1. Trang chủ
  2. » Cao đẳng - Đại học

Đồng nhất thức Ward - Takahashi cho Spinor QED

49 133 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 49
Dung lượng 366,34 KB

Nội dung

LỜI CẢM ƠN Để hồn thành khóa luận này, trước hết tơi xin bày tỏ lòng biết ơn sâu sắc tới ThS Hà Thanh Hùng ln tận tình hướng dẫn dìu dắt tơi suốt q trình thực khóa luận tốt nghiệp Tơi xin chân thành cảm ơn ban chủ nhiệm khoa Vật lí, thầy giáo, cô giáo khoa tổ Vật lý lý thuyết – Trường Đại học Sư phạm Hà Nội cung cấp cho tảng kiến thức quý báu giúp đỡ, quan tâm, động viên nhiệt tình để tơi hồn thành khóa luận Nhân dịp hồn thành khóa luận này, tơi xin bày tỏ lòng biết ơn sâu sắc tới giúp đỡ q báu Cuối cùng, tình cảm chân thành nhất, xin gửi lời cảm ơn đến người thân gia đình bạn bè động viên, giúp đỡ tơi suốt q trình học tập thực khóa luận Mặc dù cố gắng khơng tránh khỏi thiếu sót Kính mong đóng góp q báu từ phía thầy bạn khoa để khóa luận tơi hồn chỉnh Tơi xin chân thành cảm ơn ! Hà Nội, tháng 05 năm 2013 Sinh viên Phạm Thị Minh Lý LỜI CAM ĐOAN Để đảm bảo tính trung thực khóa luận, tơi xin cam đoan: ● Khóa luận kết nỗ lực cá nhân hướng dẫn thầy giáo ThS Hà Thanh Hùng ● Nội dung khóa luận khơng trùng lặp với cơng trình nghiên cứu tác giả trước công bố Hà Nội, tháng 05 năm 2013 Sinh viên Phạm Thị Minh Lý MỤC LỤC PHẦN I MỞ ĐẦU 1 Lý chọn đề tài Mục đích nghiên cứu Đối tượng nghiên cứu Phạm vi nghiên cứu Nhiệm vụ nghiên cứu Phương pháp nghiên cứu Cấu trúc khóa luận PHẦN II NỘI DUNG CHƯƠNG TRƯỜNG SPINOR VÀ TRƯỜNG ĐIỆN TỪ 1.1 Trường spinor 1.1.1 Hàm truyền trường spinor 1.1.2 Hàm sóng trường spinor 1.2 Trường điện từ 1.2.1 Tác dụng trường điện từ 1.2.2 Hàm sóng trường điện từ 10 1.2.3 Hàm truyền trường điện từ 12 1.3 Tương tác trường spinor trường điện từ 13 CHƯƠNG ĐỒNG NHẤT THỨC WARD-TAKAHASH CHO SPINOR QED 14 2.1 Hàm truyền đỉnh tương tác QED .14 2.1.1 Hàm truyền 14 2.1.2 Đỉnh tương tác 15 2.2 Đồng thức Ward-Takahashi cho spinor QED 15 CHƯƠNG ÁP DỤNG ĐỒNG NHẤT THỨC WARD-TAKAHASHI TÍNH GIẢN ĐỒ PHÂN CỰC CHÂN KHÔNG 25 PHẦN III KẾT LUẬN 32 PHẦN IV TÀI LIỆU THAM KHẢO 33 PHẦN I MỞ ĐẦU Lý chọn đề tài Vật lí học mơn khoa học nghiên cứu quy luật từ đơn giản đến tổng quát tự nhiên Vật lí học nghiên cứu cấu trúc, tính chất vật chất thơng qua quy luật, định lý Cùng với phát triển loài người, Vật lí học trải qua nhiều giai đoạn phát triển đạt thành tựu đáng kể Vật lí hạt mơn học nghiên cứu hạt nhỏ tạo nên vật chất, hiểu biết hạt luôn tiền phương tri thức nhân loại giới siêu nhỏ giới siêu vĩ mơ.Trong đó, lý thuyết trường công cụ chủ yếu để nghiên cứu trình tương tác hạt giới vi mô Lý thuyết trường lượng tử giúp ta tìm hiểu chất cấu trúc, chất tương tác phân tử, nguyên tử, hạt nhân hạt Từ đó, nhận biết q trình quy luật vật lí diễn giới vi mơ nhằm giải thích tượng giới vĩ mơ Trong tính tốn lý thuyết trường, tốn học công cụ vô quan trọng, gắn liền với phát triển ngành Vật lí học Đồng thức WardTakahashi số Đồng thức giúp ta tính tương tác điện động lực học lượng tử, tính tương tác hạt mang điện (spinor vô hướng ) với photon Đặc biệt, có tác dụng hữu ích việc tính giản đồ lượng liên kết electron hay giản đồ phân cực chân không Đồng thời, phát huy tối đa ưu điểm vào giải tốn lượng tử, giúp việc tính tốn trở nên đơn giản hơn, tạo tiền đề khám phá kiến thức để ngày hoàn thiện tranh vật lí đại Đó lý mà chọn đề tài: “Đồng thức Ward-Takahashi cho spinor QED” Mục đích nghiên cứu - Tìm hiểu đồng thức Ward-Takahashi cho spinor QED Đối tượng nghiên cứu - Spinor QED - Đồng thức Ward-Takahashi QED Phạm vi nghiên cứu - Trường spinor Nhiệm vụ nghiên cứu - Đưa số lý thuyết sở - Tìm hiểu đồng thức Ward-Takahashi cho spinor QED Phương pháp nghiên cứu - Đọc tra cứu tài liệu - Phương pháp vật lí - tốn Cấu trúc khóa luận Khóa luận gồm có ba chương: Chương Trường spinor trường điện từ Chương Đồng thức Ward-Takahashi cho spinor QED Chương Áp dụng đồng thức Ward-Takahashi tính giản đồ phân cực chân khơng PHẦN II NỘI DUNG CHƯƠNG TRƯỜNG SPINOR VÀ TRƯỜNG ĐIỆN TỪ 1.1 Trường spinor 1.1.1 Hàm truyền trường spinor Trường spinor mô tả chung cho fermion (leptons e,  , quark, ) Đây trường vật chất Các trường thỏa mãn phương trình Dirac thu từ tuyến tính hóa phương trình Klein-Gordon: 2    m   i       m    i   x    x   , m   ma trận Dirac tuân theo hệ thức:         2g  (1.1.1) Người ta đưa thêm vào ma trận  cho: i       i 01 2         , 4!  ,  0,  5 1 Ma trận Dirac có tính chất sau: ma trận Dirac xác định xác đến phép biến đổi unita: k k 1  O O , với O ma trận unita có nghịch đảo Liên hợp Dirac ma trận Dirac A định nghĩa sau:  A  A  (1.1.2) Từ (1.1.2) ta có:            ,     ,       ,         k  g kn      , k  0,1,2,3,5 k n       Ta thấy rằng:  5 biến đổi đại lượng giả vô hướng  5  biến đổi đại lượng giả vectơ Để cho cụ thể ta chọn biểu diễn ma trận Dirac  chéo I    0  , I 0      i  i –I  , 0 0     I  , 0 i I ma trận đơn vị  ,  ma trận Pauli Vết số lẻ ma trận Dirac Thật vậy, tính chất vòng vết, kết hợp với tính phản giao hốn ma trận  Tr    n  n  n  n3  Tr     n  n2 n    Tr  n  n  với ma trận   cho ta n .  n3 n2 n 1 .  5 n2 n 1   Tr    5 5 n n   Tr   Tr  n1   n  n Một số công thức thông dụng khác Tr       g  , n2 n 1   n3  n1 Từ (1.1.3) ta thấy n3 . n   n2 n 1 Tr 5 n2 n 1  (1.1.3)  g  g  g  g  , Tr            4i  Ta kí hiệu k  k   đó: Tr k p   4k p, Tr k   p     4k  p  k p  g  k p  Ta đòi hỏi:   i    i    x   x     m   ( x)  0,    m  ( x )   (1.1.4) (1.1.5) Hai phương trình phương trình Dirac nói Lagrangian tự trường spinor với khối lượng m có dạng: D L  i   x       x     x   x   m  x  x,    Trong  x   x gọi liên hợp Dirac Trong thực tế, người ta thường sử dụng Lagrangian tự sau:   LD i x           x  m   x  x i x   x  m  x x,   Trong ta lưu ý đến việc trường spinor  có số Dirac  Phương trình chuyển động Euler-Lagrange có dạng (1.1.5)      x i     m  0,   x  x với Dễ dàng thu hàm truyền trường Dirac  Fk   D i i k  m   k – m  i k  m  i 1.1.2 Hàm sóng trường spinor Hàm sóng thỏa mãn phương trình (1.1.5) có dạng:  (x)   dk (2 )3 Đại lượng vế phải hàm truyền xác electron, đánh giá p S  p  k  với: tương ứng, kí hiệu đại lượng S  p p k S  p  i p  m    p   Biên độ ba điểm tồn phần vế trái viết lại thành tích hàm truyền tồn phần cho electron vào electron ra, giản đồ tán xạ cắt cụt Trong trường hợp này, hàm biên độ phải vector    p  k, p Khi đó, đồng thức Ward-Takahashi viết là:  S  p  k   iek    p  k, p S  p   e  S  p  S  p  k    Để đơn giản hóa phương trình này, nhân trái phải tương ứng với ma trận Dirac S 1 S 1  p  k  S 1  p ta có:  p  k  S  p  k  iek     p  k , p  S  p  S 1  p   p  k  e S  p   S  p  k  S 1  p   iek     p  k, p  S 1  p  k  e S  p  S 1  p   S 1  p  k  e S  p  k  S 1  p    ik e    p  k, p  e S 1  p  k   e S 1  p  S   ik    1  p  k, p  S 1  p  k   S 1  p (2.2.6) Ta sử dụng đồng thức (2.2.6) để thu mối liên hệ chung tham số tái chuẩn hóa Z1 Z2 Hằng số tái chuẩn hóa hàm đỉnh xác định sau:    p  k, p  Z 1   k  Ta định nghĩa Z2 phần dư cực S  p  ~ iZ p  m Khai triển hai vế (2.2.6) quanh k = ta có: 1 – iZ 1k  iZ 1k , S p Như vậy: Z1 = Z2 Do đó, đồng thức Ward-Takahashi đảm bảo việc triệt tiêu xác thay đổi tỉ lệ tham số vô hạn biên độ tán xạ electron Khi kết hợp với biểu thức: Z    p, p    F q   (với    i   q F q2 2m p, p tổng biên độ cắt cụt giản đồ electron-photon) cho hệ số hình dạng electron Đồng thức đảm bảo F1 0  cho tất bậc lý thuyết nhiễu loạn CHƯƠNG ÁP DỤNG ĐỒNG NHẤT THỨC WARD-TAKAHASHI TÍNH GIẢN ĐỒ PHÂN CỰC CHÂN KHƠNG Đồng thức Ward-Takahashi có nhiều ứng dụng việc tính tốn tương tác điện động lực học lượng tử, tính tốn tương tác hạt mang điện với photon Một số việc tính giản đồ phân cực chân khơng, sau ta tính tốn cụ thể giản đồ phân cực chân không Ta biết đồng thức Ward-Takahashi thông qua mối liên hệ Z1  Z , đảm bảo tổng hiệu chỉnh photon ảo biến việc chuyển xung lượng p khơng Khi khơng kể đến đường ngồi, tích phân Feynman có dạng sau: k p    p k ie     d k  i 2  k q      m   k  q   m  2 (3.1) Ta định nghĩa k  q  m k  m    tr  k  q  m  k  m  d 4k  2   i  tr  1  ie  i  i vào hàm truyền photon :  q tổng tất tương tác hạt tối giản (3.2)   q bậc hai (trong e) đóng góp vào    q Các tensor xuất    q thức Ward cho ta biết: g    q q q  Và q       g  q q Đồng q  , nghĩa   q tỉ lệ thuận với phép chiếu q khơng có cực q  , nguồn gốc cực trạng thái hạt khơng có khối lượng trung gian, xảy giản đồ 1PI Do dễ dàng trích cấu trúc tensor từ   theo cách sau:   q  q g    q q  q  , (3.3) q  thường q  Hàm xác photon điểm là:      q   q  q2   Ta có:     Do ta đơn giản hóa biểu thức này:    (3.4) Trong tính tốn phần tử ma trận tán xạ bất kì, đầu hàm truyền xác tương tác với đường fermion Khi ta lấy tổng tất vị trí dọc theo đường nơi tương tác, theo đồng thức Ward, số hạng tỉ lệ thuận với q q bị triệt tiêu Để tính tốn yếu tố ma trận tán xạ, ta đồng nhất:   thường  q (3.5) với q 0 Hàm truyền xác ln có cực q  Tức là, photon hồn tồn khơng có khối lượng tất bậc lý thuyết nhiễu loạn Khẳng định phụ thuộc vào việc ta sử dụng đồng thức Ward (3.3) Ví dụ,    q bao gồm số hạng M g   (không bù với số hạng q q ), khối  lượng photon chuyển sang M Phần dư cực q  là: 1    Tính   Z3 Theo (3.1) ta có: i q   ie   d k  2   k  tr  k  q  m  k  m    m k  q   m  2 (3.6) Có thể thấy rằng, chỉnh thứ nguyên bảo toàn bất biến chuẩn, cụ thể đồng thức Ward thỏa mãn Thật vậy: q i  q  ie  d k  2  Ta có:  k  m k  q  m  q  k  q  m   k  m   2a.b a b  b a Khi tử số có dạng:  Tr  Tr k  m q k  q  m    Tr q k  q  m k  m 2  Tr 4 k  mk  q   m   Tr k  m k  q  m  k  q  m k 2    2 4 k m k     q (3.7) Do ta có: q i  2 q   4e    d k  4  2 k     2   k  k q m k q  (3.8) m Ta biết tích phân hữu hạn nên thỏa mãn: d k d k   2  F  k     2  F  k  q  , Vì (3.8) cho: q   2 q  Đây đồng thức Ward quen thuộc Tử số (3.6) là:      TS  Tr  k  q  m   k  m     8k k  q  k   q k    m  k  k q  g   k k  q    k k  q    g   k  k  q   m  Do (3.6) trở thành: d k      k k  q   k k  q   g k k  q   m  k i  2 q  4e2  2 4  m2 k  q  m  Tham số Feynman kết hợp với tham số mẫu số: k m  k  q   m    dx   k   dx  2xk.q  xq  2 m , 2 l  x 1 x  q  m  đó: l  k  xq Trong số hạng l , tử số (3.9) là:   TS  2l l  g l  2x 1  x  q  q   g  m  x   x  q  + + số hạng tuyến tính l 2 (3.9) Thực phép quay Wick thay l  il , ta thu được: E d lE i  q  4i e  dx  2       2  g l  g l  2x 1 x q q  g m  x 1 x q E E ,  2 l   E   (3.10)     m  x 1  x q Tích phân dễ bị phân kì tử ngoại Nếu cắt l E   , ta tìm số hạng đầu: i  q  e2 2 g  , với số hạng không bù q  q Kết vi phạm đồng thức Ward, cung cấp cho photon khối lượng vô hạn M  e Bây ta áp dụng công thức chỉnh thức nguyên tích phân xung lượng (3.10) d d lE  2        1 g l  d   l 2 d 1 1   4  d E   d  d  1      4     1  g       2 1    d 2  2    d  d  d  g   Có cực d  , từ phân kì bậc hai bốn chiều trở thành phân kì logarit hai chiều, cực bị triệt tiêu Tính số hạng lại (3.10) sử dụng thu được:  d   m  x1 x q ta 2 i  q   – 4ie  dx d 2  2  d 4       2 2  g  m  x 1  x  q   g m  x 1  x  q   2x 1  x  q q  2   q g   –q q  i  q  , 2 Trong đó:    q2   8e  4   dx     x 1  x  m 4  2   q x 1 x    e  1    ln 4   6 12    dx x 1  x  ln m  q x 1  x    2  Do vậy: i  q   2  ie 12 q g    q q     ln 4  ln     2   dx x 1  x  ln m  q x 1  x    ln x  xe ,x      ln x  O  với Để công thức ta sử dụng  2 d Như vậy, tích phân có hai phần: phần phân kì   phần thứ hai hữu hạn div q   ie2 q2 g   q q      ln4  ,   fin q    Do 12 ie 12  q g     ln4   q q        2 ln    6 dxx1 x  ln m  x1 x q       luôn nên người ta thường gộp chúng lại kí hiệu là: CU     ln4  V  45 phân kì tử ngoại vùng lượng lớn 46 Tính tích phân theo tham số Feynman Sử dụng công thức:  dx ln   ln m  q2 q  3m ,  dx x ln   ln m2 ln    dx x , 2m ln m q  4m Do  q2 dx x1  x  ln   ln m  12m Ta có biểu thức cuối    q   fin ie 12 2  q   q g  q q ln   ln m    2m2       2 Qua biểu thức ta nhận thấy giản đồ phân cực chân khơng photon phân kì bậc hai PHẦN III KẾT LUẬN Với mục đích nghiên cứu đặt từ ban đầu, qua q trình nghiên cứu hồn thiện khóa luận “Đồng thức Ward-Takahashi cho spinor QED”, khóa luận đạt số kết thể nội dung sau: Chương 1: Xây dựng lý thuyết trường spinor, trường điện từ tương tác hai trường Chương 2: Nghiên cứu đồng thức Ward-Takahashi cho spinor QED Chương 3: Ứng dụng tính giản đồ lượng liên kết electron hay giản đồ phân cực chân khơng Nhờ áp dụng đồng thức Ward-Takahashi ta tính giản đồ phân cực chân không photon phân kì bậc hai Thơng qua việc tính giản đồ phân cực chân khơng trình bày khóa luận, tơi nhận thấy giải toán phương pháp sử dụng đồng thức Ward-Takahashi việc tính tốn trở nên đơn giản Nghĩa giản đồ bớt đường photon, biểu thức tính tốn bớt tích phân hay số hạng Nếu giản đồ có n đường photon nhờ đồng thức WardTakahashi giảm xuống n-1 đường photon, tiếp tục ta thu giản đồ đơn giản mà ta tính tốn cách dễ dàng Mặc dù đồng thức Ward-Takahashi cho spinor QED có nhiều ứng dụng song thời gian điều kiện thân nên chưa nghiên cứu đầy đủ đồng thức Tôi hy vọng khóa luận tiếp tục nghiên cứu mức độ lý thuyết cao ứng dụng sâu sắc hơn, có ý nghĩa thực tế PHẦN IV TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt Đào Trọng Đức, Phù Chí Hòa (2007), Nhập mơn lý thuyết trường lượng tử, NXB Khoa học Kĩ thuật Hà Thanh Hùng (2009), Tái chuẩn hóa điện động lực học vơ hướng gần vòng, Luận văn Thạc sĩ, Viện Hàn lâm Khoa học Cơng nghệ Việt Nam Hồng Ngọc Long (2006), Cơ sở vật lí hạt bản, NXB Khoa học tự nhiên Công nghệ Tài liệu tiếng Anh Michael E Peskin, Daniel V Schroeder (1995), An introduction to Quantum Field Theory, Perseus Books, Massachusetts Steven Weinberg (1996), The Quantum Theory of Fields, Cambridge University press ... tài: Đồng thức Ward- Takahashi cho spinor QED Mục đích nghiên cứu - Tìm hiểu đồng thức Ward- Takahashi cho spinor QED Đối tượng nghiên cứu - Spinor QED - Đồng thức Ward- Takahashi QED Phạm vi... nghiên cứu - Trường spinor Nhiệm vụ nghiên cứu - Đưa số lý thuyết sở - Tìm hiểu đồng thức Ward- Takahashi cho spinor QED Phương pháp nghiên cứu - Đọc tra cứu tài liệu - Phương pháp vật lí - tốn Cấu... Chương Trường spinor trường điện từ Chương Đồng thức Ward- Takahashi cho spinor QED Chương Áp dụng đồng thức Ward- Takahashi tính giản đồ phân cực chân khơng PHẦN II NỘI DUNG CHƯƠNG TRƯỜNG SPINOR VÀ

Ngày đăng: 06/01/2018, 09:32

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Đào Trọng Đức, Phù Chí Hòa (2007), Nhập môn lý thuyết trường lượng tử, NXB Khoa học và Kĩ thuật Sách, tạp chí
Tiêu đề: Nhập môn lý thuyết trường lượng tử
Tác giả: Đào Trọng Đức, Phù Chí Hòa
Nhà XB: NXB Khoa học và Kĩ thuật
Năm: 2007
2. Hà Thanh Hùng (2009), Tái chuẩn hóa điện động lực học vô hướng trong gần đúng một vòng, Luận văn Thạc sĩ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam Sách, tạp chí
Tiêu đề: Tái chuẩn hóa điện động lực học vô hướngtrong gần đúng một vòng
Tác giả: Hà Thanh Hùng
Năm: 2009
3. Hoàng Ngọc Long (2006), Cơ sở vật lí hạt cơ bản, NXB Khoa học tự nhiên và Công nghệ.Tài liệu tiếng Anh Sách, tạp chí
Tiêu đề: Cơ sở vật lí hạt cơ bản
Tác giả: Hoàng Ngọc Long
Nhà XB: NXB Khoa học tựnhiên và Công nghệ.Tài liệu tiếng Anh
Năm: 2006
1. Michael E. Peskin, Daniel V. Schroeder (1995), An introduction to Quantum Field Theory, Perseus Books, Massachusetts Sách, tạp chí
Tiêu đề: An introduction to Quantum Field Theory
Tác giả: Michael E. Peskin, Daniel V. Schroeder
Năm: 1995
2. Steven Weinberg (1996), The Quantum Theory of Fields, Cambridge University press Sách, tạp chí
Tiêu đề: The Quantum Theory of Fields
Tác giả: Steven Weinberg
Năm: 1996

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w