r uuu r uuur uuur uuu r uuur D OA OC OB OD � OA OB OD OC � BA CD 22 Vậy chọn A Bài GÓC GIỮA HAI ĐƯỜNG THẲNG III KIẾN THỨC CƠ BẢN Vectơ đường thẳng: r phương r r Vectơ a �0 gọi vectơ phương đường thẳng d giá a song song trùng với đường thẳng d Góc hai đường thẳng: Cho a //a ' , b //b ' a ' , b ' qua điểm Khi đó: a�, b a�', b ' r r r r Giả sử u , v vectơ phương đường thẳng a, b u , v � 00 � �900 � � Khi đó: a, b � 180 900 �1800 � � Nếu a //b a �b a�, b Hai đường thẳng vng góc: a b � a�, b 90 r r rr r Giả sử u , v vectơ phương đường thẳng a, b Khi đó: a b � u.v Cho a //b Nếu a c b c Lưu ý: Hai đường thẳng vng góc với cắt chéo IV KỸ NĂNG CƠ BẢN : Xác định góc hai đường thẳng, chứng minh hai đường thẳng vng góc Ví dụ :Cho hình hộp ABCD.A’B’C’D’ có tất cạnh Trong mệnh đề sau, mệnh đề sai? C BD B DC � A� D A A�� B BB� C A� D BC � BD Hướng dẫn Theo tính chất hình hộp, cạnh bên vng góc cạnh đáy nên BB� BD Bài ĐƯỜNG THẲNG VNG GĨC MẶT PHẲNG V KIẾN THỨC CƠ BẢN Định nghĩa: d ( ) � d a, a �( ) d a � � d b � � d ( ) Điều kiện để đường thẳng vng góc với mặt phẳng: � a , b � ( ) � � a �b I � Tính chất: Mặt phẳng trung trực đoạn thẳng: mặt phẳng vuông góc với đoạn thẳng trung điểm đoạn thẳng Mặt phẳng trung trực đoạn thẳng tập hợp tất điểm cách hai đầu mút đoạn thẳng � a�b � a� b � a �b � � a � a //b � � b � � // � �a � a � � � � � a � // � a � � a // � �b a � b � � a � � a b � a // � � b � Định lý ba đường vng góc: Cho a � b � , b ' hình chiếu b lên Khi đó: a b � a b ' Góc đường thẳng mặt phẳng: Nếu d vng góc với góc d 900 Nếu d khơng vng góc với góc d góc d d ' với d ' hình chiếu d Chú ý: góc d 00 � �900 VI KỸ NĂNG CƠ BẢN Xác định góc đường thẳng mặt phẳng Ví dụ : Khẳng định sau sai ? A Nếu đường thẳng d d vng góc với hai đường thẳng B Nếu đường thẳng d vng góc với hai đường thẳng nằm () d C Nếu đường thẳng d vng góc với hai đường thẳng cắt nằm d vng góc với đường thẳng nằm D Nếu d đường thẳng a || d a Hướng dẫn : A Đúng d ( ) � d a, a �( ) B Sai Nếu đường thẳng d vng góc với hai đường thẳng cắt nằm d d a � � d b � � d � d c, c � C Đúng � a , b � � � a �b I � � a // � �d a D Đúng � d � Bài GĨC GIỮA HAI MẶT PHẲNG VII KIẾN THỨC CƠ BẢN Góc hai mặt phẳng: � a � Nếu � góc hai mặt phẳng góc hai đường thẳng a b b � a d , a �( ) � Giả sử ( ) �( ) d Từ điểm I �d , dựng � góc hai mặt phẳng b d , b �( ) � góc hai đường thẳng a b 00 ;900 � Chú ý: Gọi góc hai mặt phẳng �� � � Diện tích hình chiếu đa giác: Gọi S diện tích đa giác ℋ nằm S’ diện tích đa giác ℋ’ hình chiếu vng góc đa giác ℋ lên Khi S ' S cos với góc hai mặt phẳng Hai mặt phẳng vng góc: Nếu hai mặt phẳng vng góc mặt phẳng góc hai mặt phẳng 900 a �( ) � � ( ) ( ) Điều kiện để hai mặt phẳng vng góc với nhau: � a ( ) � Tính chất: � � � d � �a � a � � � ad � � � �A � � a � � �A �a �a � � � �d � � � d � VIII KỸ NĂNG CƠ BẢN Dạng : Góc hai mặt phẳng Ví dụ : Cho hình chóp S.ABC có SA ABC đáy tam giác vuông A Khẳng định sau sai? A SAB ABC S B SAB SAC C Vẽ AH BC , H �BC góc �ASH góc hai mặt phẳng SBC ABC D Góc hai mặt phẳng SBC SAC góc �SCB Hướng dẫn : � �SA � SAB � SAB ABC A Đúng � �SA ABC �AB AC � AB SAC B Đúng � �AB SA B A � �AB � SAB � SAB SAC ,� AC SAC � �AH BC � BC SAH � BC SH � SAH C Đúng � �AH SA H C �BC AH � nên góc hai mặt phẳng SBC � � SH ; AH SHA SBC ; ABC � � BC SH � ABC � góc hai đường thẳng SH AH , góc SHA D Sai cách xác định câu C B BÀI TẬP NHẬN BIẾT – THƠNG HIỂU Câu Trong khơnggian cho tứ diện ABCD Khẳng định sau sai: uuur uuur uuur uuur uuur uuur uuur uuur uuur A AD DC B AC BD C AD BC D AB BC AC Câu Trong khônggian cho hình hộp ABCD A ' B ' C ' D ' Khi vectơ sau đồng phẳng? uuur uuu r uuur uuuu r uuuur uuur uuuuur uuuur A AC , AB, AD, AC ' B A ' D, AA ', A ' D ',DD ' uuur uuu r uuur uuur uuuu r uuu r uuur uuur C AC , AB, AD, AA ' D AB ', AB, AD, AA ' Câu Cho tứ diện ABCD M , N trung điểm AB CD Chọn mệnh đề đúng: uuuu r uuur uuur uuuu r uuu r uuur A MN ( AD BC ) B MN 2( AB CD) uuuu r uuur uuur uuuu r uuur uuur C MN ( AC CD ) D MN 2( AC BD ) r r Trong khônggian cho hai đường thẳng a b có vectơ phương u , v Gọi góc hai đường thẳng a b Khẳng định sau đúng: r r A (u, v) r r B cos cos(u, v) rr C Nếu a b vng góc với u.v sin rr D Nếu a b vng góc với u.v Câu Câu Trong mệnh đề sau mệnh đề sai? uuu r uuur uuur uuur r A Nếu AB BC CD DA bốn điểm A, B, C , D đồng phẳng uur uuur uuur B Tam giác ABC có I trung điểm cạnh BC ta có đẳng thức: 2AI AB AC uuu r uuur r C Vì BA BC nên suy B trung điểm AC uuu r uuur uuur D Vì AB 2 AC AD nên điểm A, B, C , D đồng phẳng Câu Cho tứ diện ABCD có trọng tâm G Chọn mệnh đề đúng: uuur r uuur uuur uuu ( AB AC CD ) uuur uuu r uuur uuur C AG ( AB AC AD ) A AG Câu Câu uuur r uuu r uuur uuu uuur uuu r uuu r uuur D AG ( BA BC BD ) B AG ( BA BC BD) Cho tứ diện ABCD Mệnh đề sau sai? uuur uuur uuur uuur r uuur uuur r A AD.CD AC.DC B AC BD uuur uuur r uuu r uuur r C AD.BC D AB.CD r r uu r Trong khônggian cho vectơ u ,v,w không đồng phẳng Mệnh đề sau đúng? r r r ur A Các vectơ u v,v,w đồng phẳng r r r ur B Các vectơ u v, u,2 w đồng phẳng r r r ur C Các vectơ u v,v,2w không đồng phẳng r r r r D Các vectơ u v u , v không đồng phẳng Câu uuur r uuu r r uuur uu r uuuu r Cho lăng trụ tam giác ABC A ' B ' C ' Đặt AA ' u , AB v , AC w Biểu diễn vectơ BC ' qua r r ur vectơ u ,v,w Chọn đáp án đúng: uuuu r r r uu r uuuu r r r uu r A BC ' u v w B BC ' u v w uuuu r r r uu r uuuu r r r uu r C BC ' u v w D BC ' u v w Câu 10 Trong mệnh đề sau, mệnh đề ? uuu r uuur uuur A Nếu AB AC AD điểm A, B, C , D đồng phẳng uuur uuur uuur uuu r B AB AC � BC CA uuur u u u r C Nếu AB BC B trung điểm AC D Cho d �( ) d ' �( ) Nếu mặt phẳng ( ) ( ) vng góc với hai đường thẳng d d ' vng góc với uuu r r uuu r r uuur r B C , M trung điểm BB� Câu 11 Cho hình lăng trụ ABC A��� Đặt CA a , CB b , AA ' c Khẳng định sau đúng? uuuur r r r uuuur r r r A AM a c b B AM b a c 2 uuuur r r r uuuur r r r C AM a c b D AM b c a 2 Câu 12 Trong khônggian cho điểm O bốn điểm A, B, C, D không thẳng hàng Điều kiện cần đủ để A, B, C, D tạo thành hình bình hành là: uuu r uuur uuur uuur uuu r uuu r uuur uuur r A OA OC OB OD B OA OB OC OD 2 uuu r uuur uuur uuur uuu r uuur uuu r uuur C OA OB OC OD D OA OC OB OD 2 uur r uur r uuu r r uuu r Câu 13 Cho hình chóp S.ABCD có đáy ABCD hình bình hành Đặt SA = a ; SB = b ; SC = c ; SD = u r d Khẳng định sau đúng? r r ur r r r r ur A a c d b B a b c d r ur r r r r ur r r C a d b c D a c d b uuu r r uuur r Câu 14 Cho tứ diện ABCD Gọi M P trung điểm AB CD Đặt AB b , AC c , uuur ur AD d Khẳng định sau đúng? uuur r r ur uuur ur r r A MP c b d B MP d b c 2 uuur r ur r uuur r ur r C MP c d b D MP c d b 2 uuuu r r B C D có tâm O Gọi I tâm hình bình hành ABCD Đặt AC ' u , Câu 15 Cho hình hộp ABCD A���� r u r r r uuuu uuur r uuuu CA ' v , BD ' x , DB ' y Chọn khẳng định đúng? uur r r r u r uur r r r r u A 2OI u v x y B 2OI u v x y uur r r r r u C 2OI u v x y uur r r r u r D 2OI u v x y Câu 16 Cho chóp S ABCD có đáy hình vng cạnh a , SA ABCD , SA a Tính góc đường SC mặt phẳng SAD ? A �200 42 ' B �20070 ' C �69017 ' D �69030 ' Câu 17 Cho S ABC có SAC SAB vng góc với đáy, ABC cạnh a , SA 2a Tính góc SB ( SAC ) ? A �220 47 ' B �22079 ' C �370 45' D �67 012 Câu 18 Cho SAB hình vng ABCD nằm mặt phẳng vng góc Tính góc SC ABCD ? A �18035' B �150 62 ' C �370 45' D �63072 ' Câu 19 Cho S ABCD có đáy hình thang vng A B, AD 2a, AB BC a,SA vuông góc với mặt phẳng đáy Biết SC tạo với mặt phẳng đáy góc 60 Tính góc SD mặt phẳng SAC ? A �2405' B �34015' C �73012 ' D �6208' Câu 20 Cho hình chóp S ABC có SA SB SC 2a , đáy tam giác vuông A , � ABC 600 , , AB a Tính góc hai mặt phẳng SAC ABC ? A �760 24 ' B �44012' C �63015' D �73053' Câu 21 Cho S ABCD có đáy hình vng cạnh a , SC tạo đáy góc 450, SA vng góc với đáy Tính góc ( SAB ) ( SCD ) ? A �35015' B �750 09 ' C �67019' D �38055' Câu 22 Cho chóp S ABCD có đáy hình vng cạnh a,SA vng góc với mặt phẳng đáy SCD tạo với mặt phẳng đáy góc 450 Tính góc SBC SCD A 74012 ' B 42034 ' C 300 D 600 Câu 23 Cho S ABC có SA, SB, SC đơi vng góc Biết SA SB a,SC a Hỏi góc SBC ABC ? A �500 46 ' B 63012 ' C 34073' D 42012' Câu 24 Cho S ABCD có đáy hình chữ nhật, AB a, SA vng góc mặt phẳng đáy, SC hợp với mặt phẳng đáy góc 450 hợp với SAB góc 300 Tính góc SBC mặt phẳng đáy? A 83081' B 79001' C 62033' D �540 44 ' Câu 25 Cho chóp tứ giác S ABCD có đáy hình chữ nhật cạnh AB 4a, AD 3a Các cạnh bên có độ dài 5a Tính góc SBC ABCD ? A 750 46 ' B 710 21' Câu 26 Khẳng định sau khẳng định sai ? C 68031' D �65012 ' A Nếu đường thẳng d vng góc với hai đường thẳng cắt nằm ( ) d vng góc với đường thẳng nằm B Nếu đường thẳng d d vng góc với hai đường thẳng C Nếu đường thẳng d vng góc với hai đường thẳng nằm ( ) d D Nếu d đường thẳng a // a d Câu 27 Trong khônggian cho đường thẳng điểm O Qua O có đường thẳng vng góc với ? A Vơ số B C D Câu 28 Qua điểm O cho trước, có mặt phẳng vng góc với đường thẳng cho trước? A Vô số B C D Câu 29 Mệnh đề sau mệnh đề sai ? A Một đường thẳng mặt phẳng (không chứa đường thẳng cho) vng góc với đường thẳng song song B Hai mặt phẳng phân biệt vng góc với đường thẳng song song C Hai đường thẳng phân biệt vng góc với mặt phẳng song song D Hai đường thẳng phân biệt vng góc với đường thẳng thứ ba song song Câu 30 Hình hộp chữ nhật có ba kích thước 3, 4, độ dài đường chéo là: A B 50 C D 12 Câu 31 Cho hình chóp S ABCD có SA ABC VABC vuông B AH đường cao VSAB Khẳng định sau khẳng định sai ? A SA BC B AH BC C AH AC D AH SC Câu 32 Cho điểm A nằm mặt phẳng P Gọi H hình chiếu A lên P M, N điểm thay đổi P Mệnh đề sau mệnh đề sai? A Nếu AM AN HM HN C Nếu AM AN HM HN B Nếu AM AN HM HN D Nếu HM HN AM AN Câu 33 Cho tứ diện ABCD có AB, AC, AD đơi vng góC Chỉ mệnh đề sai mệnh đề sau đây: A Ba mặt phẳng ABC ; ABD ; ACD đôi vuông góC B Tam giác BCD vng C Hình chiếu A lên mặt phẳng BCD trực tâm tam giác BCD D Hai cạnh đối tứ diện vng góc Câu 34 Cho đoạn thẳng AB (P) mặt phẳng trung trực Mệnh đề sau mệnh đề sai? A MA MB � M � P B MN � P � MN AB C MN AB � MN � P D M � P � MA MB VẬN DỤNG THẤP uuur uuur uuur uuuu r Câu 35 Cho hình lập phương ABCD A ' B ' C ' D ' Phân tích vectơ AC ' theo vectơ AB, AD, AA ' Chọn đáp án đúng: uur � 4OI uur � 2OI uuuu r uuuu r uuur uuuu r AC � BD� CA� DB� r r r u r u v x y Câu 16 Cho chóp S ABCD có đáy hình vng cạnh a , SA ABCD , SA a Tính góc đường SC mặt phẳng SAD ? A �200 42 ' B �20070' C �69017 ' D �69030 ' Hướng dẫn giải CD AD � � CD SAD Tức D Ta có � �CD SA S hình chiếu vng góc C lên SAD � � Góc SC SAD CSD SD SA2 AD a ; CD � tan CSD SD � CSD A 200 42 ' D Câu 17 Cho S ABC có SAC SAB vng góc với đáy, ABC cạnh a , SA 2a Tính B góc SB ( SAC ) ? A �220 47 ' C �370 45' Hướng dẫn giải C B �22079' D �67 012 S Lấy H trung điểm AC Dễ chứng minh BH SAC suy H hình chiếu vng góc B lên SAC � � Góc SB SAC góc BSH SH SA2 AH � � tan BSH 17 a 17 a ; BH 2 H A 22 47 ' Câu 18 Cho SAB hình vng ABCD nằm S mặt phẳng vng góc Tính góc SC ABCD ? A �18035' C �370 45' Hướng dẫn giải Lấy H trung điểm AB B B �150 62 ' D �630 72 ' SH ABCD A D H B C C � � Góc SC ABCD SCH a a , CH HB BC 2 � � tan SCH 370 45' SH Câu 19 Cho S ABCD có đáy hình thang vng A B, AD 2a, AB BC a,SA vng góc với mặt phẳng đáy Biết SC tạo với mặt phẳng đáy góc 60 Tính góc SD mặt phẳng SAC ? A �2405' C �73012' Hướng dẫn giải Dễ chứng minh B �34015' D �6208' DC AC DC SA nên �SC DC SAC , góc SD SAC D � nên Dễ thấy góc SC tạo mặt phẳng đáy góc SCA S � SCA 600 SA a 6, SD a 10, CD a �SC tan �D CD SD D 2405' A Câu 20 Cho hình chóp S ABC có SA SB SC 2a , đáy tam giác vuông A , � ABC 600 , , AB a Tính góc hai mặt phẳng SAC ABC ? B A �760 24 ' B �44012' C �63015' D �73053' Hướng dẫn giải Từ giải thiết có SA SB SC 2a , ta hạ C S SH ABC H tâm đường tròn ngoại tiếp ABC � H trung điểm BC � SAC � ABC AC � Góc � AC SHM Ta có: � SAC ABC HM a , SH a � SMH B � SMH � SH � tan SMH MH Câu 21 Cho S ABCD có đáy hình vng cạnh a , SC tạo đáy góc 450, SA vng góc với đáy Tính góc ( SAB) ( SCD ) ? A �35015' M A 73053' B �750 09 ' C H C �67019 ' Hướng dẫn giải D �38055' Ta thấy giao tuyến SAB SCD đường d qua S song song với AB S Dễ chứng minh d SAD nên góc d SAB � ( SCD ) DSA Ta dễ thấy góc SC mặt phẳng đáy � 450 Từ dễ dàng tính góc SCA SA AC a 2, AD a � � tan DSA A D 35 15' Câu 22 Cho chóp S ABCD có đáy hình vng cạnh a,SA vng góc với mặt phẳng đáy B C SCD tạo với mặt phẳng đáy góc 450 Tính góc SBC SCD B 42034' D 600 A 74012 ' C 300 Hướng dẫn giải Dễ chứng minh góc SCD S đáy � 450 nên SA a SDA Lấy M , N trung điểm SB,SD Dễ chứng minh AN SCD , AM SBC SBC suy góc SCD góc AN , AM AM AN MN N M DB a � 600 � MAN 2 D A Câu 23 Cho S ABC có SA, SB, SC đơi vng góc Biết SA SB a,SC a Hỏi góc SBC B C ABC ? A �500 46 ' B 63012' C 34073' D 42012' Hướng dẫn giải � Hạ SH BC � BC ( SAH ) � Góc ( SBC ) ( ABC ) SHA SB.SC SH � BC a � tan SHA 500 46 ' Câu 24 Cho S ABCD có đáy hình chữ nhật, AB a, SA vng góc mặt phẳng đáy, SC hợp với mặt phẳng đáy góc 450 hợp với SAB góc 300 Tính góc SBC mặt phẳng đáy? A 83081' C 62033' B 79001' D �540 44 ' Hướng dẫn giải � 450 ,B �SC 300 Dễ thấy SCA S � SA x a SBA � SB SA2 AB x 2a SBC � SB.tan 300 BC � x 2a 3.x � x a A BC x � AC x a D � SA a � nên �540 44 ' Xét SAB có tan SBA C B Câu 25 Cho chóp tứ giác S ABCD có đáy hình chữ nhật cạnh AB 4a, AD 3a Các cạnh bên có độ dài 5a Tính góc SBC ABCD B 710 21' D �65012 ' A 750 46 ' 68031' ? C Hướng dẫn giải Hạ SH ( ABCD) Do cạnh bên nên H tâm đường tròn ngoại tiếp đáy, tức H tâm đáy Lấy I trung điểm BC nên � góc SBC ABCD SIH IH 2a,SH SC HC � � tan SIH S 5a 65012 ' Câu 26 Khẳng định sau khẳng định sai ? A Nếu đường thẳng d vng góc với hai B đường thẳng cắt nằm ( ) d D A H I C vng góc với đường thẳng nằm B Nếu đường thẳng d d vng góc với hai đường thẳng C Nếu đường thẳng d vng góc với hai đường thẳng nằm ( ) d D Nếu d đường thẳng a // a d Hướng dẫn giải: Đường thẳng d vng góc với hai đường thẳng song song nằm mặt phẳng nên đáp án sai Nếu đường thẳng d vng góc với mặt phẳng lúc vng góc với đường thẳng nằm mặt phẳng nên vng góc với hai đường thẳng hiển nhiên đường thẳng d vng góc với hai đường thẳng cắt nằm mặt phẳng () vng góc với mặt phẳng d vng với đường thẳng nằm ( ) hiển nhiên Đường thẳng d vng góc với mặt phẳng d song song trùng với giá véc tơ pháp tuyến mặt phẳng ( ) đường thẳng a // a d Câu 27 Trong khônggian cho đường thẳng điểm O Qua O có đường thẳng vng góc với ? A Vô số B C D Hướng dẫn giải Qua điểm O có vơ số đường thẳng vng góc với đường thẳng cho trước chúng nằm mặt phẳng qua O vng góc với đường thẳng Câu 28 Qua điểm O cho trước, có mặt phẳng vng góc với đường thẳng cho trước? A Vô số B C D Hướng dẫn giải: Qua điểm O cho trước có mặt phẳng qua O vng góc với đường thẳng cho trước Câu 29 Mệnh đề sau mệnh đề sai ? A Một đường thẳng mặt phẳng (không chứa đường thẳng cho) vng góc với đường thẳng song song B Hai mặt phẳng phân biệt vng góc với đường thẳng song song C Hai đường thẳng phân biệt vng góc với mặt phẳng song song D Hai đường thẳng phân biệt vng góc với đường thẳng thứ ba song song Hướng dẫn giải: Hai đường thẳng phân biệt vng góc với đường thẳng thứ ba song song hai đường thẳng đồng phẳng Trong trường hợp khơng đồng phẳng chúng chéo khônggian Các đáp án khác hiển nhiên Câu 30 Hình hộp chữ nhật có ba kích thước 3, 4, độ dài đường chéo là: A B 50 C D 12 Hướng dẫn giải: Độ dài đường chéo hình hộp 32 42 52 50 Vậy đáp án Câu 31 Cho hình chóp S ABCD có SA ABC VABC vuông B AH đường cao VSAB Khẳng định sau khẳng định sai ? A SA BC B AH BC Hướng dẫn giải: C AH AC Ta có SA ABC nên SA BC Mà VABC vuông B: AB BC SA BC � �AH BC � AH SC � SBC � BC AH � SAB ; � � �AB BC �AH SB D AH SC �AH AC � AC AB � SAB VABC vuông A (Vô lý) Nếu � �SA AC Vậy AH AC sai Câu 32 Cho điểm A nằm mặt phẳng P Gọi H hình chiếu A lên P M, N điểm thay đổi P Mệnh đề sau mệnh đề sai? A Nếu B Nếu C Nếu D Nếu AM AM AM HM AN AN AN HN thì thì HM HM HM AM HN HN HN AN Hướng dẫn giải Theo tính chất mối liên hệ đường xiên AM , AN hình chiếu HM , HN Đường xiên dài có hình chiếu dài ngược lại Mệnh đề sai “Nếu AM AN HM HN ” Câu 33 Cho tứ diện ABCD có AB, AC, AD đơi vng góC Chỉ mệnh đề sai mệnh đề sau đây: A Ba mặt phẳng ABC ; ABD ; ACD đơi vng góC B Tam giác BCD vng C Hình chiếu A lên mặt phẳng BCD trực tâm tam giác BCD D Hai cạnh đối tứ diện vng góc Hướng dẫn giải: Theo giả thiết ba đoạn thẳng AB, AC, AD đơi vng góc nên AB ACD ; AC ABD ; AD ABC ba mặt phẳng ABC ; ABD ; ACD đôi vng góc Gọi H hình chiếu A BCD AH BCD AH BCD � AH CD � CD ABH � CD BH Tương tự AH BCD � AH BC � CD ADH � BC DH Do H trực tâm tam giác BCD Theo giả thiết ba đoạn thẳng AB, AC, AD đơi vng góc nên AB ACD � AB CD AC ABC � AC BD AD ABC � AD BC Vậy hai cạnh đối tứ diện vng góc Vậy tam giác BCD vng sai Câu 34 Cho đoạn thẳng AB (P) mặt phẳng trung trực Mệnh đề sau mệnh đề sai? A MA MB � M � P B MN � P � MN AB C MN AB � MN � P D M � P � MA MB Hướng dẫn giải: Mặt phẳng trung trực đoạn thẳng AB tập hợp điểm khônggian cách điểm A B � Nếu M � P � MA MB Mặt phẳng P mặt phẳng trung trực � AB P AB Nếu MN � P � MN AB Mặt phẳng trung trực đoạn thẳng AB tập hợp điểm khônggian cách điểm A B � Nếu MA MB � M � P Nếu MN AB � MN �( P ) sai MN đoạn thẳng qua A vng góc với AB lúc MN // P VẬN DỤNG THẤP uuur uuur uuur uuuu r Câu 35 Cho hình lập phương ABCD A ' B ' C ' D ' Phân tích vectơ AC ' theo vectơ AB, AD, AA ' Chọn đáp án đúng: uuuur uuur uuur uuur uuuu r uuur uuu r uuur A AC ' AA ' AB AD B AC ' AA ' AB AD uuuu r uuuuu r uuu r uuur uuuu r uuur uuu r uuur C AC ' AA ' AB AD D AC ' AA ' AB AD Hướng dẫn giải uuu r uuur uuur Lưu ý phép cộng vectơ hình vng ABCD : AB AD AC uuuu r uuur uuur uuur uuu r uuur Ta có: AC ' AC AA ' AA ' AB AD uuu r Câu 36 Cho hình lập phương ABCD A ' B ' C ' D ' có cạnh a Tích vơ hướng hai vectơ AB uuuuu r A ' C ' có giá trị bằng: A a B a C a 2 D 2a Hướng dẫn giải uuuuu r uuu r uuur uuu r � 45� Ta có: A ' C ', AB AC , AB BAC uuuuu r uuu r uuuuu r uuu r uuuuu r uuu r � A ' C ' AB A ' C ' AB cos A ' C ', AB a.a.1 a uuu r uuuuu r uuuur uuuu r Câu 37 Cho hình hộp ABCD A ' B ' C ' D ' có: AB B ' C ' DD ' k AC ' Giá trị k là: A B C D Hướng dẫn giải uuuu r uuu r uuur uuuu r uuu r uuuuu r uuuur Ta có AC ' AB BC CC ' AB B ' C ' DD ' Vậy k Câu 38 Cho tứ diện ABCD , gọi M , N trung điểm cạnh AC BD , G trọng tâm tứ diện ABCD O điểm khônggian Giá trị k thỏa mãn đẳng thức uuur uuu r uuur uuur uuur OG k OA OB OC OD là: A B Hướng dẫn giải Vì G trọng tâm tứ diện nên: uuu r uuu r uuur uuur r GA GB GC GD C D uuur uuu r uuur uuu r uuur uuur uuur uuur r � GO OA GO OB GO OC GO OD uuur uuu r uuu r uuur uuur r uuur uuu r uuu r uuur uuur � 4GO OA OB OC OD � 4OG OA OB OC OD uuur uuu r uuu r uuur uuur � OG OA OB OC OD Vậy k uuur r uuu r r uuur r Câu 39 Cho lăng trụ tam giác ABC A ' B ' C ' Đặt AA ' a , AB b , AC c , Gọi I điểm thuộc CC ' uuuu r uuuur uur cho C ' I C ' C , G trọng tâm tứ diện BA ' B ' C ' Biểu diễn vectơ IG qua r rr vectơ a, b, c Chọn đáp án : uur � r� uur 1r r A IG � a b 2c � B IG �3 � uur � r 1r r� uur b c 2a � C IG � D IG 4� � Hướng dẫn giải Ta có: G trọng tâm tứ diện BA ' B ' C ' nên : uur uur uuu r uuu r uuur IG IB IA ' IB ' IC ' uur uur uuu r uuur uuuuu r uuur uuuuu r uuur � IG IC CB IC ' C ' A ' IC ' C ' B ' IC ' uur uuur uuur uur uuu r uuuuu r uuuuu r � IG IC ' IC ' IC CB C ' B ' C ' A ' r r r r r r a b 2c a c 2b uur uuuu r r uuu r uuur uuur uuu r uuur � IG CC ' 2CB AC AA ' 2CB AC 3 uur r r r r � IG a b c c uur �1 r r r� � IG � a 2b 3c � �3 � Câu 40 Cho chóp S ABC có SAB cạnh a,ABC vng cân B ( SAB ) ( ABC ) Tính góc SC ( ABC ) ? A 39012' Hướng dẫn giải C �350 45' B 46073' D 52067 ' Lấy H trung điểm AB Dễ thấy SH ABC nên CH hình chiếu vng góc SC � lên ABC Góc SC ABC SCH a SH �, HC a � tan SCH 350 45' Câu 41 Cho chóp S ABCD có mặt phẳng đáy hình vng cạnh a,SA a 3,SA vng góc với mặt phẳng đáy Tính góc SB AC ? A �69017 ' B �72084 ' C �840 62 ' D �27 038' Hướng dẫn giải Lấy M trung điểm SD Khi góc cần tìm góc OM OC MC Ta có trung tuyến SCD � MC S SC DC SD 2a 2 M � MC a Xét MOC có : A MO OC MC � cosMOC 2.MO.OC 2 69017 ' D O Câu 42 Cho lăng trụ ABC A ' B ' C ' có AB 1, B AA ' m m Hỏi m để góc AB ' BC ' 600 ? A m Hướng dẫn giải B m C m Lấy M , N , P trung điểm BB ',B ' C ', AB D m A C MP //AB ', MN //BC ' P Suy góc cần tìm góc MP, MN MP MN m2 Lấy Q trung điểm A ' B ' � PN PQ QN m2 C B 2 � PM MN PN �1 , từ Suy cosPMN A' 2.PM MN tính m M C' Q N Câu 43 Cho chóp S ABCD có mặt phẳng đáy hình vng cạnh a , SAB tam giác vuông cân S nằm B' mặt phẳng vng góc với mặt phẳng đáy Tính góc SC AD ? A �390 22 ' B �730 45 ' C �35015' D �420 24 ' Hướng dẫn giải � Dễ Ta có BC //AD nên góc SC AD góc SC BC , góc cần tìm SCB � chứng minh SBC vuông B nên tan SCB 35015' Câu 44 Cho hình chóp S ABCD có mặt phẳng đáy hình thoi cạnh a, � ABC 600 ,SA vng góc mặt phẳng đáy SA a Tính góc SBC ABCD ? A �33011' Hướng dẫn giải B �14055' C �62017 ' D �26033' S Lấy H trung điểm BC Do � ABC 600 nên ABC Dễ chứng minh BC ( SAH ) � Góc � cần tìm SHA a , SA a � � � tan SHA SHA AH A 26033' B Câu 45 Cho hình chóp S ABCD có mặt phẳng đáy hình D H C chữ nhật, SA ABCD , gọi E , F hình chiếu vng góc A lên SB SD Chọn mệnh đề : A SC AEF B SC ADE C SC ABF D SC AEC Hướng dẫn giải � �SA ABCD � BC SA ; � �BC � ABCD �BC SA � BC AE ; � �BC AB �AE BC � AE SC � �AE SB Tương tự ta có AF SC Vậy SC AEF Câu 46 Cho hình chóp S ABC có SA SB SC H hình chiếu vng góc S lên Gọi ABC Khi khẳng định đúng? A H tâm đường tròn ngoại tiếp tam giác ABC B H tâm đường tròn nội tiếp tam giác ABC C H trọng tâm tam giác ABC D H trực tâm tam giác ABC Hướng dẫn giải Do SA SB SC nên hình chiếu vng góc SA,SB,SC lên mặt phẳng ABC HA,HB,HC thỏa HA HB HC Vậy H tâm đường tròn ngoại tiếp tam giác ABC Câu 47 Cho hình chóp S ABCD có mặt phẳng đáy hình chữ nhật, tam giác SBD đều, SA vng góc với mặt phẳng đáy Mặt phẳng qua điểm A vng góc đường thẳng SB cắt đường SB , SC M , N 1 MN BC 2 SA MN A,D,M ,N không đồng phẳng SBC Thiết diện cắt hình chóp S ABCD mặt phẳng hình bình hành Có nhận định sai? A B Hướng dẫn giải Do tam giác SBD nên SB SD BD C D � SA2 AB SA2 AD AB AD � SA AB AD � SAB vuông cân A � SB � � M trung điểm SB � �SB M � SBC vuông B có MN � SB � MN SB Vậy MN đường trung bình tam giác SBC � � �MN || BC , MN BC � � � �MN //BC � MN SA � �SA ABCD �BC MN //BC //AD � bốn điểm A,D,M ,N đồng phẳng Thiết diện tạo thành hình thang vng ADNM � AMN � SBC MN có �AM MN nên SBC Vậy có nhận định sai Câu 48 Cho hình chóp tứ giác có tất cạnh a Tính cosin góc hai mặt bên khơng liền kề 1 A B C D 3 Hướng dẫn giải Gọi M , N trung điểm cạnh AD BC , S SM AD SN BC Giao tuyến hai mặt phẳng SAD SBC đường thẳng d qua S song song AD , BC Vì SM AD SN BC nên SM d SN d Vậy góc hai mặt phẳng SAD SBC � góc MSN Mặt bên tam giác cạnh a nên a , MN AB a SM SN MN � Khi : cos MSN SM SN B A SM SN M D O N C Câu 49 Cho hình chóp tứ giác có tất cạnh a Tính cosin góc hai mặt bên liền kề 1 A B C D 2 Hướng dẫn giải Gọi E trung điểm cạnh SC , AC DE SC BE Giao tuyến hai mặt phẳng SCD S SBC đường thẳng SC Vì AC DE SC BE nên góc hai mặt � phẳng SCD SBC góc BED Mặt bên tam giác cạnh a nên a , BD AB a 22 � BE DE BD Khi : cos MSN BE.DE DE BE E A B C D Câu 50 Cho hình chóp tứ giác có tất cạnh a Gọi E trung điểm cạnh SC Tính cosin góc hai mặt phẳng SBD EBD A B C D Hướng dẫn giải Gọi O trung điểm cạnh BD Theo tính chất hình chóp SO BD S Mặt bên tam giác cạnh a nên a , BD AB a Nên tam giác EBD cân E , EO BD DE BE Vậy góc hai mặt phẳng SBD EBD E � góc SOE SO SB OB a , OE BE BO � cos SOE A a SO OE SE 2 2SO.OE 2 B O D C Câu 51 Cho tam giác cân ABC có đường cao AH a , mặt phẳng đáy BC 3a , BC � P , A � P Gọi A�là hình chiếu vng góc A lên P Tam giác A� BC vuông A� Gọi góc P ABC Chọn khẳng định A 300 C 450 B 600 D cos Hướng dẫn giải BC Tam giác ABC có hình chiếu vng góc lên P tam giác A� S ABC 3a AB AC có hình chiếu vng góc lên P A� B AH BC 2 A� C nên A� B A� C Vậy tam giác A� BC vuông cân A� S A� � BC cos 9a BC 4 S A�BC � 30o S ABC Câu 52 Cho tam giác ABC cạnh a d B , dC đường thẳng qua B , C vng góc ABC P mặt phẳng qua A hợp với ABC góc 60o P cắt d B , dC a � Khẳng định sau khẳng định , AE a Đặt DAE D E AD đúng? B sin A 30o C sin D 60o Hướng dẫn giải Tam giác ADE cos 60o có hình chiếu vng góc lên ABC tam giác ABC nên : S ABC AB a , S ABC S ADE 4 Mặt khác S ADE � AD AE sin AD AE sin DAE 2 S ABC Vậy : sin 2S ADE cos 600 AD AE AD AE Câu 53 Cho hình tứ diện ABCD có hai mặt phẳng ABC ABD vng góc với mặt phẳng BCD Gọi BE DF hai đường cao tam giác BCD , DK đường cao tam giác ACD , bảy điểm A , B , C , D , E , F , K không trùng Khẳng định sau khẳng định sai? A ABE DFK B ADC DFK C ABC DFK D Hướng dẫn giải CD BE � � CD ABE � ABE ACD � CD AB � �DF BC � DF ABC � ABC DFK � �DF AB DF ABC � DF AC ; ABE ADC �DF AC � AC DFK � ACD DFK � �DK AC � ABE DFK � � AB DFK � AB DK � ABC DFK � �DK AB � DK ABC � �DK AC � �DK ABC � DF //DK DF �DK (vô lý) � DF ABC � Vậy ABE DFK khẳng định sai Câu 54 Cho hình chóp tứ giác S ABCD có O tâm hình vng ABCD , AB a , SO 2a Gọi P mặt phẳng qua AB vng góc với mặt phẳng SCD Thiết diện P hình chóp S ABCD hình gì? A Hình thang vng C Hình thang cân Hướng dẫn giải B Tam giác cân D Hình bình hành Gọi I , J trung điểm AB , CD Hiển nhiên SIJ SCD � Khi cos SIJ IO SI IO 17 0 17 IO SO nên góc �SIJ góc nhọn Gọi K hình chiếu vng góc I lên SCD K nằm đoạn SJ Do cách xác định K , IK SCD , nên AB; IK � P hay P ABK Gọi P � SCD MN M , N nằm đoạn SC , SD Khi : AB � P , CD � SCD , AB //CD � MN //AB //CD nên thiết diện P hình chóp S ABCD hình hình thang ABMN Mặt khác IK vng góc AB , MN trung điểm I , K hai đoạn AB , MN nên ABMN hình thang cân Câu 55 Cho tứ diện ABCD có cạnh có độ dài a , M trung điểm đoạn CD Gọi góc AC BM Chọn khẳng định đúng? 3 A 30o B cos C cos D cos Hướng dẫn giải Gọi N trung điểm AD , MN //AC nên góc AC BM góc MN BM, � , BMN � góc BMN BM BN 2 a MN a � BM MN BN ; cos cos BMN 2 BM MN ... C I – ĐÁP ÁN 7 .2 10 11 12 13 14 15 16 17 18 19 20 A A B D A C C A A D A B 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 B A A B D C A D D A C C B C D A D C A A 41 42 43 44 45 46... ? A 20 0 42 ' B 20 070 ' C �69017 ' D �69030 ' Câu 17 Cho S ABC có SAC SAB vng góc với đáy, ABC cạnh a , SA 2a Tính góc SB ( SAC ) ? A 22 0 47 ' B 22 079 ' C... AB AB� AB AB BB� AB AA� AC CB AA� a b c 2 2 2 2 Câu 12 Trong không gian cho điểm O bốn điểm A, B, C, D không thẳng hàng Điều kiện cần đủ để A, B, C, D tạo thành hình bình