Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 66 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
66
Dung lượng
390,36 KB
Nội dung
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC - NGUYỄN THANH TÙNG ĐATHỨCTRONGCÁCBÀITOÁNTHIHỌCSINHGIỎI LUẬN VĂN THẠC SĨ TOÁNHỌC THÁI NGUYÊN - 2017 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC - NGUYỄN THANH TÙNG ĐATHỨCTRONGCÁCBÀITOÁNTHIHỌCSINHGIỎI LUẬN VĂN THẠC SĨ TOÁNHỌC Chuyên ngành: Phương pháp Toán sơ cấp Mã số: 60 46 01 13 NGƯỜI HƯỚNG DẪN KHOA HỌC GS.TSKH Đặng Hùng Thắng THÁI NGUYÊN - 2017 Mục lục Danh sách kí hiệu Mở đầu Chương Đathức biến 1.1 1.2 1.3 1.4 Định nghĩa tính chất 1.1.1 Định nghĩa 1.1.2 Các phép tính đathức 1.1.3 Các tính chất Phép chia đathức Ước chung lớn nhỏ 11 1.2.1 Phép chia đathức 11 1.2.2 Thuật toán Euclide 11 Nghiệm đathức Phương trình bậc cao 16 1.3.1 Nghiệm đathức 16 1.3.2 Phương trình bậc cao 22 Đạo hàm đathức Định lý Taylor 32 Chương Đathức bất khả quy 2.1 36 Đathức bất khả quy 36 2.1.1 Đathức với hệ số thực phức 37 2.1.2 Đathức bất khả quy vành Q[x] 40 2.2 Một số tốn điển hình Chương Một số chủ đề khác 42 46 3.1 Đathức nhiều biến 46 3.2 Đathức đối xứng 49 3.3 Phương trình hàm đathức 53 3.4 Đathức Chebyshev 56 3.4.1 Định nghĩa - Tính chất 57 3.4.2 Một số toán chọn lọc 58 Kết luận 63 Tài liệu tham khảo 64 Danh sách kí hiệu Z vành số nguyên Q trường số hữu tỷ R trường số thực C trường số phức R vành F trường R[x] vành đathức với hệ số vành R deg P(x) P(x) Q(x), Q(x) | P(x) bậc đathức P(x) đathức Q(x) ước đathức P(x) gcd(P(X), Q(X)) ước chung lớn P(X) Q(X) a ≡ b (mod p) a đồng dư với b theo modulo p ∑m i=1 ký hiệu tổng a1 + a2 + · · · + am ∏m i=1 bi ký hiệu tích b1 b2 · · · bm Mở đầu Đathức đối tượng quan trọngToánhọc mặt lý thuyết ứng dụng Đối với Tốn học phổ thơng, họcsinh làm quen với phép toánđathức (cộng trừ nhân chia), giải phương trình bậc nhất, bậc hai số dạng phương trình bậc cao Trong kỳ thihọcsinhgiỏi quốc gia quốc tế, chủ đề đathức khai thác sâu với tốn hay tương đối khó phương trình đại số bậc cao, phương trình hàm đa thức, đathức bất khả quy, tính chia hết đathứcCáctoán nâng cao đathức xuất nhiều tạp chí tốn học cho họcsinhgiỏi (như Tạp chí Tốn học Tuổi trẻ, Kvant, Crux, ) Tuy nhiên có tài liệu tiếng Việt trình bày cách hệ thống lý thuyết tập đa thức, với định hướng bồi dưỡng họcsinhgiỏiToán bồi dưỡng giáo viên dạy chun Tốn Mục tiêu luận văn tìm hiểu cách đầy đủ kết quan trọngđathức có nhiều ứng dụng Tốn phổ thơng Trên sở đó, phân loại hệ thống hố (theo dạng phương pháp giải) tập nâng cao đathức có sáng tác, bổ sung thêm tốn Chúng tơi cố gắng để luận văn trở thành tài liệu tham khảo tốt, thiết thực phục vụ cho việc giảng dạy họcsinhgiỏi bồi dưỡng giáo viên Thông qua việc viết luận văn học viên mở rộng nâng cao hiểu biết đa thức, hình thành kỹ giải tốn khó đa thức, kỹ tìm kiếm thu thập chọn lọc thơng tin Nội dung luận văn trình bày ba chương sau: • Chương Đathức biến Trong chương trình bày ngắn gọn định nghĩa tính chất đathứcCác vấn đề tảng phép chia đa thức, ước - bội, nghiệm phương trình bậc cao, đạo hàm khai triển Taylor trình bày • Chương Đathức bất khả quy Đathức bất khả quy chủ đề trọng tâm lý thuyết đathức Nó vừa mang tính chất lý thuyết, vừa mang tính ứng dụng, đặc biệt tập nâng cao đề thi có tính chất tuyển chọn Chương tập trung nghiên cứu đathức bất khả quy vành (trường) số quen biết tốn học sơ cấp • Chương Một số chủ đề khác Chương dành để nghiên cứu số vấn đề nâng cao lý thuyết đa thức, mà mục đích để hiểu biết sâu sắc lý thuyết, đồng thời tảng cho ứng dụng Các vấn đề quan tâm chương đathức nhiều biến, đathức đối xứng, phương trình hàm đathứcđathức Chebyshev Luận văn thực Trường Đại học Khoa học - Đại học Thái Nguyên hoàn thành với hướng dẫn GS.TSKH Đặng Hùng Thắng (Trường ĐHKHTN - ĐHQG Hà Nội) Tác giả xin bày tỏ lòng biết ơn chân thành sâu sắc tới người hướng dẫn khoa học mình, người đặt vấn đề nghiên cứu, dành nhiều thời gian hướng dẫn tận tình giải đáp thắc mắc tác giả suốt trình làm luận văn Tác giả xin trân trọng cảm ơn Ban Giám hiệu Trường Đại học Khoa học - Đại học Thái Nguyên, Ban Chủ nhiệm Khoa Toán–Tin, giảng viên tham gia giảng dạy, tạo điều kiện tốt để tác giả học tập nghiên cứu Tác giả muốn gửi lời cảm ơn tốt đẹp tới tập thể lớp Cao học Tốn khóa (2015-2017) động viên giúp đỡ tác giả nhiều suốt trình học tập Nhân dịp này, tác giả xin chân thành cảm ơn Sở Giáo dục Đào tạo Hải Phòng, Ban Giám hiệu đồng nghiệp Trường THPT Hùng Vương tạo điều kiện cho tác giả hoàn thành tốt nhiệm vụ học tập cơng tác Cuối cùng, tác giả muốn dành lời cảm ơn đặc biệt đến bố mẹ đại gia đình ln động viên chia sẻ khó khăn để tác giả hồn thành tốt luận văn Thái Nguyên, ngày 02 tháng 11 năm 2017 Tác giả Nguyễn Thanh Tùng Chương Đathức biến 1.1 Định nghĩa tính chất Phần chúng tơi trình bày ngắn gọn lý thuyết đathức biến Những chi tiết tham khảo Lê Thị Thanh Nhàn [5] Nguyễn Văn Mậu [3] 1.1.1 Định nghĩa Giả sử R vành giao hoán có đơn vị Định nghĩa 1.1.1 Biểu thức có dạng an xn + an−1 xn−1 + + a1 x + a0 với an = an , an−1 , , a1 , a0 phần tử thuộc vành R, gọi đathức vành R Trong định nghĩa này, gọi hệ số đa thức, hệ số an gọi hệ số bậc cao đa thức, số tự nhiên n gọi bậc đa thức, ký hiệu deg P(x), x gọi ẩn, hay biến hay đối số đa thức, an gọi hệ số cao nhất, a0 gọi hệ số tự đathức Nếu = với i = 1, 2, , n − a0 = ta có bậc đathức không Nếu = với i = 1, 2, , n f (x) = 0, ta gọi đathứcđathức không Nói chung người ta khơng định nghĩa bậc đathức khơng ta coi bậc −∞ Hai đathức f g gọi nhau, viết f = g, chúng đathức không, hai khác đathức không, đồng thời deg f = deg g hệ số tương ứng Tập hợp tất đathức lấy hệ số vành R ký hiệu R[x], gọi vành đathức R Khi R trường, vành R[x] vành giao hốn có đơn vị Với lý ứng dụng lý thuyết đathứcthihọcsinh giỏi, hay nói chung kỳ thi có tính chất tuyển chọn, luận văn thường xét R Z, Q, R, C, đathức thuộc Z[x], Q[x], R[x], C[x] gọi tên đathức nguyên, đathức hữu tỷ, đathức thực, đathức phức 1.1.2 Các phép tính đathức Cho hai đathức f (x) = an xn + an−1 xn−1 + + a1 x + a0 , g(x) = bn xn + bn−1 xn−1 + + b1 x + b0 Ta định nghĩa phép tính số học sau • Phép cộng f (x) +g(x) = (an +bn )xn + (an−1 +bn−1 )xn−1 + .+ (a1 +b1 )x + (a0 +b0 ) • Phép trừ f (x)−g(x) = (an −bn )xn + (an−1 −bn−1 )xn−1 + .+ (a1 −b1 )x −(a0 −b0 ) • Phép nhân f (x)g(x) = c2n x2n + c2n−1 x2n−1 + + c1 x + c0 50 = x2 (x6k − y6k ) + xy3k+1 (x3k − y3k ) + y6k (x2 + xy + y2 ) Như đathức x2n − xn yn + y2n chia hết cho x2 + xy + y2 n = 3k + Ta có x2n + xn yn + y2n = x6k+4 + x3k+2 y3k+2 + y6k+4 = x4 (x6k − y6k ) + x2 y3k+2 (x3k − y3k ) +y6k (x2 + x2 y2 y4 )(x2 − xy + y2 ) Như x2n − xn yn + y2n chia hết cho x2 + xy + y2 Tóm lại, đathức x2n − xn yn + y2n chia hết cho x2 + xy + y2 n khơng phải bội Bài tốn 3.2.2 Chứng minh với n ∈ Z+ , đathức x2n − xn yn + y2n không chia hết cho x2 + xy + y2 Lời giải Giả sử x2n − xn yn + y2n chia hết cho x2 + xy + y2 , tức x2n − xn yn + y2n = (x2 + xy + y2 )q(x, y), q(x, y) đathức đối xứng với hệ số nguyên (do hệ số bậc cao đathức chia 1, hệ số đathức bị chia đathức chia số nguyên) Trong đẳng thức cho x = y = 1, ta = 3q(1, 1), vơ lí q(1, 1) số ngun Điều chứng tỏ đathức x2n − xn yn + y2n không chia hết cho x2 + xy + y2 Bài tốn 3.2.3 Với n ∈ Z+ x2n +xn yn +y2n không chia hết cho x2 +xy+y2 ? Lời giải Giả sử x2n + xn yn + y2n = (x2 − xy + y2 )q(x, y) q(x, y) đathức đối xứng với hệ số nguyên Ta xét hai trường hợp (3.3) 51 n số lẻ Trong đẳng thức (3.3) thay x −x ta x2n − xn yn + y2n = (x2 + xy + y2 )q(−x, y) Theo Bài tốn 3.2.2 đẳng thức khơng thể xảy n số chẵn Trong (3.3) thay x −x, ta x2n + xn yn + y2n = (x2 + xy + y2 )q(−x, y) Theo ví dụ Bài tốn 3.2.1 đẳng thức n = 3m + n = 3m + Nếu n = 3m + n số chẵn, nên m phải số lẻ, hay m = 2k + 1, n = 6k + Nếu n = 3k + 2, n số chẵn, nên m phải số chẵn, hay m = 2k, n = 6k + Vậy x2n + xn yn + y2n chia hết cho x2 − xy + y2 n = 6k + n = 6k + 4, với k ∈ Z, n ∈ Z+ Bài tốn 3.2.4 Với n ∈ Z+ x2n − xn yn + y2n chia hết cho x2 − xy + y2 ? Lời giải Giả sử x2n − xn yn + y2n = (x2 − xy + y2 )q(x, y), q(x, y) đathức đối xứng với hệ số nguyên Xét hai trường hợp n số chẵn Trong (3.4) thay x −x, ta x2n − xn yn + y2n = (x2 + xy + y2 )q(−x, y) Theo Bàitoán 3.2.2 đẳng thức xảy n số lẻ Trong (3.4) thay x −x, ta x2n + xn yn + y2n = (x2 + xy + y2 )q(−x, y) (3.4) 52 Theo Bàitoán 3.2.1, đẳng thức n = 3m + n = 3m + Nếu n = 3m + n số lẻ, nên m phải số chẵn, tức m = 2k n = 6k + Nếu n = 3m + 2, n số lẻ, nên m phải số lẻ, tức m = 2k − Khi n = 6k − Vậy x2n − xn yn + y2n chia hết cho x2 − xy + y2 n = 6k ± 1, k ∈ Z, n ∈ Z+ Bàitoán 3.2.5 Xác định n để (x + y)n + xn + yn chia hết cho x2 + xy + y2 Lời giải Giả sử (x + y)n xn + yn chia hết cho x2 + xy + y2 Khi ta có (x + y)n xn + yn = (x2 + xy + y2 )q(x, y) (3.5) q(x, y)là đathức đối xứng với hệ số nguyên Trong (3.5) thay x, y tương ứng x2 , y2 , ta có (x2 + y2 )n + x2n + y2n = (x4 + x2 y2 + y4 )q(x2 , y2 ) = (x2 + xy + y2 )(x2 − xy + y2 )q(x2 , y2 ) (3.6) Đẳng thức (3.6) chứng tỏ (x2 + y2 )n + x2n + y2n phải chia hết cho x2 − xy + y2 Ta có (x2 + y2 )n − (xy)n = (x2 + y2 − xy)[(x2 + y2 )n−1 + (x2 + y2 )n−2 + +(x2 + y2 )(xy)n−2 + (xy)n−1 ] (3.7) Tiếp theo ta có (x2 + y2 )n + x2n + y2n = [(x2 + y2 )n − (xy)n ] + (x2n + xn yn + y2n ) (3.8) Từ (3.7) (3.8) suy (x2 + y2 )n + x2n + y2n chia hết cho x2 − xy + y2 x2n + xn yn + y2n chia hết cho x2 − xy + y2 Theo Bài tốn 3.2.3 điều có n = 6k + n = 6k + với k ∈ Z, n ∈ Z+ 53 Ngược lại, giả thiết n = 2m, với m = 3k + m = 3k + Thế (x + y)n + xn + yn = (x + y)2m + x2m + y2m = [(x + y)2m − (xy)m ] + (x2m + xm ym + y2m ) Để ý (x + y)2m − (xy)m = [(x + y)2m − (xy)m ] = [(x + y)2 − xy]p(x, y) = (x2 + xy + y2 )p(x, y), p(x, y) đathức đối xứng với hệ số nguyên Do (x + y)2m − (xy)m chia hết cho x2 + xy + y2 Mặt khác m = 3k + 1, m = 3k + nên theo Bàitoán 3.2.1 đathức x2m + xm ym + y2m chia hết cho x2 + xy + y2 Vậy đathức (x + y)n + xn + yn chia hết cho x2 + xy + y2 n = 6k + n = 6k + 4, với k ∈ Z, n ∈ Z+ 3.3 Phương trình hàm đathức Ở khía cạnh giải tích tốn học, đathức hàm số đặc biệt Ta tính giá trị hàm số phép toán cộng, trừ, nhân Việc tính đạo hàm, tích phân dễ Một toán quan trọng lý thuyết đathức tốn giải phương trình hàm đathức Một cách ngắn gọn, phương trình hàm đathức phương trình mà ẩn hàm đathức đại số Luận văn dành phần để tìm hiểu số tốn phương trình hàm đathức xuất kỳ thi Olympic Những chủ đề sâu sắc lĩnh vực này, tham khảo Nguyễn Văn Mậu [2] Bàitoán 3.3.1 (Đề thi chọn đội tuyển TP.HCM năm 2006-2007) Tìm tất đathức thỏa mãn P2 (2x) = 4[P(x2 ) − xP(2x)] với x ∈ R 54 Lời giải Ta có phương trình cho tương đương với [P(2x) + 2x]2 = 4[P(x2 ) + x2 ] với x ∈ R Đặt F(x) = P(x) + x, phương trình hàm cho trở thành F (2x) = 4F(x2 )2 Đặt d = deg F(x) ta có d = d Từ suy d = d = • Khi d = F(x) = const = c Thay vào phương trình cho ta có c2 = 4c Tức ta có F(x) ≡ F(x) ≡ Như P(x) = P(x) = − x • Khi d = ta có F(x) = ax + b với a = Thay vào phương trình thu gọn hai vế ta có 4a2 x2 + 4abx + b2 = 4ax2 + 4b Đồng hệ số ta a = 0, b = Như F(x) = x, tức P(x) ≡ Tóm lại nghiệm phương trình cho P(x) = 0, P(x) = − x, P(x) ≡ Bàitoán 3.3.2 (Rumani 1980) Tìm tất đathức thỏa mãn P(x2 ) = [P(x)]2 với x ∈ R Lời giải Giả sử đathức cần tìm có dạng P(x) = an xn + an−1 xn−1 + + a1 x + a0 với an = Giả thiết hệ số an−1 , an−2 , , a0 khác không Gọi k, với k < n, số lớn cho ak = Khi ta có P(x2 ) = an x2n + ak x2k + + a1 x + a0 55 = (an x2n + ak x2k + + a1 x + a0 )= [P(x)]2 Đồng hệ số ta nhận = 2an ak Điều trái với giả thiết ak = Suy an−1 = an−2 = = a0 = Vậy P(x) = an xn Từ điều kiện an x2n = P(x2 ) = [P(x)]2 = a2n x2n ta nhận an = Vậy P(x) = xn đathức cần tìm Bài tốn 3.3.3 (Rumani 1980) P(x2 − 2x) = [P(x)]2 với x ∈ R Lời giải Đặt y = x − 1, Q(y) = P(y − 1) Khi [P(x − 2)]2 = [P(y − 1)]2 = [Q(y)]2 , (x2 − 2x) = P(y2 − 1) = Q(y2 ) Do P(x2 − 2x) = [P(x − 2)]2 với x ∈ R Vậy Q(y2 ) = [Q(y)]2 với x ∈ R Theo Bàitoán 3.3.2 ta có Q(y) = yn , hay P(y) = (y + 1)n với n ∈ N∗ Vậy P(x) = (x + 1)n với n ∈ N∗ Liên quan đến phương trình hàm, ta thảo luận tốn mà ràng buộc tốn có dạng bất phương trình sau Bài tốn 3.3.4 (Albanian TST 2009) Tìm tất đathức P(x) khác khơng có hệ số khơng âm thỏa mãn P(x)P x ≤ [P(1)]2 với x > Lời giải Giả sử P(x) = ad xd + a1 x + a0 đathức thỏa mãn yêu cầu tốn Khi ≥ với i = 0, 1, , d 56 Với x > 0, theo bất đẳng thức Bunyakovsky ta có P(x)P x = ad x d + a1 x + a0 ad x−d + a1 x−1 + a0 ≥ (ad + a1 + a0 )2 = [P(1)]2 Kết hợp giả thiết P(x)P x ≤ [P(1)]2 với x > P(x)P x = [P(1)]2 với x > ta có Thay dạng đathức P(x) giả thiết, ta có ad xd + a1 x + a0 ad x−d + a1 x−1 + a0 = [P(1)]2 với x > Biến đổi tương đương ta nhận ad xd + a1 x + a0 ad + a1 xd−1 + a0 xd = [P(1)]2 xd với x > So sánh hệ số xd+1 , xd+2 , , x2d ta a0 = a1 = = ad−1 = Do P(x) = ad xd với ad > Thử lại ta thấy đathức P(x) = ad xd với ad > thỏa mãn u cầu tốn Tóm lại, P(x) = ad xd với ad > đathức cần tìm 3.4 Đathức Chebyshev Đathức Chebyshev lớp đặc biệt đa thức, sợi dây liên kết đẹp đẽ đại số lượng giác Cácđathức Chebyshev không đối tượng nghiên cứu đại số, mà cơng cụ quan trọng giải tích tốn học, lý thuyết xấp xỉ 57 Mục dành để nghiên cứu sơ lược đathức Chebyshev toán liên quan Tài liệu tham khảo sử dụng [3, 6] 3.4.1 Định nghĩa - Tính chất Cácđathức Tn (x) với n ∈ N xác định truy hồi T0 (x) = 1, T1 (x) = x Tn+1 (x) = 2xTn (x) − Tn−1 (x) gọi đathức Chebyshev loại Cácđathức Un (x) với n ∈ N xác định truy hồi U0 (x) = 0, U1 (x) = Un+1 (x) = 2xUn (x) −Un−1 (x) với n ≥ gọi đathức Chebyshev loại Tính chất 3.4.1 Cácđathức Chebyshev loại có tính chất sau: (1) Với x ∈ [−1, 1] ta có Tn (x) = cos(n arccos x) (2) Tn (x) đathức bậc n, có hệ số cao 2n−1 (3) Tn (x) hàm số chẵn n chẵn hàm số lẻ n lẻ (4) Ta có ước lượng |Tn (x) ≤ với x ∈ [−1, 1] (5) Phương trình |Tn (x)| = có n nghiệm phân biệt [−1, 1] cho x = cos π n với k = 0, 1, 2, , n − 58 Tính chất 3.4.2 Cácđathức Chebyshev loại có tính chất sau: (1) Với x ∈ (−1, 1) ta có Un (x) = sin (n arccos x) √ − x2 (2) Ta có Un (x) = Tn (x) n (3) Un (x) đathức bậc n, có hệ số cao 2n−1 (4) Un (x) hàm số chẵn n lẻ hàm số lẻ n chẵn (5) Ta có ước lượng |Tn (x) ≤ n 3.4.2 với x ∈ (−1, 1) Một số toán chọn lọc Bài tốn chọn lọc mà chúng tơi trình bày biểu diễn đathức chuỗi đathức Chebyshev Bàitoán 3.4.3 Chứng minh đathức f (x) bậc n ≥ biểu diễn dạng n f (x) = ∑ Ti (x), an = (3.9) i=0 Lời giải Ta có Tn (x) đathức bậc n có hệ số cao 2n−1 nên ta viết Tn (x) = 2n−1 xn + ϕ(x) với ϕ(x) đathức bậc nhỏ n Suy xn = T (x) − n−1 n 2n−1 ϕ(x) Bằng quy nạp ta chứng minh được: f (x) = a0 + a1 T1 (x) + a2 T2 (x) + + an Tn (x) 59 Bây ta chứng minh tính cách biểu diễn Giả sử f (x) = a0 + a1 T1 (x) + a2 T2 (x) + + an Tn (x) = a0 + a1 T1 (x) + a2 T2 (x) + + an Tn (x) Khi n ∑ − Ti (x) = với x ∈ R i=0 Vậy a0 − a0 = a1 − a1 = = an − an = Hay a0 = a0 , a1 = a1 , , an = an Bàitoán 3.4.4 Cho đathứcthực f (x) = ax3 + bx2 + cx + d số α > Biết | f (x)| ≤ α với x ∈ [−1, 1] Tìm giá trị lớn giá trị tuyệt đối hệ số thức cho Lời giải Đặt A = f (−1) = −a + b − c + d B= f − C= f 2 a b c = − + − +d a b c = + + +d D = f (1) = a + b + c + d E = f (0) = d Từ ta có 4 a = − A+ B− C+ D 3 3 1 b = A+ D−E 2 8 c = A− B+ C− D 6 6 d = E 60 Từ giả thiết ta có |a| ≤ 4α, |b| ≤ 2α, |c| ≤ 3α, |d| ≤ α Với đathức f (x) = α 4x3 − 3x g(x) = α 2x2 − , thay vào ta thấy bất đẳng thức trở thành đẳng thức Vậy max |a| = 4α, max |b| = 2α, max |c| = 3α, max |d| = α Bàitoán 3.4.5 Cho đathức Pn−1 (x) bậc không vượt n − có hệ số bậc cao √ a0 , thỏa mãn điều kiện − x2 |Pn−1 (x)| ≤ với x ∈ [−1, 1] Chứng minh |a0 | ≤ 2n−1 Lời giải Ta viết đathức cho dạng nội suy Lagrange theo nút nội suy j−1 x j = cos 2n π nghiệm đathức Chebyshev Tn (x) Ta có Pn−1 (x) = n ∑ (−1) j−1 n j=1 − x2j Pn−1 (x j ) Tn (x) x−xj Suy 2n−1 a0 = n n ∑ (−1) j−1 − x2j P (x j ) j=1 Vậy nên 2n−1 |a0 | ≤ n n ∑ j=1 − x2j P (x j ) 2n−1 ≤ · n = 2n−1 n Ta có điều phải chứng minh Bàitoán 3.4.6 Giả thiết đathức Pn−1 (x) thỏa mãn điều kiện Bàitoán 3.4.3 Chứng minh |Pn−1 (x)| ≤ n với x ∈ [−1, 1] Lời giải Với x j chọn Bài tốn 3.4.5 hàm số y = cos(x) nghịch biến (0, π) nên −1 < xn < xn−1 < < x2 < x1 < 61 Nếu x1 < x < |Pn−1 (x)| ≤ n n ∑ |Tn (x)| ≤ n x−xj − x2j Pn−1 (x j ) j=1 n Tn (x) ∑ (x − x j ) (3.10) j=1 (do x − x j > Tn (x) có dấu không đổi (x1 , 1]) Mặt khác n Tn (x) = 2n−1 ∏ (x − x j ) j=1 nên ta có n ∏nj=1 (x − x j ) Tn (x) ∑ (x − xk ) = ∑ x − xk k=1 k=1 n Tn (x) = n−1 (3.11) Ta có |Tn (x)| = |Un (x)| ≤ n n nên từ (3.10) (3.11) suy |Pn−1 (x)| ≤ n với x ∈ (x1 ; 1] Hồn tồn tương tự ta có |Pn−1 (x)| ≤ n với x ∈ [−1, xn ) Xét xn ≤ x ≤ x1 Khi ta có − x12 = sin (arccos x1 ) = sin − x2 ≥ π 2n Do 1≥ sin x ≥ , x π sin π π ≥ , 2n 2n = n n − x2 ≥ n suy |Pn−1 (x)| ≤ 1 n = n Bàitoán chứng minh xong Bàitoán 3.4.7 (Định lý Berstein-Markov) Cho đathức Pn (x) = a0 xn + a1 xn−1 + + an thỏa mãn điều kiện |Pn (x)| ≤ với x ∈ [−1, 1] Chứng minh |Pn (x)| ≤ n2 với x ∈ [−1, 1] 62 Lời giải Đặt x = cos a Khi theo giả thiết |Pn (cos a)| ≤ Do Pn (cos a) có dạng n Pn (cos a) = ∑ (a j cos jα + b j sin jα) j=0 nên ta áp dụng kết Bàitoán 3.4.6, ta sin(α)Pn (cos(α)) ≤ n kéo theo Cũng theo Bài tốn 3.4.6, ta có Pn (x) ≤ n n Vậy |Pn (x)| ≤ n2 Ta có điều phải chứng minh − x2 Pn (x) ≤ n 63 Kết luận Những kết đạt Luận văn “Đa thứcthihọcsinh giỏi” đạt kết sau: Trình bày tính chất đa thức, toán phép chia đa thức, ước - bội, nghiệm phương trình bậc cao, đạo hàm khai triển Taylor; Lý thuyết toánđathức bất khả quy vành (trường) số; Một số chủ đề nâng cao đathức nhiều biến, đathức đối xứng, phương trình hàm đathứcđathức Chebyshev Đề xuất số hướng nghiên cứu Đathức đại số chủ đề quan trọng sâu sắc toánhọc Sau kết đạt luận văn, hi vọng cố gắng tiếp tục nghiên cứu chủ đề liên quan, chẳng hạn: • Các phân thức hữu tỷ toán liên quan, • Bàitoán biểu diễn đa thức, phân bố nghiệm đathức ứng dụng, • Các khía cạnh giải tích đa thức, phương trình hàm đathức 64 Tài liệu tham khảo Tiếng Việt [1] Nguyễn Hữu Điển (2006), Đathức ứng dụng, NXB Giáo dục [2] Nguyễn Văn Mậu (1997), Phương trình hàm, NXB Giáo dục [3] Nguyễn Văn Mậu (2007), Chuyên đề Đathức đại số phân thức hữu tỷ, NXB Giáo dục [4] Nguyễn Văn Mậu, Nguyễn Văn Ngọc (2010), Chuyên đề Đathức đối xứng áp dụng, NXB Giáo dục [5] Lê Thị Thanh Nhàn (2015), Lý thuyết đa thức, NXB ĐHQG Hà Nội [6] Lê Hồnh Phò, Nguyễn Văn Nho, Nguyễn Tài Chung (2016), Chun khảo đathức (tái lần thứ nhất), NXB ĐHQG Hà Nội Tiếng Anh [7] Duˇsan Djuki´c (2007), Polynomials in One Variable, Olympiad Training Materials (see www.imomath.com) [8] 51st International Mathematical Olympiad (2010), Shortlisted Problems with Solutions ... thuyết đa thức thi học sinh giỏi, hay nói chung kỳ thi có tính chất tuyển chọn, luận văn thường xét R Z, Q, R, C, đa thức thuộc Z[x], Q[x], R[x], C[x] gọi tên đa thức nguyên, đa thức hữu tỷ, đa thức. ..ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC - NGUYỄN THANH TÙNG ĐA THỨC TRONG CÁC BÀI TOÁN THI HỌC SINH GIỎI LUẬN VĂN THẠC SĨ TỐN HỌC Chun ngành: Phương pháp... cao Trong kỳ thi học sinh giỏi quốc gia quốc tế, chủ đề đa thức khai thác sâu với tốn hay tương đối khó phương trình đại số bậc cao, phương trình hàm đa thức, đathức bất khả quy, tính chia hết đa