1. Trang chủ
  2. » Giáo án - Bài giảng

Giáo án Giải tích 12 cơ bản_cả năm

148 1,4K 17
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 148
Dung lượng 4,49 MB

Nội dung

Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 Chương I ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ I. MỤC TIÊU: 1. Trình bày các định lý sử dụng đạo hàm để nghiên cứu những vấn đề quan trọng nhất trong việc khảo sát sự biến thiên của hàm số như đồng biến, nghịch biến, cực đại, cực tiểu, . 2. Giới thiệu cách sử dụng công cụ hàm số để khảo sát sự biến thiên và vẽ đồ thị của một số hàm số thường gặp: - Hàm đa thức (bậc ba, bậc bốn trùng phương) - Hàm phân thức. 3. Nêu cách giải một số bài toán đơn giản, liên quan đến khảo sát hàm số: Sự tương giao và tiếp xúc của các đường, biện luận số nghiệm của phương trình bằng đồ thị, . II. NỘI DUNG: 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số là một nội dung chính trong chương trình. Cần làm cho hs thấy rõ tính chính xác, khoa học của việc ứng dụng đạo hàm vào việc khảo sát và vẽ đồ thị hàm số (so với trước đây). Khi khảo sát ta thường quan tâm đến những khoảng sự biến thiên khác thường (đồng biến xen nghịch biến, CĐ, CT, điểm gián đoạn, .) 2. Cần làm cho hs thấy rõ những vấn đề bản trong việc khảo sát sự biến thiên của h/s: • Sự đồng biến, nghịch biến • Cực đại, cực tiểu. • Tiệm cận. • Giới hạn tại những điểm đặc biệt là đầu mút của các khoảng xác định, điểm vô tận, . 3. Những bài toán liên quan đến khảo sát và vẽ đồ thị hàm số rất đa dạng và phong phú nhưng chúng ta chỉ giải quyết một số vấn đề đơn giản và bản với hs trình độ THPT. Không đào sâu phát triển các dạng này tránh nặng nền cho hs. III. YÊU CẦU: 1. Biết vận dụng các dấu hiệu về đồng biến, nghịch biến, cực trị, tiệm cận trong các bài toán cụ thể. 2. Biết vận dụng sơ đồ khảo sát và vẽ đồ thị hàm số để khảo sát và vẽ đồ thị của các hàm số đã nêu trong SGK. 3. Biết cách giải các bài toán liên quan ở mục §5: • Viết phương trình tiếp tuyến. • Biện luận số nghiệm của phương trình bằng phương pháp đồ thị, . IV. PHÂN PHỐI SỐ TIẾT: §1. Sự đồng biến, nghịch biến của hàm số 1-2 (2t) §2. Cực trị của hàm số 3-5 (3t) §3. Giá trị LN, NN của hàm số 6-8 (3t) §4. Đường tiệm cận 9-11 (3t) §5. Khảo sát sự biến thiên và vẽ đồ thị h/s 12-17 (6t) Ôn tập - Kiểm tra 45’ 18,19 - 20 Ngày soạn : 20/08/2008 SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ Tiết: 1 Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 1 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 1. Mục tiêu . Qua bài học này học sinh cần: • Về kiến thức : Nhớ lại và hiểu định nghĩa sự đồng biến và nghịch biến của hàm số và mối quan hệ giữa khái niệm này với đạo hàm. • Về kỹ năng : Biết vận dụng quy tắc xét tính đơn điệu của hàm số và dấu đạo hàm của nó. • Về tư duy và thái độ : Biết quy lạ về quen , hiểu được ứng dụng của đạo hàm . Tính đạo hàm và các phép toán chính xác . 2. Chuẩn bị của giáo viên và học sinh : • Giáo viên : Bảng phụ vẽ các đồ thị và các bảng biến thiên . • Học sinh : Xem bài trước ở nhà, chuẩn bị dụng cụ học tập . 3. Phương pháp:Gợi mở ,vấn đáp đan xen hoạt động nhóm . 4. Tiến trình giờ dạy . 4.1. Ổn định lớp và kiểm tra sĩ số lớp . 12A3: 12A8: 4.2. Kiểm tra bài cũ. Nhắc lại định nghĩa hàm số đồng biến, nghịch biến của hàm số? 4.3. Bài mới . Hoạt động GV Hoạt động HS Nội dung HĐ1: Tính đơn điệu của hàm số : - Trình bài đồ thị hình 1 và 2 - Yêu cầu học sinh chỉ ra các khoảng tăng ,giảm của hàm số y=cosx trên đoạn 3 ; 2 2 π π   −     và của hàm số y= x trên khoảng ( ;−∞ +∞ ). - Nhận xét ý kiến của hs , gv điều chỉnh và củng cố. Nhắc lại thế nào là hàm số đồng biến ,nghịch biến trên một khoảng ? Cho biết dạng đồ thị của hàm số đồng biến và nghịch biến ? HĐ2 : Tìm hiểu mối liên hệ của dấu đạo hàm bậc nhất và sự đồng biến ,nghịch biến của hàm số . - Yêu cầu học sinh quan sát bảng biến thiên và đồ thị của hai hàm số y= 2 1 , 2 x y x − = . - Cho học sinh thảo luận tìm dấu đạo hàm điền vào - Lắng nghe và quan sát đồ thị hàm số . - Suy nghĩ và tìm các khoảng tăng giảm của đồ thị hàm số - Cá nhân học sinh trình bài các khoảng tăng giảm của hàm số . - Các em còn lại nhận xét ý kiến của bạn , điều chỉnh ,bổ sung . * Nêu các pp xét tính đb, nb đã biết – 2 PP. + Xét theo đ/n. + Xét tỉ số 2 1 2 1 ( ) ( )f x f x x x − − Đọc sách giáo khoa trả lời . Nhận xét phần trả lời của bạn , đóng góp ý kiến . Lắng nghe câu hỏi suy nghĩ trả lời . I. Tính đơn điệu của hàm số: - Hàm số y= cosx tăng trên khoảng 3 ( ;0),( ; ) 2 2 π π π − và giảm trên khoảng (0; ),( ; ) 2 2 π π π - Hàm số y= x tăng trên khoảng (0; +∞ ), giảm trên ( −∞ ;0). 1. Nhắc lại định nghĩa * Đ/n: SGK_4. * Các hàm đb, nb gọi là hàm đơn điệu. - Hàm số đồng biến thì đồ thị đi lên từ trái sang phải . - Hàm số nghịch biến thì đồ thị đi xuống từ trái sang phải . 2.Tính đơn điệu của hàm số . Cho hàm số y=f(x) đạo hàm trên khoảng K Nếu f’(x)>0 với mọi x thuộc K thì hàm số đồng biến trên K . Nếu f’(x)<0 với mọi x thuộc K thì hàm số Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 2 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 bảng và phát biểu về mối liên hệ của dấu đạo hàm và sự đb ,nb của hàm số . - Nhận xét phần trả lời của hs - Hướng dẫn học sinh rút ra kế luận về hàm số đb và nb . - Vấn đề đặt ra nếu đạo hàm bằng 0 thì f(x) như thế nào ? - Học sinh lắng nghe gợi ý của giáo viên và quan sát hình vẽ . - Xét dấu đạo hàm . - Điền vào bảng biến thiên . - Nhận xét bổ sung . - Tìm mối liên hệ của dấu đạo hàm và chiều biến thiên của hàm số . - Hàm số không đổi trên K . nghịch biến trên K . Tóm lại: • f'(x)>0 => f(x) đồng biến • f’(x)<0 => f(x) nghịch biến. HĐ3 : Tìm các khoảng đơn điệu của hàm số . - Yêu cầu học sinh đọc ví dụ 1 sgk tìm hiểu các khoảng đồng biến và nghịch biến của hàm số . - Như vậy nếu đạo hàm lớn hơn 0 thì hàm số đb , đạo hàm nhỏ hơn 0 thì hàm số nghịch biến . Điều ngược lại đúng không ? - Yêu cầu hs đọc ví dụ 2 sgk. - Chú ý: f’(x)=0 chỉ tại một số hữu hạn điểm. * Củng cố: - Đọc sgk và chỉ ra các khoảng đồng biến và nghịch biến của hàm số . - Cho học sinh quan sát đồ thị hàm số và trả lời. - Hs đọc định lý mở rộng. - Căn cứ vào dấu của đạo hàm các hàm số để kết luận. Chú ý đk của định lý mở rộng. -VD. Hàm số y = 2x 4 + 1. * Chú ý: Định lý mở rộng. Định lý mở rộng: SGK_7 VD: Các hàm số sau đây hàm nào đơn điệu trên toàn bộ TXĐ của chúng? a) 3 y x= b) 3 2 3 1 2 y x x= − + c) 3 2 2 6 6 7y x x x= + + − 4.4. Dặn dò - Hướng dẫn học ở nhà : - Nắm vững mối quan hệ giữa dấu của đạo hàm và sự đơn điệu của hàm số. Muốn xét tính đơn điệu của hàm số ta chỉ cần xét dấu của đạo hàm các hàm số đó. - Đọc trước phần Quy tắc xét tính đơn điệu của hàm số. - Giải các bài tập sách giáo khoa. BTVN: 1 – 2 Sgk_9,10. 5. Rút kinh nghiệm Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 3 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 Ngày soạn : 20/08/2008 SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ Tiết: 2 1. Mục tiêu . Qua bài học này học sinh cần: • Về kiến thức : Nhớ lại và hiểu định nghĩa sự đồng biến và nghịch biến của hàm số và mối quan hệ giữa khái niệm này với đạo hàm. • Về kỹ năng : Biết vận dụng quy tắc xét tính đơn điệu của hàm số và dấu đạo hàm của nó. • Về tư duy và thái độ : Biết quy lạ về quen , hiểu được ứng dụng của đạo hàm . Tính đạo hàm và các phép toán chính xác . 2. Chuẩn bị của giáo viên và học sinh : • Giáo viên : Bảng phụ vẽ các đồ thị và các bảng biến thiên . • Học sinh : Xem bài trước ở nhà, chuẩn bị dụng cụ học tập . 3. Phương pháp:Gợi mở ,vấn đáp đan xen hoạt động nhóm . 4. Tiến trình giờ dạy . 4.1. Ổn định lớp và kiểm tra sĩ số lớp . 12A3: 12A8: 4.2. Kiểm tra bài cũ. Nhắc lại định nghĩa hàm số đồng biến, nghịch biến của hàm số? 4.3. Bài mới . - Cho biết tính đồng biến và nghịch biến của hàm số phụ thuộc vào yếu tố nào? - Để xét được dấu của đạo hàm bậc nhất ta tiến hành qua các bước nào? HĐ4 : Quy tắc xét tính đơn điệu của hàm số . - Để xét tính đơn điệu của hàm số ta thực hiện 4 bước , yếu cầu hs xem 4 bước trong sgk . - Gv ghi nhanh các bước lên bảng - Hướng dẫn học sinh áp dụng quy tắc tìm các khoảng đồng biến và nghịch biến của hàm số. - Nhắc lại về xét dấu của 1 đa thức. - Ví dụ1:Chia 3 nhóm: nhóm 1 câu a, nhóm 2 câu b, nhóm 3 câu c. - Nhận xét, củng cố. Chú ý thêm cho học sinh về việc xét dấu của các biểu thức không phải là tam thức bậc - Suy nghĩ trả lời . - Tính đồng biến phụ thuộc vào dấu của đạo hàm bậc nhất - Căn cứ vào quá trình làm bài tập. Học sinh nêu các bước tiến hành - Hs đọc các bước trong sgk. - Yêu cầu học sinh đọc ví dụ 3 , 4 sgk . - Phân công đại diện trình bày trên bảng. II. Quy tắc xét tính đơn điệu của hàm số . 1. Quy tắc: B1: Tìm TXĐ của hàm số. B2: Tính y’, tìm các giá trị của x mà y’=0 hoặc không xđ. B3: Lập BBT (sắp xếp các giá trị của x tăng dần) B4: Căn cứ vào dấu của y’ để kết luận tính đb, nb. 2. Áp dụng: - Ví dụ1: Xét tính đơn điệu của các hàm số: a) 3 2 3 2y x x= − + b) 1 1 x y x − = + c) 4 2 2y x x= − - Kquả: a) hsố đồng biến trên ( ;0);(2; )−∞ +∞ và nghịch biến trên (0; 2). b) Hàm số nghịch biến trên ( ; 1)−∞ − và ( 1; )− +∞ c) Hàm số đồng biến trên (-1; 0) và (1; )+∞ ; hàm số nghịch trên ( ; 1)−∞ − và (0; 1) - Ví dụ 2: Cmr: hàm số Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 4 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 hai, đb là biểu thức 3 nghiệm phân biệt. - Hàm số đb trên Txđ khi nào? - Cần c/m điều gì? - Hdẫn hs c/m. - Sử dụng tính chất đơn điệu của hàm số để c/m BĐT. Muốn c/m : x > sinx với mọi x thuộc (0; ) 2 π ta cần c/m x-sinx >0 xét f(x)=x-sinx đồng biến trên [0; ] 2 π và ta 0<x suy ra (0) ( )f f x< tức là x-sinx >0 suy ra đpcm. - ' 0,y x TXD≥ ∀ ∈ - Cần c/m ' 0,y x TXD≥ ∀ ∈ , với mọi giá trị của m. - Sử dụng tính đơn điệu của hàm số. 3 2 2 1 1 3 y x mx m x= + + − đồng biến trên txđ của nó với mọi giá trị của tham số m. - Ví dụ 3: Cmr: x > sinx với mọi x thuộc (0; ) 2 π Lgiải: Xét hàm số . Ta có: '( ) 1 cos 0, [0; ) 2 f x x x π = − ≥ ∀ ∈ , f’(x)=0 chỉ tại x=0 nên suy ra hàm số ( ) sinf x x x= − đồng biến trên [0; ) 2 π . Do đó với 0 2 x π < < ta ( ) sin (0) 0f x x x f= − > = hay sinx x> trên khoảng (0; ) 2 π Củng cố: Trắc nghiệm. Quan sát đề bài và trả lời câu hỏi. - Đưa câu hỏi trắc nghiệm lên màn hình Câu hỏi trắc nghiệm a) Hàm số 3 2 5 6y x x x= + − + đồng biến trên các khoảng: A. (-5; 1) B. ( ; 5) (1; )−∞ − ∪ +∞ C. R D. Kết quả khác. b) Hàm số 1 3 x y x − = + đồng biến trên các khoảng: A. R\{-3} B. ( ; 3)−∞ − C. R D. Kết quả khác. 4.4. Dặn dò - Hướng dẫn học ở nhà : - Nắm vững mối quan hệ giữa dấu của đạo hàm và sự đơn điệu của hàm số. Muốn xét tính đơn điệu của hàm số ta chỉ cần xét dấu của đạo hàm các hàm số đó. - Đọc trước phần Quy tắc xét tính đơn điệu của hàm số. - Giải các bài tập sách giáo khoa. BTVN: 3 – 5 Sgk_10. 5. Rút kinh nghiệm Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 5 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 Ngày soạn : 20/08/2008 BÀI TẬP: SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ Tiết: 3 1. Mục tiêu . • Về kiến thức : Hiểu được định nghĩa sự đồng biến và nghịch biến của hàm số và mối quan hệ giữa khái niệm này với đạo hàm . • Về kỹ năng : Biết vận dụng quy tắc xét tính đơn điệu của hàm số và dấu đạo hàm của nó • Về tư duy và thái độ : Biết quy lạ về quen , hiểu được ứng dụng của đạo hàm . Tính đạo hàm và các phép toán chính xác . 2. Chuẩn bị của giáo viên và học sinh : • Giáo viên : Bảng phụ vẽ các đồ thị và các bảng biến thiên . • Học sinh : Xem bài trước ở nhà , chuẩn bị bài tập ở nhà . 3. Phương pháp:Gợi mở ,vấn đáp đan xen hoạt động nhóm . 4. Bài mới: IV.1. Ổn định lớp và kiểm tra sĩ số lớp . IV.2. Kiểm tra bài cũ : Xét sự đồng biến và nghịch biến của hàm số : 1/ y= 4 2 2 3x x− + 2/ y= 3 2 5x x− + − . IV.3. Bài tập . Hoạt động GV Hoạt động HS HĐ1: Giải bài tập 1: Xét sự đồng biến và nghịch biến của hàm số : 1/ y= 2 4 3x x+ − 2/ y= 3 2 1 3 7 2 3 x x x+ − − . - Chia lớp thành hai nhóm : Nhóm 1 câu 1 , nhóm 2 câu 2 . Hướng dẫn các em xét dấu và lập bảng biến thiên . - Lưu ý học sinh cách xét dấu tam thức bậc hai . - Gọi đại diện hai nhóm trình bày bài giải của nhóm . - Gọi hs khác nhận xét , bổ sung . - Lưu ý hs cách bấm máy tính giá trị hàm số , các em hay nhầm lẫn là thế x vào đạo hàm mà không thế vào pt của hàm số . - Nhận xét kết quả thảo luận của các em , điều chỉnh , bổ sung . - Chia nhóm thảo luận các bước giải . - Tập xác định , tính y’ , giải pt y’=0 , tính giá trị hàm số , lập bảng biến thiên , dựa vào bảng biến thiên kết luận đồng biến và nghịch biến . - Đại diện nhóm trình bài kết quả thảo luận - Nhận xét chéo giữa các nhóm . HĐ2: Giải bài tập 2: - Chia lớp thành 4 nhóm : Nhóm 1 câu a , nhóm 2 câu b,nhóm 3 câu c , nhóm 4 câu d . Hướng dẫn các em xét dấu và lập bảng biến thiên . - Hướng dẫn học sinh cách tìm tập xác định hàm phân thức , của căn thức . - Hướng dẫn các em tính đạo hàm của hàm phân thức và của căn thức . Chia nhóm thảo luận các bước giải . - Tập xác định , tính y’ , giải pt y’=0 , tính giá trị hàm số , lập bảng biến thiên , dựa vào bảng biến thiên kết luận đồng biến và nghịch biến . - Đại diện nhóm trình bài kết quả thảo luận - Nhận xét chéo giữa các nhóm . Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 6 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 - Lưu ý học sinh cách xét dấu tam thức bậc hai . - Gọi đại diện hai nhóm trình bày bài giải của nhóm . - Gọi hs khác nhận xét , bổ sung . - Lưu ý hs cách bấm máy tính giá trị hàm số, các em hay nhầm lẫn là thế x vào đạo hàm mà không thế vào pt của hàm số . - Nhận xét kết quả thảo luận của các em , điều chỉnh , bổ sung . HĐ3: Giải bài tập 3: - Tìm tập xác định của hàm số ? - Tính đạo hàm của hàm số ? - Giải pt y’=0 ? - Lập bảng biến thiên ? - Dựa vào bảng biến thiên và định lí đb ,nb kết luận đb và nb ? - Hàm số xác định với mọi . - Tính đạo hàm y’= 2 2 2 1 (1 ) x x − + . - y’=0 x⇔ = ± 1 . - Lập bảng biến thiên . Kết luận . HĐ4: Giải bài tập 4: - Tìm tập xác định của hàm số ? - Tính đạo hàm của hàm số ? - Giải pt y’=0 ? - Lập bảng biến thiên ? - Lưu ý hs bảng biến thiên chỉ xét trên đoạn [0;2] - Dựa vào bảng biến thiên và định lí đb, nb kết luận đb và nb ? - Hàm số xác định với mọi . - Tính đạo hàm y’= 2 1 2 x x x − − . - y’=0 x⇔ = 1 . - Lập bảng biến thiên . Kết luận . 4.5. Củng cố: - Nắm chắc quy tắc xét tính đồng biến và nghịch biến của hàm sô. Chú ý Địnhlý mở rộng đk đủ của dấu hiệu. - Bài tập làm thêm. 1) Tìm m để hàm số 3 2 2 ( 1) ( 4) 9y x m x m x= + − + − + đồng biến với mọi x ∈R. 2) Tìm m để hàm số 3 2 1 (3 2) 3 m y x mx m x − = + + − nghịch biến với mọi x ∈R. 5. Rút kinh nghiệm: Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 7 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 Ngày soạn : 25/08/2008 BÁM SÁT: SỬ DỤNG TÍNH ĐƠN ĐIỆU HÀM SỐ C/M BĐT. TÍNH ĐƠN ĐIỆU. Tiết: . 1. Mục tiêu . • Về kiến thức : Hiểu được định nghĩa sự đồng biến và nghịch biến của hàm số và mối quan hệ giữa khái niệm này với đạo hàm . • Về kỹ năng : Biết vận dụng quy tắc xét tính đơn điệu của hàm số và dấu đạo hàm của nó. Sử dụng tính đơn điệu của hàm số để c/m BĐT. • Về tư duy và thái độ : Biết quy lạ về quen , hiểu được ứng dụng của đạo hàm . Tính đạo hàm và các phép toán chính xác . 2. Chuẩn bị của giáo viên và học sinh : • Giáo viên : Bảng phụ vẽ các đồ thị và các bảng biến thiên . • Học sinh : Xem bài trước ở nhà , chuẩn bị bài tập ở nhà . 3. Phương pháp:Gợi mở ,vấn đáp, quy lạ về quen. 4. Bài mới: 4.1. Ổn định lớp: 12A8: 4.2. Kiểm tra bài cũ : - Nhắc lại đ/n hàm số đơn điệu. - Để c/m hàm số ( )y f x= đơn điệu trên K ta cần chỉ ra đk gì? 4.3. Bài tập luyện tập . Hoạt động GV - HS Nội dung ghi bảng HĐ1: Xét sự đồng biến và nghịch biến của hàm số. - Gv: Yêu cầu hs chỉ ra cách thực hiện lời giải các bài toán. - Hs: a) ycbt ⇔ ' 0, [3; )y x≥ ∀ ∈ +∞ - TXĐ: ( ; 3] [3; )D = −∞ − ∪ +∞ - 2 ' 0, [3; ) 9 x y x x = > ∀ ∈ +∞ − => đpcm. b) y’<0 với x thuộc [-2; 0) và (0; 2]. - TXĐ: \{0}D = ¡ - 2 2 4 ' 0, [ 2;2]\{0} x y x x − = ≤ ∀ ∈ − và ' 0 2; 2y x x= ⇔ = − = => đpcm. c) y’<0 với mọi x thuộc R 2 ' 1 0, 8 x y x R x = − + < ∀ ∈ + Gv: Hàm số nghịch biến với mọi x khi nào? y’ ≤ 0, với mọi x. y' = ? Tam thức bậc 2 âm với mọi x khi nào? Đó chính là đk để tìm a t/m btoán. Bài tập 1: Chứng minh rằng: a) Hàm số 2 9y x= − đồng biến trên [3; )+∞ b) Hàm số 4 y x x = + nghịch biến trên mỗi nửa khoảng [-2; 0) và (0; 2] c) Hàm số 2 8y x x= − + + nghịch biến trên R. Bài tập 2: Với các giá trị nào của a, hàm số 3 2 1 ( ) 2 (2 1) 3 2 3 f x x x a x a= − + + + − + nghịch biến trên R? Lgiải: - TXĐ: R 2 ' 4 2 1y x x a= − + + + YCBT ⇔ y’≤ 0, mọi x. ⇔ 5 ' 4 2 1 0 2 a a∆ = + + ≤ ⇔ ≤ − Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 8 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 HĐ2: Chứng minh BĐT. - Chia lớp thành 4 nhóm : Nhóm 1 câu a , nhóm 2 câu b,nhóm 3 câu c , nhóm 4 câu d . Hướng dẫn các em xét dấu và lập bảng biến thiên . - Hướng dẫn học sinh cách tìm tập xác định hàm phân thức , của căn thức . - Hướng dẫn các em tính đạo hàm của hàm phân thức và của căn thức . - Lưu ý học sinh cách xét dấu tam thức bậc hai . - Gọi đại diện hai nhóm trình bày bài giải của nhóm . - Gọi hs khác nhận xét , bổ sung . - Lưu ý hs cách bấm máy tính giá trị hàm số, các em hay nhầm lẫn là thế x vào đạo hàm mà không thế vào pt của hàm số . - Nhận xét kết quả thảo luận của các em , điều chỉnh , bổ sung . Bài tập 3: Chứng minh rằng: 2 sin ; 0; 2 x x x π π   > ∀ ∈  ÷   Lgiải: BĐT ⇔ sin 2 ( ) ; (0; ] 2 x f x x x π π > ∀ ∈ Ta 2 2 cos sin ( ) '( ) x x x g x f x x x − = = Với g(x) = xcosx – sinx. Ta có: g’(x) = cosx – xsinx –cosx = -x.sinx <0 với (0; ] 2 x π ∀ ∈ => g(x) nghịch biến / (0; ) 2 π => 2 ( ) ( ) (0) 0 '( ) 0 g x g x g f x x < = ⇒ = < => f(x) nghịch biến / (0; ) 2 π => 2 ( ) ( ) 2 f x f π π > = => đpcm. Bài tập 4: Chứng minh rằng: 2 2 2 1 1 4 1 (0; ) sin 2 x x x π π < + − ∀ ∈ 4.5. Củng cố: - Nắm chắc quy tắc xét tính đồng biến và nghịch biến của hàm sô. Chú ý Địnhlý mở rộng đk đủ của dấu hiệu. - Kết hợp với đ/n hàm số đơn điệu để c/m BĐT. ý thức sử dụng tính đơn điệu của hàm số trong giải toán. 5. Rút kinh nghiệm: Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 9 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 Ngày soạn : 22/08/2008 §2. CỰC TRỊ CỦA HÀM SỐ Tiết: 4 1.Mục tiêu . • Về kiến thức : Hiểu được khái niệm cực đại, cực tiểu, biết phân biệt với khái niệm giá trị lớn nhất và nhỏ nhất . • Về kỹ năng : Biết vận dụng các điều kiện đủ để hàm số cực trị. Sử dụng thành thạo các điều kiện đủ để tìm cực trị . • Về tư duy và thái độ : Biết quy lạ về quen, Tính đạo hàm và các phép toán chính xác . 2. Chuẩn bị của giáo viên và học sinh : • Giáo viên : Bảng phụ vẽ các bảng biến thiên . • Học sinh : Xem bài trước ở nhà , chuẩn bị dụng cụ học tập . 3.Phương pháp: Gợi mở ,vấn đáp đan xen hoạt động nhóm . 4. Tiến trình giờ dạy: 4.1. Ổn định lớp: 12A8: /46 4.2. Kiểm tra bài cũ . 1) Xét sự đồng biến và nghịch biến của hàm số y= 4 2 2 1x x− + . Gợi ý: Bảng biến thiên: x -∞ -1 0 1 +∞ y' - 0 + 0 - 0 + y Suy ra các khoảng đồng biến, nghịch biến của hàm số. 2) Xét sự đồng biến, nghịch biến của các hàm số sau: (a) y = –x 2 +1 (1) (b) y = 3 x (x-3) 2 (2) 4.3. Bài mới: HĐ 1: Khái niệm cực đại, cực tiểu. HĐTP 1: Tiếp cận khái niệm. Hoạt động của Thầy Hoạt động của trò Nội dung ghi bảng •Treo bảng phụ (hình vẽ hai đồ thị của hai hàm số (1) và (2)). •Yêu cầu HS nhìn vào đồ thị chỉ ra các điểm cao nhất, điểm thấp nhất so với các điểm xung quanh của nó. •Từ đó dẫn dắt đến định nghĩa cực đại, cực tiểu. • Học sinh quan sát . • Học sinh suy nghĩ và trả lời. §2. CỰC TRỊ CỦA HÀM SỐ I. Khái niệm cực đại, cực tiểu. HĐTP 2: Hình thành khái niệm. Hoạt động của Thầy Hoạt động của trò Nội dung ghi bảng •Yêu cầu HS phát biểu định nghĩa trong SGK. •Dựa vào hai hàm số xét ở trên, • HS phát biểu định nghĩa cực đại, cực tiểu. • Ghi nhớ các khái niệm: •Định nghĩa (SGK trang 13) •Chú ý (SGK trang 14) Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 10 [...]... 1/ Kiến thức bản: -Định nghĩa GTLN, NN của hàm số -Quy tắc tìm GTLN, NN của hs trên đoạn, khoảng bằng đạo hàm 2/ Một số dạng toán: -Tìm GTLN, NN của hàm số trên đoạn, khoảng -Các bước giải bài toán liên quan tới GTLN, NN của hàm số V-HDVN: BT 15 → 20-SBT-T11 +12 VI-Rút kinh nghiệm: Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 18 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009... si cho 2 số 4 dương x và ta có: x b) y = x+ -Nêu cách giải khác BT5 Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 17 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 -GV chú ý cho hs lựa chọn pp giải, không nhất thiết phải sử dụng đạo hàm y = x+ x= 4 ≥ 4 ⇒ minf(x)= 4 khi x 4 ⇔ x=2 x Hoạt đông2: Vận dung đạo hàm giải toán liên quan tới việc tìm GTLN, NN của hàm số Bài tập2-sgk-T24:... sau: a) y= x Hoạt động của giáo viên - Gọi học sinh lên bảng trình bày bài giải - Gọi một số học sinh nhận xét bài giải của bạn - Uốn nắn sự biểu đạt của học sinh về tính toán, cách trình bày bài giải -Gọi hs nêu cách giải khác? 5 − 4x trên [- 1; 1] Hoạt động của học sinh -Trình bày bài giải -Nhận xét bài giải của bạn -Rút kinh nghiệm về cách tính toán, trình bày lời giải -Lời giải bài tập1 b) y = 4x3... của giáo viên - Gọi một học sinh thực hiện giải toán Trang 30 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 b = ak b d = = k hay  a c d = ck ax + ak a = , với ∀x ≠ - k (đồ thị là hai tia) Suy ra: y = cx + ck c −x + 2 Hoạt động 3: Khảo sát và vẽ đồ thị của hàm số: y = 2x + 1 Hoạt động của học sinh - Đọc, nghiên cứu ví dụ 3 theo nhóm được phân công - Phát biểu nêu khúc mắc cần giải. .. của đồ thị hàm số và dáng điệu đồ thị và chiều biến thiên của chúng 5 Dặn dò: - Học bài, làm bài tập SGK 6 Rút kinh nghiệm Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 34 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 Ngày soạn : …/…./2008 §5 KHẢO SÁT SỰ BIẾN THIÊN Tiết: 15 VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ A - Mục tiêu: Nắm vững cách giảigiải thành thạo loại toán: Biện luận số nghiệm... Giải thích từng trường hợp 4 Củng cố bài: - Sơ đồ khảo sát đồ thị hàm số -Các dạng của đồ thị hàm số bậc ba 5 Dặn dò: - Học bài, làm bài tập 1 trang 43 Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 27 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ Ngày soạn : …/…./2008 Tiết: 12 A - Mục tiêu: - Củng cố sơ đồ khảo sát hàm số - Giải. .. Trang 19 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 tích của mặt hồ n con cá thì sau một vụ số cá trên mỗi đơn vị diện tích mặt hồ trung bình cân nặng là bn? -Cho HS khảo sát hs: f(x)=480x-20x2 trên hkoảng (0;+ ∞ ) (biến thực) -Từ BBT suy ra kq với biến thực x, suy ra với n + f(n)=n.P(n)=480n-20n2 (g) -Khảo sát hs: f(x)=480x-20x2 trên hkoảng (0;+ ∞ ) (biến thực) đơn vị diện tích. .. đoạn, khoảng bằng đạo hàm 2/ Một số dạng toán: -Tìm GTLN, NN của hàm số trên đoạn, khoảng -Các bước giải bài toán liên quan tới GTLN, NN của hàm số V-HDVN: BT 15 → 20-SBT-T11 +12 VI-Rút kinh nghiệm: Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh Trang 20 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 Ngày soạn : …/…./2008 §4 ĐƯỜNG TIỆM CẬN Tiết: 9 A-Mục tiêu: -Kiến thức: Giúp học sinh:... bày, nhóm khác nhận Gv Phùng Danh Tú – THPT Trần Phú, Móng Cái, Qninh đồ thị hàm số y = 1 3 x – x2 + 3x - 1 3 Lời giải: Trang 26 Giáo án Giải tích 12 – Chương trình bản – Năm học 2008-2009 y= 1 3 x – x2 + 3x - 1 3 - Nhóm 2 và 4 khảo sát hàm số 1 y = x3 – x2 + x + 1 3 xét bổ sung -Nhận xét, đánh giá, bổ sung + Tập xác định D = R + y’=x2- 2x + 3 =(x – 1)2 + 2 > 0,∀x∈ R ⇒ Đồ thị dạng của y’=0 vô nghiệm... [2; 5] 3 Hoạt động của giáo viên - Gọi học sinh lên bảng trình bày bài giải - Gọi một số học sinh nhận xét bài giải của bạn - Uốn nắn sự biểu đạt của học sinh về tính toán, cách trình bày bài giải -Chú ý trường hợp hàm số chứa GTTĐ c) y = Hoạt động của học sinh Trình chiếu-Ghi bảng - Trình bày bài giải - Nhận xét bài giải của bạn -Rút kinh nghiệm về cách tính toán, trình bày lời giải Bài tập 4-sgk-T24: . 19 x y O Giáo án Giải tích 12 – Chương trình cơ bản – Năm học 2008-2009 tích của mặt hồ có n con cá thì sau một vụ số cá trên mỗi đơn vị diện tích mặt. Giáo án Giải tích 12 – Chương trình cơ bản – Năm học 2008-2009 - Lưu ý học sinh cách xét dấu tam thức bậc hai . - Gọi đại diện hai nhóm trình bày bài giải

Ngày đăng: 29/07/2013, 01:25

HÌNH ẢNH LIÊN QUAN

+ GV :Bảng phụ, phấn màu, cỏc mụ hỡnh (nếu cú) - Giáo án Giải tích 12 cơ bản_cả năm
Bảng ph ụ, phấn màu, cỏc mụ hỡnh (nếu cú) (Trang 13)
Hoạt động của giỏo viờn Hoạt động của học sinh Trỡnh chiếu-Ghi bảng - Giáo án Giải tích 12 cơ bản_cả năm
o ạt động của giỏo viờn Hoạt động của học sinh Trỡnh chiếu-Ghi bảng (Trang 16)
- Kĩ năng: Cú kĩ năng thành thạo trong việc dựng bảng biến thiờn của hàm số đẻ tỡm            GTLN, NN của hàm số. - Giáo án Giải tích 12 cơ bản_cả năm
n ăng: Cú kĩ năng thành thạo trong việc dựng bảng biến thiờn của hàm số đẻ tỡm GTLN, NN của hàm số (Trang 17)
-Giỏo viờn: Bảng phụ, đồ dựng dạy học, phiếu học tập. - Giáo án Giải tích 12 cơ bản_cả năm
i ỏo viờn: Bảng phụ, đồ dựng dạy học, phiếu học tập (Trang 21)
-Giỏo viờn: Bảng phụ, đồ dựng dạy học, phiếu học tập. - Giáo án Giải tích 12 cơ bản_cả năm
i ỏo viờn: Bảng phụ, đồ dựng dạy học, phiếu học tập (Trang 23)
Hoạt động của giỏo viờn Hoạt động của học sinh Trỡnh chiếu-Ghi bảng - Giáo án Giải tích 12 cơ bản_cả năm
o ạt động của giỏo viờn Hoạt động của học sinh Trỡnh chiếu-Ghi bảng (Trang 24)
• Lập bảng biến thiờn (ghi tất cả cỏc kết quả đó tỡm được  vào bảng biến thiờn) - Giáo án Giải tích 12 cơ bản_cả năm
p bảng biến thiờn (ghi tất cả cỏc kết quả đó tỡm được vào bảng biến thiờn) (Trang 26)
- Sỏch giỏo khoa, biểu bảng biểu diễn đồ thị của một số hàm số.                    - Mỏy tớnh điện tử Casio fx - 570 MS. - Giáo án Giải tích 12 cơ bản_cả năm
ch giỏo khoa, biểu bảng biểu diễn đồ thị của một số hàm số. - Mỏy tớnh điện tử Casio fx - 570 MS (Trang 28)
- Sỏch giỏo khoa, biểu bảng biểu diễn đồ thị của một số hàm số.                    - Mỏy tớnh điện tử Casio fx - 570 MS. - Giáo án Giải tích 12 cơ bản_cả năm
ch giỏo khoa, biểu bảng biểu diễn đồ thị của một số hàm số. - Mỏy tớnh điện tử Casio fx - 570 MS (Trang 30)
1/ Giỏo viờn: Bài soạn ,phấn màu ,bảng phụ,phiếu học tập. - Giáo án Giải tích 12 cơ bản_cả năm
1 Giỏo viờn: Bài soạn ,phấn màu ,bảng phụ,phiếu học tập (Trang 32)
HĐGV HĐHS Ghi bảng - Giáo án Giải tích 12 cơ bản_cả năm
hi bảng (Trang 33)
Giỏo viờn: giỏo ỏn, bảng phụ Học sinh : sỏch giỏo khoa III. Phương phỏp :- Gợi mở , vấn đỏp                               - Luyện tập - Giáo án Giải tích 12 cơ bản_cả năm
i ỏo viờn: giỏo ỏn, bảng phụ Học sinh : sỏch giỏo khoa III. Phương phỏp :- Gợi mở , vấn đỏp - Luyện tập (Trang 37)
• Bảng biến thiờn ;           y 2' )1(1 −−= - Giáo án Giải tích 12 cơ bản_cả năm
Bảng bi ến thiờn ; y 2' )1(1 −−= (Trang 38)
GV: Bảng phụ - Giáo án Giải tích 12 cơ bản_cả năm
Bảng ph ụ (Trang 41)
HĐ của GV HĐ củaHS Ghi bảng - Giáo án Giải tích 12 cơ bản_cả năm
c ủa GV HĐ củaHS Ghi bảng (Trang 47)
-Giỏo viờn :Giỏo ỏn, bảng phụ,phiếu học tập - Học sinh  : ễn tập kiến thức, sỏch giỏo khoa. - Giáo án Giải tích 12 cơ bản_cả năm
i ỏo viờn :Giỏo ỏn, bảng phụ,phiếu học tập - Học sinh : ễn tập kiến thức, sỏch giỏo khoa (Trang 53)
Hoạt động của giỏo viờn Hoạt động của học sinh Ghi bảng - Giáo án Giải tích 12 cơ bản_cả năm
o ạt động của giỏo viờn Hoạt động của học sinh Ghi bảng (Trang 57)
Hoạt động của giỏo viờn Hoạt động của học sinh Ghi bảng - Giáo án Giải tích 12 cơ bản_cả năm
o ạt động của giỏo viờn Hoạt động của học sinh Ghi bảng (Trang 61)
Hoạt động của giỏo viờn Hoạt động của học sinh Ghi bảng - Giáo án Giải tích 12 cơ bản_cả năm
o ạt động của giỏo viờn Hoạt động của học sinh Ghi bảng (Trang 67)
-GV Gợi mở cho HS cựng xõy dựng bảng khảo sỏt sau: - Giáo án Giải tích 12 cơ bản_cả năm
i mở cho HS cựng xõy dựng bảng khảo sỏt sau: (Trang 68)
1.Giỏo viờn: 4 phiếu học tập, bảng phụ. - Giáo án Giải tích 12 cơ bản_cả năm
1. Giỏo viờn: 4 phiếu học tập, bảng phụ (Trang 70)
Hoạt động của GV Hoạt động củaHS Ghi bảng - Giáo án Giải tích 12 cơ bản_cả năm
o ạt động của GV Hoạt động củaHS Ghi bảng (Trang 71)
+Giỏo viờn: -Bảng phụ vẽ đồ thị hàm số logarit.,Giỏo ỏn, đồ dựng dạy học. - Giáo án Giải tích 12 cơ bản_cả năm
i ỏo viờn: -Bảng phụ vẽ đồ thị hàm số logarit.,Giỏo ỏn, đồ dựng dạy học (Trang 73)
-Thảo luận và lờn bảng trỡnh bày. - Giáo án Giải tích 12 cơ bản_cả năm
h ảo luận và lờn bảng trỡnh bày (Trang 80)
-Vận dụng được đn, tc, bảng nguyờn hàm để tỡm nguyờn hàm của một số hàm số đơn giản. - Giáo án Giải tích 12 cơ bản_cả năm
n dụng được đn, tc, bảng nguyờn hàm để tỡm nguyờn hàm của một số hàm số đơn giản (Trang 86)
(Bảng sgk-T100) - Giáo án Giải tích 12 cơ bản_cả năm
Bảng sgk T100) (Trang 89)
-Củng cố định nghĩa nguyờn hàm, cỏc tớnh chất của nguyờn hàm, bảng nguyờn hàm của cỏc hàm số thường gặp. - Giáo án Giải tích 12 cơ bản_cả năm
ng cố định nghĩa nguyờn hàm, cỏc tớnh chất của nguyờn hàm, bảng nguyờn hàm của cỏc hàm số thường gặp (Trang 90)
-Cho học sinh lờn bảng trỡnh bày lại lời giải, cỏc học sinh khỏc nhận xột, bổ sung. - Giáo án Giải tích 12 cơ bản_cả năm
ho học sinh lờn bảng trỡnh bày lại lời giải, cỏc học sinh khỏc nhận xột, bổ sung (Trang 106)
*Giỏo viờn: -Giỏo ỏn, bảng phụ, đồ dựng dạy học. * Học sinh:   - Đọc trước bài ,dụng cụ học tập - Giáo án Giải tích 12 cơ bản_cả năm
i ỏo viờn: -Giỏo ỏn, bảng phụ, đồ dựng dạy học. * Học sinh: - Đọc trước bài ,dụng cụ học tập (Trang 126)
*Giỏo viờn: -giỏo ỏn, bảng phụ, đồ dựng dạy học. *Học sinh:   -Đọc trước bài ,dụng cụ học tập - Giáo án Giải tích 12 cơ bản_cả năm
i ỏo viờn: -giỏo ỏn, bảng phụ, đồ dựng dạy học. *Học sinh: -Đọc trước bài ,dụng cụ học tập (Trang 142)

TỪ KHÓA LIÊN QUAN

w