BẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNGBẢNG TÍNH CẦU DẦM BẢN RỖNG
Trang 1Central Mekong Delta Region Connectivity Project PACKAGE CW1A: NORTHERN APPROACH TO CAO LANH BRIDGE
(KM 0+000 TO KM 3+800)
RACH MIEU BRIDGE OF TAN VIET HOA INTERCHANGE
ITEM: STRUCTURAL CALCULATION
Document No.:
Project Manager
JV of HOANG AN – TUAN LOC – THANG LONG
JV Consultant of CDM SMITH Associates INC.- WSP Finland Limited YOOSHIN Engineering
Corporation
Trang 2
EXPLANATION
Trang 3LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
INDEX CACULATE
I GENERAL INFORMATION 3
a) Item introduction 3
b) Project description 3
II LEGAL BASIS FOR DESIGN 3
a) LEGAL BASIC 3
b) Regulations, standards, procedures and applicable rules 3
c) Used document: 4
III LOCATION- CURRENT SITUATION 4
a) Scope of research 4
b) Natural condition 4
1 Topography, current situation 4
2 Geological condition 4
3 Hydrologic weather 5
IV DETAILED DESIGN SOLUTION 5
1 Technical properties of bridge 5
2 Drainage 6
V DESIGN DATA 7
a) STANDARD OF CACULATE 7
b) LOAD CALCULATION 7
1 Static load: 7
2 Vehicle load 7
3 Vehicle load (LL) 7
4 Shock force (IM) 8
5 Wind load 8
6 Load and vehicle 8
7 Brake the car 8
c) Apply combinatorial checks to the structure 9
d) Material 9
8 Steel 9
9 Concrete 9
VI CONTENT CALCULATION 9
VII CALCULATION RESULTS: 10
VIII CONCLUSION 10
Trang 4LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
EXPLANATION CALCULATE
PROJECT:
RACH MIEU BRIDGE OF TAN VIET HOA INTERCHANGE
CONNECTING ROAD OF PROJECT WITH TINH THOI VILLAGE ROUTE” BELONG TO CW1A PACKAGE “NORTHERN APPROACH TO CAO LANH BRIDGE (KM 0+000 - KM 3+800)”, CENTRAL MEKONG DELTA REGIONCONNECTIVITY PROJECT (CMDRCP)
Trang 5LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
- This document is to submit for approval the alternative route of left ramp of Tinh Thoi interchange
Project Management (Cuu Long CIPM)
package CW1A (Km 0+000 ÷ Km 3+800) and CW1C (Km 6+200 ÷ Km 7+800), belong to Central Mekong Delta RegionConnectivity Project (CMDRCP)
Committee of Scale and traffic organization at An Binh Interchange with NH30 pass and ramp connecting with Tan Viet Hoa road, Cao Lanh city
and the letter No.975/CQLXD-DB3 dated 19/4/2016 of Bureau of Transport Quality and Construction Management (TCQM) of MOT regarding the approval the addition, adjustment of design of Tan Viet Hoa Intersection and local road at A2 abutment of Linh Son bridge of package CW1A – Component 1 - CMDCP
“Addition of 1 more ramp in the left side of Tan Viet Hoa interchange unde CW1A package
“technical issues and support site clearance for CW1A Package under CMDRCP”
Shop Drawing Designed Of Access Road Connecting Between The Project And Local Resident Road Of Tinh Thoi interchange At Km2+800”
construction and liquidation in CMDRCP, approved in Decision BGTVT dated May 19 th 2010, Decision No1779 QĐ-BGTVT dated July 30 th 2012,
dated 12/05/2016 of MOT
Trang 6LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
MOT
- Scope of research:
- Topography in scope of research is is flat but divided by cannals and small ponds The level is not different considerable, except at river banks
surface with 3m width
- In research scale, main road is being implemented On the left side, remaining distance from design embank ment toe of mainroad to land clearance line is 13- 15m
o Sublayer 1A: Fat clay in green grey, greyish brown, greyish black, liquid state to quasi-liquid state (CH) SPT 1 hammer/30cm Thickness of 10.9m
o Sublayer 1B: Lean clay, greyish brown, green grey, greyish black, liquid state to quasi-liquid state (CH) SPT 1 hammer/30cm Thickness of 8.9m
o Sublayer 1C: Lean clay with greyish brown sand, green black, green grey, soft plastic state (CL) SPT 6 hammers/30cm Thickness of 7.6m
o Sublayer 3A: clayey sand, silty sand in greyish black, green grey, green black,
4.8m
brown, medium dense state (SC-SM) Thickness of 6.4m
Trang 7LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
structure (SC-SM) SPT 16 hammers/30cm Thickness of 5.2m
state (CH) SPT 12 hammers/30cm Thickness of 6m
semi-rigid state (CL) SPT 25 hammers/30cm Thickness of 4.8m
o Sublayer 7A: Silty sand, clayey sand in brown yellow, dense structure (SM-SC) SPT 44 hammers/30cm Thickness of 3.7m
o Sublayer 7B: Silty sand, clayey sand in brown yellow, grey yellow, green grey, strong dense (SM-SC) SPT 64 hammers/30cm Thickness of 22.2m
- Water in construction area is affected by weaher of Southwest Dry season from November to April next year wihtout flood Rainy season from May to October with flood Besides, it is affected by tidal wave due to semidiurnal tide
ensure discharge design flood volumn 19 m 3 /s, minimum length of opening is 19m For route line skews the water flows 28 o , minimum length of opening is 21m (Calculation result attached with this report)
- Underground water and river water is nearly connect and Underground water near the ground (avarage level is 0.8m)
(complying with standard TCVN 3994 - 85), river water does not corrode concrete and metal Undergound water slightly corrodes concrete and metal
- Bridge width:
o Traffic lane: 7m
- Clearance of span H > 0.5m from the water level H4% = 2.72m (small bridge has bridge opnening less than 25m)
Trang 8LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
o Railing: parapet is C30 precast reinforced concrete, galvanized steel handrail
o Expansion joint: using rail joint
is 45m Suggest using bored pile foundation 5 Ø-1m-bored piles for each foundation, about 62m length
by precast armoured concrete slab (like slope protection typw 2 approved in CMDCP)
- Piled slab structure:
0.3m, layout 58 piles 30x30cm Length is 22m, height of pile top is 0.7m, height of pile bottom is -21.3m
0.3m, layout 58 piles 30x30cm Length is 22.6m, height of pile top is 0.7m, height of pile bottom is -21.9m
embankment We propose arranging 3 curverts Diameter of pipes is 1.0m Curvert length
is 9m
Trang 9LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
374: 2006
Trang 10LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
distance of 1.8m apart
- Design lane load: the load is 9.3 kN / m distributed vertically Impact of lane
loading without considering shock force
- Wind area of the upper structure: from the top of the railing to the bottom of the beam
- Wind area of the bottom structure: from the top of the cylinder to the calculated water level
road surface
lanes, along the longitudinal direction and centered on a 1.8m pavement
Load combinations are limited
Trang 11LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
* Note:
• regular loads
DC = Load the texture itself
DW = load itself spherical cover
EH = horizontal soil pressure
• Instantaneous loads
BR = braking force EQ = earthquake effect
LL = CV = vehicle and vehicle load (if applicable)
IM = shock force WA = flow pressure (if any)
LS = extra work
WL = wind on the vehicle WS = wind on the structure
• To calculate the stress test: use the combination
• To check the resistance condition: Use the intensity combination
- Flow limit::
- Elastic module: Es = 200 000 Mpa
Table sizes of commonly used steel
Demater
(mm)
area (mm2)
Weight (kg/m)
Demater (mm)
Area (mm2)
Weight (kg/m)
- Empty beam girder
- Calculate bridge deck, expansion joints
- Calculate the abdominal wall, internal strength and load bearing capacity
- Calculate the piled slab, internal force and load bearing pile slab
Trang 12LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
Details are shown in the following pages
Software to use: Sap 2000, Midas Design+, FB-pier, Excel, cad…
Structures guarantee the required strength as well as stability
Trang 13LIÊN DANH HỒNG AN – TU ẤN LỘC – THĂNG LONG
MỤC LỤC THUYẾT MINH BẢNG TÍNH
I T ỔNG QUAN 3
a) Gi ới thiệu chung về hồ sơ 3
b) T ổ chức thực hiện 3
II CÁC C ĂN CỨ ĐIỀU CHỈNH THIẾT KẾ 3
a) Các c ăn cứ pháp lí 3
b) Quy chu ẩn, tiêu chuẩn, quy trình và quy phạm áp dụng 3
c) Tài li ệu sử dụng: 4
III V Ị TRÍ – HIỆN TRẠNG – ĐIỀU KIỆN TỰ NHIÊN 4
a) Ph ạm vi cơng trình 4
b) Điều kiện tự nhiên 4
1 Địa hình, hiện trạng khu vực 4
2 Điều kiện địa chất 4
IV QUY MƠ CƠNG TRÌNH – GI ẢI PHÁP THIẾT KẾ 6
a) Quy mơ C ầu vượt rạch Tịnh Thới 2 6
1 Thơng s ố kỹ thuật cầu 6
2 Cơng trình thốt n ước khác 7
V D Ữ LIỆU THIẾT KẾ 7
a) Các quy trình, quy ph ạm tính tốn 7
VI T ẢI TRỌNG TÍNH TỐN 7
a) T ĩnh tải: 7
b) Ho ạt tải xe 7
1 Ho ạt tải xe (LL) 7
2 L ực xung kích (IM) 8
3 T ải trọng giĩ 8
4 T ải trọng va xe 8
5 L ực hãm xe 8
6 Áp d ụng các tổ hợp để kiểm tra kết cấu 9
a) V ật liệu 9
b) Thép 9
7 Bê tơng 9
8 V ật liệu đắp 9
VII N ỘI DUNG TÍNH TỐN 10
VIII K ẾT QUẢ TÍNH TỐN: 10
IX K ẾT LUẬN 10
Trang 14LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
Trang 15LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
điều chỉnh bổ sung thiết kế của nút giao Tân Việt Hòa và đường dân sinh tại mố A2
Trang 16LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
điều chỉnh và cập nhật theo quyết định số 314/QĐ-BGTVT ngày 31/01/2013, số
3m
13-15m
l ớp đất:
o Phân l ớp 1B: sét gầy, xám nâu, xám xanh, xám đen, trạng thái chảy đến dẻo
Trang 17LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
theo ch ế độ bán nhật triều
t ần suất:
/s, chi ều rộng thoát nước tối thiểu
cáo)
mòn nh ẹ bê tông và kim loại
Trang 18LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
đã được duyệt của dự án CMDCP)
đỉnh cọc là 0.7m, cao dộ đáy cọc -21.3m, phía sau bố trí bản quá độ rông 14m dài 5m
Trang 19LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
đỉnh cọc là 0.7m, cao dộ đáy cọc -21.9m, phía sau bố trí bản quá độ rông 14m dài 5m
đường Chúng tôi đề nghị bố trí 3 cống Đường kính của ống là 1.0m Chiều dài cống là 9m
374:2006
Trang 20LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
ngang cách nhau 1.8m
Tính b ằng 25% tác động của xe tải thiết kế hay xe hai trục thiết kế
- Xem chi ti ết bảng tính
Tính b ằng 25% trọng lượng xe tải hay xe hai trục thiết kế đặt trên tất cả các làn xe
Các t ổ hợp tải trọng ở trạng thái giới hạn
Trang 21LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
DW = t ải trọng bản thân lớp phủ mặt cầu
Trang 22LIÊN DANH HOÀNG AN – TU ẤN LỘC – THĂNG LONG
- Tính b ản mặt cầu, khe co giãn, lan can, gối cầu
- Tính toán sàn gi ảm tải, nội lực và sức chịu tải sàn giảm tải
Chi ti ết được thể hiện trong các trang sau
Trang 23
CALCULATION OF ABUTMENT
TÍNH TOÁN MỐ
Trang 24CALCULATION OF PIER/ABUTMENT FOUNDATION
CW1A - BRIDGE AT LEFT RAMP - TAN VIET HOA INTERCHANGE
b.2 0.50 m
Abutment body
- Thickness of wing wall
LONGITUDINAL DIRECTION TRANSVERSE DIRECTION
PLAN VIEW OF PILE CAP A1
C C
Trang 25Bearing pad
Superstructure
L1 0.40 m
X2 0.05 m
(center of pile cap direction)
Elastic modulous (Ec) : 29.44 Gpa
Compressive strength
(f'c) :
Distance from beam-end to bearing center
Trang 262.1 SELF-WEIGHT OF ABUTMENT (DC1)
FOR SECTION 1-1 (BOTTOM OF PILE CAP)
1.00 0.50 0.500 0.04 8 4 1.07 0.72 2.90 4.28
FOR SECTION 2-2 (LEG OF BODY WALL)
2.2 WEIGHT OF SUPER STRUCTURE (DC2)
Permanent load (span)
(Convented: M+ pier column bending towards bigger span)
2.3 WEIGHT OF ASPHALT PAVEMENT AND UTILITIES (DW)
2.4 LIVE LOAD (LL+IM)
FOR 1 LANE, NO FACTOR
35 kN 9.3 kN/m
1.00
Trang 272.4.1 LIVE LOAD 2 LANES (LL+IM)2
2.4.2 LIVE LOAD 1 LANES (LL+IM)1
BR is calculated by 25%* Axle load of all lane in the same side
It is possible to design 3 lanes
INTINIAL FORCE DUE TO BR AT BOTTOM OF PILE CAP (1-1) 1.0
INTINIAL FORCE DUE TO BR AT BOTTOM OF PILE CAP (1-1) 1.0
Area of influent diagram
Trang 28BR 1 (1 Lane - 1 Span) 27.44 15.84 144.62 250.49
INTINIAL FORCE DUE TO BR AT TOP OF PILE CAP (2-2)
2.5 EARTH PRESURE
2.5.1 Vetical earth presure on pile cap (EV)
Behide 3.27 9.96 4.13 2,423 (1.08) (2,622)
Front 1.00 9.96 0.50 90 2.07 185
2.5.2 Horizoltal earth presure (EH)
EH is considerd in situation embankment after abutment is full filled without berm in front of abutment
Distributed presure of earth shall be taken as:
(passive presure)
Consider the case only active presure of soil behind abutment exists
While µ0 - Passive presure coeficient of soil, µo = 1 - sin φ
Ka - Active presure coeficient shall be taken as:
While
β: Angle between embankment surface and longitudinal direction (2.12)deg
δ: Friction angle between soil and concrete wall 20.00 deg
Ka = 0.2902
h - Depth of soil (from road surface to calculating point)
ACTIVE EARTH PRESURE FOR SECTION 1-1 (BOTTOM OF PILE CAP), DIRECTION X1-Y1
-Pile cap (in front) 1.50 2.00 10.45 11.50 (366) - 1.00 (366)
-ACTIVE EARTH PRESURE FOR SECTION 2-2 (TOP OF PILE CAP), DIRECTION X1-Y1
-Front wall 3 1.26 1.26 6.59 8.08 34 - 3.29 110
-Body wall 2 2.87 4.13 21.57 8.08 326 - 1.43 468
-2.5.3 Live load surcharge (LS)
The increase in horizontal presure due to live load surcharge may be estimated as:
Distributed presure of earth shall be taken as:
While k - coeficient of lateral earth presure, k= Ka 0.290
θ sin θ δ ( )
θ φ
sin φ( β) sin φ ( δ)sin θ( δ) sin θ. ( β)
K
p = a
Trang 29Section Heigh Depth p Width Vx1 Vy1 z My1 Mx1
-ACTIVE EARTH PRESURE FOR SECTION 2-2 (TOP OF PILE CAP)
-Front wall 3 1.26 1.26 4.70 8.08 24 - 3.50 84
-Body wall 2 2.87 4.13 4.70 8.08 109 - 1.43 156
-2.5.4 Horizoltal earth presure due to Earthquake (EAE)
EH is considerd in situation embankment after abutment is full filled without berm in front of abutment
Distributed presure of earth shall be taken as:
PAE=(1-Kv)KAE.g.H3
While KAE - Presure coeficient due to earthquake shall be taken as:
ERTHQUAKE SOIL PRESURE FOR SECTION 1-1 (BOTTOM OF PILE CAP)
-Front wall 3 1.26 1.26 1.52 8.08 8 - 5.29 41
-Body wall 2 2.87 4.13 4.98 8.08 75 - 3.43 259 - `Pile cap 1 2.00 6.13 7.39 11.50 142 - 1.00 142 -
-EARTHQUAKE SOIL PRESURE FOR SECTION 2-2 (TOP OF PILE CAP)
-Front wall 3 1.26 1.26 1.52 8.08 8 - 3.29 25
-Body wall 2 2.87 4.13 4.98 8.08 75 - 1.43 108
-2.9 WIND LOAD & LIVE LOAD (WS & WL)
2.9.1 TRANSVERSE WIND LOAD
Wind load calculation in Strength limit state II and III
Transverse Wind Load shall be calculated as:
The windward is the area of span structures and pier body above land(water level)
Transverse Wind Load on vehicles shall be calculated with intensity of 1.5KN/m
t D t
Trang 30TRANSVERSE WIND SECTION 2-2 (TOP OF PILE CAP) STRENGTH 2
TRANSVERSE WIND SECTION 2-2 (TOP OF PILE CAP) STRENGTH 3
2.9.2 LONGITUDINAL WIND LOAD
Wind Load on structures shall be calculated as:
The windward is the area of span structures and pier body above land(water level)
Transverse Wind Load on vehicles shall be calculated with intensity of 0.75KN/m
TRANSVERSE WIND SECTION 2-2 (TOP OF PILE CAP) STRENGTH 2
Total of WS 61.14 35.30 207.28 359.01
TRANSVERSE WIND SECTION 2-2 (TOP OF PILE CAP) STRENGTH 3
Earthquake Loads is considered in extreme event,calculated by the equivalent static load
EQ = Csm*W/RWhere:
Cms: Elastic response coefficient
Tm: Period of vibration of the m mode (s)
D t
D V A C
=
Trang 31R: response modification factor, R = 1.0 (Connection of column and Foundation) EARTHQUAKE AT PILE CAP (1-1)
Total 1,154.9 346.5 1,394.0 4,646.7 EARTHQUAKE AT TOP OF PILE CAP (2-2)
Total 627.3 188.2 859.4 2,864.5
Trang 323 CHECKING OF PILES FOUNDATION, SECTION 1-1
4.1.1 CALCULATION OF INTERNAL FORCE AT BOTTOM OF PILE CAP
Trang 33COMB 1 LIMIT STATE STRENGTH I-1 2 LANES OF TRUCK COMBINATION 1 TTGH STRENGTH I-1 0
DW Weight of Wearing Surfaces and Ultilities DC1 (4,179) - - 296 113 1.25 1.05 (5,485) - - 388 148
(LL+IM)2 Truck, 1 span, 2 lanes DC2 (1,817) - - 1,316 1,946 1.25 1.05 (2,385) - - 1,727 2,554 BR2 Braking Force, 1 span, 2 lanes DW (632) - - 457 676 1.50 1.05 (995) - - 720 1,065
EV Vertical presure of earth (LL+IM)2 (679) - - 831 727 1.75 1.05 (1,248) - - 1,527 1,337
EH Horizontal presure of earth BR2 - 46 26 241 417 1.75 1.05 - 84 49 443 767
LS Increase of surcharge due to live load EV (2,512) - - - (2,437) 1.35 1.05 (3,561) - - - (3,454)
EH - 610 - - 1,548 1.35 1.05 - 864 - - 2,194
LS - 161 - - 409 1.75 1.05 - 295 - - 752
CỘNG (13,674) 1,244 49 4,805 5,363
DW Weight of Wearing Surfaces and Ultilities DC1 (4,179) - - 296 113 1.25 1.05 (5,485) - - 388 148
(LL+IM)1 Truck, 1 span, 1 lane DC2 (1,817) - - 1,316 1,946 1.25 1.05 (2,385) - - 1,727 2,554 BR1 Braking Force, 1 span, 1 lane DW (632) - - 457 676 1.50 1.05 (995) - - 720 1,065
EV Vertical presure of earth (LL+IM)1 (407) - - 1,110 436 1.75 1.05 (749) - - 2,040 802
EH Horizontal presure of earth BR1 - 27 16 145 250 1.75 1.05 - 50 29 266 460
LS Increase of surcharge due to live load EV (2,512) - - - (2,437) 1.35 1.05 (3,561) - - - (3,454)
EH - 610 - - 1,548 1.35 1.05 - 864 - - 2,194
LS - 161 - - 409 1.75 1.05 - 295 - - 752
CỘNG (13,175) 1,210 29 5,140 4,521
DW Weight of Wearing Surfaces and Ultilities DC1 (4,179) - - 296 113 1.25 1.05 (5,485) - - 388 148 WSx2 Longitudinal Wind, Gust Wind Velocity DC2 (1,817) - - 1,316 1,946 1.25 1.05 (2,385) - - 1,727 2,554
EH Horizontal presure of earth WSx2 - 71 - - 315 1.40 1.05 - 104 - - 463
EV (2,512) - - - (2,437) 1.35 1.05 (3,561) - - - (3,454)
EH - 610 - - 1,548 1.35 1.05 - 864 - - 2,194
-3.70 CỘNG (12,426) 968 - 2,835 2,971
DW Weight of Wearing Surfaces and Ultilities DC1 (4,179) - - 296 113 1.25 1.05 (5,485) - - 388 148 (LL+IM)2 Truck, 1 span, 2 lanes DC2 (1,817) - - 1,316 1,946 1.25 1.05 (2,385) - - 1,727 2,554 BR2 Braking Force, 1 span, 2 lanes DW (632) - - 457 676 1.50 1.05 (995) - - 720 1,065 WLx Longitudinal wind on vehicles, wind velocity: 25 m/s (LL+IM)2 (679) - - 831 727 1.35 1.05 (963) - - 1,178 1,031 WSx3 Longitudinal wind on structrure, wind velocity: 25 m/s BR2 - 46 26 241 417 1.35 1.05 - 65 37 342 592
EV Vertical presure of earth WLx - 6.8 - - 53.1 1.00 1.05 - 7 - - 56
EH Horizontal presure of earth WSx3 - 30.6 - - 136.5 0.40 1.05 - 13 - - 57
LS Increase of surcharge due to live load EV (2,512.4) - - - (2,437.0) 1.35 1.05 (3,561) - - - (3,454)
EH - 609.7 - - 1,547.5 1.35 1.05 - 864 - - 2,194
LS - 160.7 - - 409.3 1.35 1.05 - 228 - - 580
CỘNG (13,389) 1,177 37 4,355 4,823
Trang 34ả ọ γ i η i
DW Weight of Wearing Surfaces and Ultilities DC1 (4,179) - - 296 113 1.25 1.05 (5,485) - - 388 148 (LL+IM)1 Truck, 1 span, 1 lane DC2 (1,817) - - 1,316 1,946 1.25 1.05 (2,385) - - 1,727 2,554 BR1 Braking Force, 1 span, 1 lanes DW (632) - - 457 676 1.50 1.05 (995) - - 720 1,065 WLx Longitudinal wind on vehicles, wind velocity: 25 m/s (LL+IM)1 (407) - - 1,110 436 1.35 1.05 (578) - - 1,573 619 WSx3 Longitudinal wind on structrure, wind velocity: 25 m/s BR1 - 27 16 145 250 1.35 1.05 - 39 22 205 355
EV Vertical presure of earth WLx - 6.8 - - 53.1 1.00 1.05 - 7 - - 56
EH Horizontal presure of earth WSx3 - 30.6 - - 136.5 0.40 1.05 - 13 - - 57
LS Increase of surcharge due to live load EV (2,512.4) - - - (2,437.0) 1.35 1.05 (3,561) - - - (3,454)
EH - 609.7 - - 1,547.5 1.35 1.05 - 864 - - 2,194
LS - 160.7 - - 409.3 1.35 1.05 - 228 - - 580
CỘNG (13,004) 1,151 22 4,613 4,174
DW Weight of Wearing Surfaces and Ultilities DC1 (4,179) - - 296 113 1.25 1.05 (5,485) - - 388 148 (LL+IM)2 Truck, 1 span, 2 lanes DC2 (1,817) - - 1,316 1,946 1.25 1.05 (2,385) - - 1,727 2,554 BR2 Braking Force, 1 span, 2 lanes DW (632) - - 457 676 1.50 1.05 (995) - - 720 1,065 EQ2 Longitudinal Earthquake, trucks on 1 span (LL+IM)2 (679) - - 831 727 0.50 1.05 (357) - - 436 382
EV Vertical presure of earth BR2 - 46 26 241 417 0.50 1.05 - 24 14 127 219
LS Increase of surcharge due to live load EV (2,512.4) - - - (2,437.0) 1.35 1.05 (3,561) - - - (3,454)
EH - 609.7 - - 1,547.5 1.35 1.05 - 864 - - 2,194
LS - 160.7 - - 409.3 0.50 1.05 - 84 - - 215
CỘNG (12,782) 1,579 378 6,718 14,392
DW Weight of Wearing Surfaces and Ultilities DC1 (4,179) - - 296 113 1.00 1.05 (4,388) - - 311 119 (LL+IM)2 Truck, 1 span, 2 lanes DC2 (1,817) - - 1,316 1,946 1.00 1.05 (1,908) - - 1,381 2,043 BR2 Braking Force, 1 span, 2 lanes DW (632) - - 457 676 1.00 1.05 (663) - - 480 710 WLx Longitudinal wind on vehicles, wind velocity: 25 m/s (LL+IM)2 (679) - - 831 727 1.00 1.05 (713) - - 873 764 WSx2 Longitudinal wind on structrure, wind velocity: 25 m/s BR2 - 46 26 241 417 1.00 1.05 - 48 28 253 438
EV Vertical presure of earth WLx - 6.8 - - 53.1 1.00 1.05 - 7 - - 56
EH Horizontal presure of earth WSx2 - 30.6 - - 136.5 0.30 1.05 - 10 - - 43
LS Increase of surcharge due to live load EV (2,512.4) - - - (2,437.0) 1.00 1.05 (2,638) - - - (2,559)
EH - 609.7 - - 1,547.5 1.00 1.05 - 640 - - 1,625
LS - 160.7 - - 409.3 1.00 1.05 - 169 - - 430
CỘNG (10,310) 874 28 3,298 3,669
DW Weight of Wearing Surfaces and Ultilities DC1 (4,179) - - 296 113 1.00 1.05 (4,388) - - 311 119 (LL+IM)1 Truck, 1 span, 1 lanes DC2 (1,817) - - 1,316 1,946 1.00 1.05 (1,908) - - 1,381 2,043 BR1 Braking Force, 1 span, 1 lanes DW (632) - - 457 676 1.00 1.05 (663) - - 480 710 WLx Longitudinal wind on vehicles, wind velocity: 25 m/s (LL+IM)1 (407) - - 1,110 436 1.00 1.05 (428) - - 1,165 458 WSx2 Longitudinal wind on structrure, wind velocity: 25 m/s BR1 - 27 16 145 250 1.00 1.05 - 29 17 152 263
EV Vertical presure of earth WLx - 7 - - 53 1.00 1.05 - 7 - - 56
EH Horizontal presure of earth WSx2 - 31 - - 136 0.30 1.05 - 10 - - 43
LS Increase of surcharge due to live load EV (2,512) - - - (2,437) 1.00 1.05 (2,638) - - - (2,559)
EH - 610 - - 1,548 1.00 1.05 - 640 - - 1,625
LS - 161 - - 409 1.00 1.05 - 169 - - 430
Ộ
Trang 35Convention: X-Axis : Transverse bridge,Y-Axis: Longitudinal bridge; Z-Axis : Vertical
SUMMARY OF INTERNAL FORCES AT PILE CAP BOTTOM (SECTION 1-1)
COMB 1 STRENGTH I-1 13,674 1,244 49 4,805 5,363 COMB 2 STRENGTH I-2 13,175 1,210 29 5,140 4,521 COMB 3 STRENGTH II-1 12,426 968 - 2,835 2,971 COMB 4 STRENGTH III-1 13,389 1,177 37 4,355 4,823 COMB 5 STRENGTH III-2 13,004 1,151 22 4,613 4,174 COMB 6 EXTREME 1 12,782 1,579 378 6,718 14,392 COMB 7 SERVICE 1 10,310 874 28 3,298 3,669 COMB 8 SERVICE 2 10,025 855 17 3,489 3,188
Trang 36SUMMARY OF PILE FORCE
1 AXIAL FORCE (KN)
Pile Bo.
Strength Strength Strength Strength Strength Extreme Service Service
Strength Strength Strength Strength Strength Extreme Service Service
Trang 374 CHECKING OF PILE CAP LONGITUDINAL DIRECTION
4.1.1 CALCULATION OF INTERNAL FORCE IN PILE CAP
a Bridge longitudinal direction
Pile cap shall be considered as a structure consisted of a shell and 5 comulns (piles)
- Connecting between colums and ground are considered as springs (appendix 1)
- member forces of shell are considered in zones as below
Calculation load:
Self weight of abutment (DC1) Weight of super structure (DC2) Weight of surface and ultilities (DW) Earth pressure on vertical direction (EV) Earth pressure on horizoltal direction (EH) Live load of 6 lanes of truck (LL1) Live load of 3 lanes of truck (LL2) Breake force of 3 lanes of truck (BR2) Earth pressure due to LL (LS) Wind to structure (WS) Wind to trucks (WL) Earthquake (EQ)
Trang 38-INTERNAL FORCE BY LL+IM (1)
-m1= 44.94 KN.m/M
My1 (KNm/m) (23.0) (8.8) 13.7 (18.9) 3.3 (29.2) (21.3) (2.7)
Vx1 (KN/m) (27.9) - (30.5) - - - 3.0 INTERNAL FORCE BY BR(1)
-m1= 26.96 KN.m/M
My1 (KNm/m) (13.8) (5.3) 8.2 (11.3) 2.0 (17.5) (12.8) (1.6)
Vx1 (KN/m) (16.7) - (18.3) - - - 1.8 INTERNAL FORCE BY EV
-m1= 62.22 KN.m/m
Mx1 (KNm/m) (31.8) (12.1) 19.0 (26.1) 4.6 (40.4) (29.4) (3.7)
Vy1 (KN/m) (38.6) - (42.2) - - - 4.1 INTERNAL FORCE BY LS
-m1= 25.84 KN.m/m
My1 (KNm/m) (13.2) (5.0) 7.9 (10.9) 1.9 (16.8) (12.2) (1.6)
Vx1 (KN/m) (16.0) - (17.5) - - - 1.7 INTERNAL FORCE BY LONGITUDINAL GUST WIND
-m1= 23.57 KN.m/m
Mx1 (KNm/m) (12.0) (4.6) 7.2 (9.9) 1.7 (15.3) (11.1) (1.4)
Vy1 (KN/m) (14.6) - (16.0) - - - 1.6 INTERNAL FORCE BY LONGITUDINAL WIND v=25 m/s
-m1= 10.20 KN.m/m
My1 (KNm/m) (5.2) (2.0) 3.1 (4.3) 0.8 (6.6) (4.8) (0.6)
Vx1 (KN/m) (6.3) - (6.9) - - - 0.7
Trang 39-INTERNAL FORCE BY LONGITUDINAL WIND TO VEHICLE
m1= 0.19 KN.m/m
My1 (KNm/m) (0.1) (0.0) 0.1 (0.1) 0.0 (0.1) (0.1) (0.0)
Vx1 (KN/m) (0.1) - (0.1) - - - 0.0 INTERNAL FORCE BY EQ direction Y1
-m1= 308.34 KN.m/m
My1 (KNm/m) (157.6) (60.1) 94.0 (129.5) 22.8 (200.4) (145.8) (18.5)
Vx1 (KN/m) (191.2) - (209.4) - - - 20.4 INTERNAL FORCE BY EAE direction x1
-My1= 14.36 KN.m
Positions Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8
My1 (KNm/m) (7.3) (2.8) 4.4 (6.0) 1.1 (9.3) (6.8) (0.9)
Vx1 (KN/m) (8.9) - (9.8) - - - 0.9 4.1.2 INTERNAL FORCE COMBINATIONS
-Pile cap shall be considered as flexural beam member
DW Weight of Wearing Surfaces and Ultilities
LL+IM (2) Truck, 2 lanes
LS Increase of surcharge due to live load
Trang 40Load Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 γi ηi Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8
SHEAR FORCE OF COM 1
DC2 Self-Weight of Span Structure
DW Weight of Wearing Surfaces and Ultilities
EV Vertical presure of earth
EH Horizontal presure of earth
WS Longitudinal wind to structure