1. Trang chủ
  2. » Giáo án - Bài giảng

LOI GIAI bài tập PHẦN PHƯƠNG TRINH VO TY

7 126 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 512,52 KB

Nội dung

Jean le Rond dAlembert (16 tháng 11 năm 1717 – 29 tháng 10 năm 1783) là một nhà toán học, nhà vật lý, nhà cơ học, triết gia người Pháp. Ông là người đồng chủ biên và xuất bản cùng với Denis Diderot cuốn từ điển Encyclopédie. Phương pháp giải phương trình sóng của dAlembert được đặt theo tên ông.123

BÀI TẬP PHẦN PHƯƠNG TRÌNH TỶ (Lê Văn Qú Biên soạn giới thiệu) - Bài Giải phương trình sau 4x a) x   4 x x 3 c) x   (x  5) x 3 x 3 b) d) x2 2x   2x   x  x 4  x 4 x   x  16 Hướng dẫn giải 2 a) ĐK: x ≥ PT  x   4x  x (x  3)  x (x  3)  5x   16x(x  3)  (5x  3)2 (vì hai vế khơng âm) b) Đặt ĐK, quy đồng đưa tích c) Đặt ĐK, quy đồng đưa tích d) ĐK: x  ; x  4 Đặt t  x   x  ĐS: x = Bài Giải phương trình sau a) x   x    x  3x  3 c) x  x  x  2x  b) 4( x   3)x  (13 x   8)x  x    d) (3x  11) x   3x  8x  11 3x  Hướng dẫn giải : a) PT  ( x   x  3x  2)  ( x   1)   x  1(1  x  2)  ( x   1)   (1  x  2)( x   1)  3 x    3   x 1 1  b) ĐK : x 1: x  1  x  4x  12x  13x x   8x  x     (1  x   4(x  1))  x x  1(4x  13  12 x  1)   (1  x  1)2  x x  1(2 x   3)2   x  c) ĐK: |x|  1: Ta thấy x = không nghiệm PT Xét x ≠ , chia hai vế PT cho x được: x  x  Đặt t  x  1 1 2  x   3x  2  x x x x 1 ĐS: x  x d) PT  (3x  11) x   3x (3x  11)  8x   (3x  11)( 3x  x  1)  4(2x  1) Nhận thấy x   Xét x   2 khơng nghiệm PT 3x  x   Nhân hai vế PT cho (3x  11)(2x  1)  4(2x  1)( 3x  x  1)  (2x  1)[4( 3x  x  1)  (3x  11)]  n y: G THPT Bình Sơn, uảng Ngãi 3x  x  ta được: 2x   (1)   4( 3x  x  1)  (3x  11)  (2)  1 (1)  x  (do x   ) 2 (2)  2(x  3)2  ( x   2)2   x  Bài Giải phương trình sau a) x  15   3x  x  b) 2x  1(3x  x  1)  3x  x   c) x  x 9  x 1  x  d) x    4x  3x a) Ta có: Hướng dẫn giải x  15  x   3x    x  PT  ( x   3)  ( x  15  4)  (3x  3)    x 1 x 1   3   3(x  1)   (x  1)    x  15  x2   x  15   x 83  x 1 x 1 ới x  x + > x  15   x     x2   x  15  x 1 x 1 Do    ậy x = nghiệm x2   x  15  b) ĐK x  PT  2x   3x 2x   2x   x 2x   3x  x   2x  1( 2x   3x  1)  x( 2x   3x  1)   x2   x2   ( 2x   x )( 2x   3x  1)   c) ĐK x  2x   x  (dạng bản) PT  x  x x   x   x   x  x   x   x  9x   x  5x   x  9x  x  9x   x  5x   x  9x  x  x  d) ĐK : x  2x  0 PT  4x   ( 3x  x  1)   (4x  1)  3x  x     (2x  1)  2x   0 3x  x     x  (vì biểu thức ngoặc lớn > với x  0) Bài Giải phương trình sau a) 3x    5x  b) x   13x  x  4( 16x  64  1)  92 c) 2(2x  1) x   5x  4x  d) x x    (x  1)2 Hướng dẫn giải t 2 a) ĐK: x  Đặt t  3x   x  , n y: G THPT Bình Sơn, uảng Ngãi t3  PT trở thành: 2.t     2.t   5t   3  5t   2t (PT bản) b) x   13x  x  4( 16x  64  1)  92 ĐK x  PT  x   13x  12 x  16  x   92  x   x   13x  12 x  16  92 Đặt t  x   x  , t  Khi đó: t  13x  12 x  16  20  13x  12 x  16  t  20 t  PT trở thành: t  t  20  92  t  t  72    t  8(l ) ới t = ta có: x   x    … c) PT  2(2x  1) x   5x  4x   2(2x  1) x   (2x  1)2  (x  1)  Đặt t  2(2x  1) x  (2x  1)2  1 (x  1) (x  1) (2x  1)2 (2x  1) x   t  (x  1) (x  1) PT trở thành: 2t  t   t  ới t = ta có: (2x  1) x    (2x  1) x   x  (x  1) 2x   2x    x  Thử lại thấy thỏa mãn  2 2   2 (2 x  1) ( x  1)  ( x  1) (2 x  1)  x    d) PT  x x    x  2x  Đặt t  x x   t  x  2x t  PT trỏa thành: t   t    t  ới t = ta có: x x    x  x  x  ới t = ta có: x x     x  2x   Bài Giải phương trình sau a) x 35  x (x  35  x )  30 b) 12  1 3  4x   4x 2 x x Hướng dẫn giải a) Đặt t  35  x x  t  35 (x  t )3  3xt(x  Ta có hệ PT:  xt(x  t )  30 xt(x  t )  30  (x  t )3  125 x  t      xt(x  t )  30 xt(x  t )  30   x  x  ới  ta có  x 2 35  x  t    n y: G THPT Bình Sơn, uảng Ngãi  t )  35 (x  t )3  90  35  xt(x  t )  30  x  t  x  x     xt  t  t   x  ới  ta có t  b) 12   x  x 3 3 35  x    3  4x   4x 2 x x 3 ;b  4x  a, b   12  a 2 x x x 2 2 Ta có a + b = 4x b  a = 4x  12  (ba)(a+b) = 4x2  12  (ba)4x2 = 4x2  12  b  a     (12  a )  a  11 x Mặt khác ta có: a  b  b  a  12  a  b  b  (b  a  11)  12 Đặt a  12   b  2b    b  3   x    4x  x    x   x  1 2 x x Thử lại ta thấy x  1 thỏa mãn PT Bài Giải phương trình sau 4x  a) x  2(x  1) 3x   2x  5x   8x  b) x  x   (x  1) x  x  x  c) 3x   3x  1( 2x    x ) ; d) x   x  ĐS: x    Hướng dẫn giải a) ĐK x   PT  x  2x   2(x  1) 3x   3x   (3x   2x  5x  2)   (x   3x  1)2  (3x   2x  5x  2)    x2  x x  2x   0   3x   2x  5x   x   3x     x2  0  (x  1)2   (x   3x  1)2 3x   2x  5x      x = biểu thức ngoặc lớn > 0) b) Hint : ĐK x  u  v  (1) Đặt u  x ; u  x  1; u, v  Ta có:  2 (2) u  2v  uv  uv  Thay (1) vào (2) được: v   2v  uv(v  1)   (v  1)(v   uv)  ới v = ta có: x = v  v  v  ới v – = uv   2   2   (v  1)  u v (v  1)  (v  1)v v  2v   0(*)    Vì v  nên (*) VN ậy PT có nghiệm x = Cách khác : Đưa tích sau: PT  x   x    (x  1) x  x  x   ( x   1)2  x  x ( x   1)  c) ĐK:  n x 4 y: G THPT Bình Sơn, uảng Ngãi  37  x  2x    x  Do PT  (3x  5)( 2x    x )  3x  1(3x  5) ới   2x    x  3x  (do 3x + 0)  2x   3x    x  3x   x  x   3x  11x     (thỏa đk) 11 x   d) PT  2(x  1)  2(x  x  1)  (x  1)(x  x  1) 2 x 1 x 1   x2  x  x2  x  t  Được PT: 2t  5t     vấn đề lại dễ dàng t   Bài Giải phương trình sau Đặt t  a) x 1 ;t  x x 1 x  3x   x   x   x  2x  b) x   2(x  1)  x    x   x c) ( x   1)3  x    x ĐS: x = d) x   2x   2x  4x  25 Hướng dẫn giải a) ĐK: x  PT   (x  1)(x  2)  x   x   (x  1)(x  3)  x  2( x   1)  x  3( x   1)   x 1   ( x   1)( x   x  3)    x 2  x 2  x 3  b) ĐK 1  x  PT   x    x  2(x  1)   x   x   x  x  1(1   x )  x  1( x  1)   x )   x (1   x )   (1   x )( x    x )  x  1( x  1)   x )   x 1  1x x   ( x    x )(1   x  x  1)     24 1  x    x x   25  c) ĐK x  PT  ( x   1)3  x   x     ( x   1)3  ( x   1)2  Đặt t  x   1; t  PT trở thành t  t    t  ới t = ta có: x     x  d) ĐK : x   PT  2( x   3)  ( 2x   3)  2x  4x  16  2 x 4 2x   2(x  4)(x  2)  x 5 3 2x     2   2(x  2)    (x  4)  2x    x 5 3  n  y: G THPT Bình Sơn, uảng Ngãi biểu thức ngoặc lớn >0) Bài Giải phương trình sau x = ì với x   x   3x   x  2x  a) b) x   x2  x  x2  x 3x  5x   x   c)   x  x   x  3x  d) x   2x x   2x  x  4x  Hướng dẫn giải a) ĐK x  PT  x   x  2x   3x   x   x  x  4x  2x   2x  3x   3x   x  x  2x  3x   4x(x  3)  (2x  2)(3x  1)  x  Thử lại thấy x = thỏa mãn b) PT  x   x  x  x  x   x  1(1  x )  x (1  x )  3 x   (1  x )( x   x )    x 1  x 1  x  2 c) ĐK: 3x  5x   0; x   0; x  x   0; x  3x   PT   3   3x  5x   x  x   x  3x   x   2x   3x  5x   x  x  2   3x  x   x  3x  0   2 3     (x  2)  0 2 2 x   x  x   3x  5x   x  x      x = ( biểu thức ngoặc lớn âm) ( thỏa đk) d) ĐK x  -1   PT  ( x   x  4x  3)  (2x x   2x )   x  3(1  x  1)  2x (1  x  1)   x   x   (1  x  1)( x   2x )      x   2x x   Bài Giải phương trình sau a) x   9x  x  c) b) x 2 x  x 1  x  x 1  a) ĐK :x -3 2x x  x 3x    d) x  2004  x    x    Hướng dẫn giải  x    3x PT  x   x    9x  ( x   1)2  (3x )2    x    3x   x   3x  5  97   (các PT dạng bản) Giải tìm x  ;x  18  x   3x   n y: G THPT Bình Sơn, uảng Ngãi b) ĐK: -1  x < x  Chia hai vế PT cho x ta : x Đặt t x , t  PT trở thành: t x x ới t = ta có: x x x2 x x x 2t 0 x  x x t t x x 3(l ) 1 (thỏa đk) c) ĐK: x   0; x  x   0; x  x   (*) PT  x  x   x  x  x  x   x  x   (bình phương hai vế)  2x    x  (thỏa đk) d) ĐK: x  Đặt t   x  x   t x  (1  t )2 Vì x   t   1  t      PT trở thành (1  t )2  2004   t (1  t )2  (1  t )2 (1  t )2  2005  t (1  t )2  (1  t ) [(1  t )  (2005  t )]   (1  t ) (2t  2t  2004)   (1  t ) (t  t  1002)   (1 – t)2 = PT t2 + t- 1002 = nghiệm t [-1;1])  t = x = Bài 10 Giải phương trình sau 2 2   a) x   x  x   x  b) x  x   x  x   c) 3(2  x  2)  2x  x  Hướng dẫn giải d) x 3 3x   x   7x   3x  5x  a) Đặt t  x  (*) PT trở thành: t   (3  t )x   2t  t  2t   (3  t )x  (t  1)(t  3)  (3  t )x   (t  3)(t   x )   t = t = x 1 Thay giá trị t tìm vào (*) ta tìm x b) ĐK : x  PT  x   x    x   x     ( x   1)2  ( x   1)2  x 3  x 1 1 x 3 x 1 1  x 3 x 3 (dạng bản) x 3 x      x  PT    x  (thỏa mãn) * Nếu x     x  PT  x   * Nếu c) ĐK : x  PT  ( x   x  2)  (2x  6)   8x  24  2(x  3)  x 6 3 x 2 x    4  1     2(x  3)  (dễ tìm dược x)  x   x    x 6 3 x 2  d) ĐK: x  Đặt t  3x   x  ĐK : t > Khi t  7x   3x  5x   7x  3x  5x   t  t  1(l ) PT trở thành : t  t    t  t     t  ới t = ta có : n 3x   x   (dạng bản) - y: G THPT Bình Sơn, uảng Ngãi ... x  1)  (3x  11)  (2)  1 (1)  x  (do x   ) 2 (2)  2(x  3)2  ( x   2)2   x  Bài Giải phương trình sau a) x  15   3x  x  b) 2x  1(3x  x  1)  3x  x   c) x  x 9  x... 3x  x     (2x  1)  2x   0 3x  x     x  (vì biểu thức ngoặc lớn > với x  0) Bài Giải phương trình sau a) 3x    5x  b) x   13x  x  4( 16x  64  1)  92 c) 2(2x  1) x ... t    t  ới t = ta có: x x    x  x  x  ới t = ta có: x x     x  2x   Bài Giải phương trình sau a) x 35  x (x  35  x )  30 b) 12  1 3  4x   4x 2 x x Hướng dẫn giải

Ngày đăng: 11/05/2018, 13:18

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w