www.vnmath.com ĐỀ THI CHỌN HỌC SINH GIỎI GIẢI TOÁN TRÊN MÁY TÍNH CASIO ĐỀ SỐ Nếu khơng có u cầu thêm, tính xác đến chữ số thập phân Bài 1: (3 điểm) Tính gần nghiệm (độ, phút, giây) phương trình 3(sin x cos x) 5sin x cos x Bài 2: (3 điểm) Tính gần giá trị a b đường thẳng y ax b qua điểm A(5; 2) tiếp x2 y tuyến Elip 1 16 Bài 3: (3 điểm) Cho biết tanx = tan350.tan360.tan370 ….tan520.tan530 00 < x < 900 tan x(1 cos x) cot x(1 sin x) Tính M (cos3 x sin x)(1 cosx + sinx) Bài 4: (3 điểm) Một số tiền 58000 đồng gửi tiết kiệm theo lãi kép Sau 25 tháng vốn lẫn lại 84155 đ Tính lãi suất/tháng Bài 5: (3 điểm) Tính gần giá trị lớn nhỏ hàm số y 2sin x 3cos x cos x + 2 x 3x 2sin x ; g ( x) x 1 cos x Hãy tính giá trị hàm hợp g ( f ( x )) f ( g ( x )) x Bài 6: (3 điểm) Cho hàm số f ( x) Bài 7: (5 điểm) Cho dãy số un xác định bởi: u1 1; u2 2; u3 3; ; un 1 un 2un 1 3un 2 n �3 a) Tính giá trị u4 , u5 , u6 , u7 b) Viết quy trình bấm phím để tính un 1 ? c) Sử dụng quy trình bấm phím để tính u10 , u21 , u25 , u28 Bài 8: (3 điểm) Tính tổng diện tích hình nằm hình thang ngồi hình tròn (phần màu đậm) biết chiều dài hai đáy hình thang 3m 5m, diện tích hình thang 20m2 x2 x Bài 9: (3điểm) Cho hàm số y = Tính y(5) x = x 5x www.vnmath.com Bài 10: (3 điểm) Cho tứ diện ABCD có cạnh AB = , BC = ,CD = ,BD= chân đường vng góc hạ từ A xuống mặt phẳng (BCD) trọng tâm tam giác BCD Tính VABCD Bài 11: (5 điểm) Cho phương x log 47 x m 1 a) Tìm nghiệm gần phương trình m = 0,4287 b) Tìm giá trị nguyên lớn m để phương trình (1) có nghiệm Bài 12: (3 điểm) Cho đa thức Được viết dạng P x x x x 15 x 15 P x a0 a1 x a2 x a15 x15 Tìm hệ số a10 Hết - www.vnmath.com ĐÁP ÁN www.vnmath.com Bài 1: Tính gần nghiệm ( độ, phút, giây ) phương trình 3(sin x cos x) 5sin x cos x Cách giải Kết Đặt t sin x cos x sin( x 45 ), t � x1 �27 26 '32, 75" k 3600 t 1 Suy sin x.cos x � 14 x2 �62033'27, 25" k 3600 t1 � Pt � 5t 6t � � � 14 t2 � x3 �5101'14, 2" k 3600 � � 14 sin( x 450 ) � �� x4 �14101'14, 2" k 3600 � 14 � sin( x 450 ) � Điểm 0.5 1 0.5 Bài 2: Tính gần giá trị a b đường thẳng y ax b qua điểm A(5; 2) tiếp tuyến x2 y2 Elip 1 16 Cách giải Kết Điểm Do điểm A(5; 2) thuộc đường thẳng (d): a1 �2, 44907 y ax b , � � nên ta có 5a + b = (1) b1 �10, 24533 � Điều kiện để đường thẳng (d) tiếp xúc với Elip: a2 �0, 22684 � A2 a B 2b C � 16a b (2) � b2 �3,13422 � Thay (1) vào 2) : 9a 20a (*) Vào Equation giải phương trình bậc hai (*) ta kết Bài 3: (3 điểm) Cho biết tanx = tan350.tan360.tan370 ….tan520.tan530 00 < x < 900 Tính M tan x(1 cos x) cot x(1 sin x) (cos3 x sin x)(1 cosx + sinx) Cách giải Kết Điểm www.vnmath.com tanx = tan350 tan360 x = 26,96383125 M= 2,483639682 Bài 4: (3 điểm) Một số tiền 58000 đồng gửi tiết kiệm theo lãi kép Sau 25 tháng vốn lẫn lại 84155 đ Tính lãi suất/tháng Cách giải A: số tiền có sau n tháng, a: số tiền gửi ban đầu, r: lãi suất n: số tháng 1,5% Suy công thức lãi kép A = a( 1+ r) n Từ suy A r n Bấm máy ta kết a Kết 1 Bài 5: (3 điểm) Tính gần giá trị lớn nhỏ hàm số y Ta biến đổi Cách giải 2sin x 3cos x y cos x + phương trình: 2sinx + (3 – y)cosx =2y + Vậy pt có nghiệm 2 2 y � y 1 Suy ra: Điểm 2sin x 3cos x cos x + Kết 4, 270083225 �y �0,936749892 Điểm 1 5 61 5 61 �y � 3 Bài 6: x2 3x 2sin x ; g ( x) x 1 cos x Hãy tính giá trị hàm hợp g ( f ( x )) f ( g ( x )) x (3 điểm) Cho hàm số f ( x) Cách giải Kết Điểm www.vnmath.com Đổi đơn vị đo góc Radian 2sin Y cos Y g ( f ( x)) �1.997746736 f ( g ( x)) �1, 784513102 g (Y ) 2X 3X , ta giá X 1 trị Y �1,523429229 lưu vào nhớ Y (STO Y), Tính 2sin Y g (Y ) g ( f ( x)) �1.997746736 cos Y Làm tương tự ta được: f ( g ( x )) �1, 784513102 Gán cho biến X, Tính Y 1 Bài 7: (5 điểm) Cho dãy số un xác định bởi: u1 1; u2 2; u3 3; ; un 1 un 2un 1 3un 2 n �3 a) Tính giá trị u4 , u5 , u6 , u7 b) Viết quy trình bấm phím để tính un 1 ? c) Sử dụng quy trình bấm phím để tính u10 , u21 , u25 , u28 Cách giải a) u1 10; u2 22; u6 51; u7 125 b) Quy trình bấm phím Nhập biểu thức: X = X + : D = C + 2B + 3A :A= = B: B = C: C=D Với giá trị ban đầu: X = 3; A = 1; B = 2; C =3 Kết a) Điểm u1 10; u2 22; u6 51; u7 125 u10 1657; u21 22383417; c) u25 711474236; u28 9524317645 Bài 8: (3 điểm) Tính tổng diện tích hình nằm hình thang ngồi hình tròn (phần màu đậm) biết chiều dài hai đáy hình thang 3m 5m, diện tích hình thang 20m2 Cách giải Diện tích hình thang: 20m Diện tích quạt lớn: Squạt lớn = 4.2919 m2 Diện tích quạt nhỏ: Squạt nhỏ = 1.9829 m2 Diện tích phần cần tìm: S = Shình thang – 2(Squạt lớn + Squạt nhỏ) Kết 7.4378cm2 Điểm 1 Bài 9: Cho hàm số y = 2x2 x Tính y(5) x = x 5x Cách giải Kết Điểm www.vnmath.com x 16 A B = 2 ( x 2)( x 3) ( x 2) ( x 3) Suy 3x – 16 = (A + B)x – (3A + 2B) A = 10, B = -7 10 Do y = + x2 x3 n! n! n Suy y(n) = ( -1)n+1.7 n 1 + ( -1) 10 ( x 2) n 1 ( x 3) y = 2 y(5)( ) - 154,97683 1 Bài 10: (5 điểm) Cho tứ diện ABCD có cạnh AB = , BC = ,CD = ,BD= chân đường vng góc hạ từ A xuống mặt phẳng (BCD) trọng tâm tam giác BCD Tính VABCD Cách giải Đặt a = AB = ; b = CD = ; c = BD = ; d = BC = Ta có nửa chu vi tam giác BCD: p = (b + c + d)/2 S = p ( p b)( p c)( p d ) Trung tuyến BB’ = BG = Điểm 1 2c 2d b 2 VABCD 59,32491 (đvdt) 2c d b BB’ = 3 AG = Vậy V = Kết AB BG S.AG Bài 11: Cho phương x log 47 x m 1 a) Tìm nghiệm gần phương trình m = 0,4287 b) Tìm giá trị nguyên lớn m để phương trình (1) có nghiệm Cách giải a) Đặt X x Kết X 0 a) Quy về: X 47 X 6m (2) Giải được: X �46,9541; X �0,04591 b) (1) có nghiệm � (2) có nghiệm X > Lập bảng biến thiên suy 47 � m Điểm x1 �2, 4183; x2 �1,7196 1 b) m = m 3,523910966 Bài 12: Cho đa thức P x x x x 15 x 15 www.vnmath.com P x a0 a1 x a2 x a15 x15 Tìm hệ số a10 Được viết dạng Cách giải 10 x 10 10 10 10 C10 C10 x C10 x 11 x 11 10 10 11 11 11 C11 C11 x C11 x C11 x 12 x 12 13 x 13 14 x 14 15 x 15 13 C 14 C 15 C 10 10 12 C12 x 10 10 13 x 10 10 14 x 10 10 15 x Kết a0 63700 Điểm 1 10 10 10 10 10 a10 10C10 11C11 12C12 13C13 14C14 10 15C15 63700 ... sin( x 45 ), t � x1 �27 26 '32, 75" k 3600 t 1 Suy sin x.cos x � 14 x2 �62033'27, 25" k 3600 t1 � Pt � 5t 6t � � � 14 t2 � x3 �5101' 14, 2" k 3600 � � 14 sin( x 45 0 ) ... x Kết X 0 a) Quy về: X 47 X 6m (2) Giải được: X 46 ,9 541 ; X �0, 045 91 b) (1) có nghiệm � (2) có nghiệm X > Lập bảng biến thiên suy 47 � m Điểm x1 �2, 41 83; x2 �1,7196 1 b) m = m 3,523910966... (d): a1 �2, 44 907 y ax b , � � nên ta có 5a + b = (1) b1 �10, 245 33 � Điều kiện để đường thẳng (d) tiếp xúc với Elip: a2 �0, 226 84 � A2 a B 2b C � 16a b (2) � b2 �3,1 342 2 � Thay